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Abstract: Accurate measurement of airport operational efficiency and the analysis of key influencing
factors can provide theoretical references for regional airport planning and air traffic management.
Many studies are conducted on the operational efficiency of airports in the region, but little attention is
paid to their interactions. To fill this gap, this paper measures the operational efficiency of airports in
four major cities in the Yangtze River Delta (YRD) region, and on this basis, the spatial Durbin model
is used to explore the influencing factors and spillover effects of airport operational efficiency based
on two aspects: airport physical characteristics and regional characteristics. The study demonstrates
that the efficiency of airport operations has a significant negative spillover effect, indicating that the
efficiency of neighboring airports evolves in a competitive interaction. In terms of direct effects, the
number of flights, the number of destinations, airport capacity utilization and GDP are important
factors affecting airport efficiency. In terms of spillover effects, this paper found that the population
and income positively affect the efficiency of local airport operations, while the number of flights and
airport capacity utilization effects have negative effects.

Keywords: multi-airport region; airport efficiency; spatial Durbin model; direct effects; spillover
effects

1. Introduction

For years, with the increasing demand for transport services, the civil aviation trans-
port industry rapidly developed world-wide. Competition has been fierce in both domestic
and global markets in the last few decades. In a multi-airport region (MAR), where air-
ports are close to each other, multiple factors are considered by passengers in the common
catchment area, for example, which airport to choose, flight frequency, travel time, and
fares [1–3], and these factors always interact and compete with each other. In order to meet
the increasing tourism-related activities of future air transport growth within MAR, the
regional airport authority needs to improve airport efficiency and competitiveness and
needs to consider its interdependence with nearby airports on its own airport traffic to
achieve better air traffic management.

Under the pressure of competition for air traffic demand, the measurement of airport
efficiency has become the focus of a large number of studies. There also is a greater interest
in improving the effectiveness of regional airports [4,5]. However, to improve the overall
efficiency of the MAR, it is necessary to rely on the coordination and cooperation among
the airports within the MAR. Whether the input and output of the airports within the
MAR are appropriate or not will not only affect air transport efficiency of each individual
airport, but it will also affect the overall efficiency of the MAR. Previous studies on airport
efficiency were compiled based on two main aspects. Firstly, to assess the performance
of the airport, data-envelopment analysis was the most commonly used tool for the per-
formance measurement of airports [6,7]. Then, on the basis of these measurements, Tobit
regression analysis was implemented to measure the effects of multiple factors on airport
efficiency. Previous studies show that the most common variables comprise airport capacity
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utilization [8], size [9,10], transport movements [11], population [12,13], location [14], etc.
Better knowledge of the variables affecting airport efficiency can provide airport operators
and decision-makers with insight on how to improve airport efficiency. However, the
operational efficiency of airports within the MAR is affected not only by factors related to
the one airport city, but it is also affected by spillover effects from neighboring airport cities.
Due to airport size, flights and airlines, the airport located nearby within the MAR can com-
pete for passengers resulting in passenger diversion and changes in airport efficiency [11].
Conversely, airport efficiency is also affected by the level of income of the population and
the number of persons in the catchment area of the airport. Population and income growth
may encourage traffic volumes at the region′s airports [12]. However, little research has
been conducted to investigate the spatial variation of airport operational efficiency from
the perspective of the MAR as a whole.

The motivation of this paper is to investigate the uneven development level and
operational efficiency of the airports in the YRD region by combining spatial effects in order
to promote the coordinated development of the MAR. First, the slack-based measure (SBM)
was used in this paper to analyze the operational efficiency of major airports, examine
the individual airport performances and compare the changes in the YRD region between
2009 and 2018. Then, a spatial weight matrix was established, and Moran′s I index was
used to analyze the spatial correlation of airport operational efficiency. This paper also
explored the influencing factors of airport operational efficiency from two dimensions:
airport operational characteristics and airport regional characteristics. Then, the spatial
econometric models were introduced into the analysis of efficiency by influencing factors
to study their spatial spillover effects. Some results show that there are spatial interactions
between the local and alternative nearby airports. Airport operational efficiency has
a negative spillover effect, indicating that there is a competitive relationship between
neighboring airports within the MAR. Airports within the MAR should focus on different
development strategies according to their own positioning and their market characteristics
in order to improve the overall aviation operation capacity of the MAR and meet the
fast-growing demand for air transportation.

The rest of the paper is organized as follows. The second section reviews the earlier
studies that are subjected to the multi-airport region and efficiency analysis; the third
section proposes the theoretical model of SBM-DEA and Durbin and analyzes spatial
weight of the airport; the fourth section introduces the data used in this research; the fifth
section discusses the empirical results and findings; the sixth section summarizes the full
text, and the implications will be drawn from the results obtained from the analysis which
suggest some efficient governance mechanisms for the decision maker.

2. Literature Review
2.1. Multi-Airport Region

The relationship between airports in a multi-airport region is of considerable interest
to policymakers, academic researchers and many others. Although many multi-airport
regions around the world are properly developed, the development in China is still poor.
The growth of multi-airport regions needs to develop rapidly, especially with the increasing
demand for air transport services in China. Historically, commercial traffic consisting of
multiple airports serving a common area was defined as a multi-airport region and was
independent of attributes such as airport ownership, operator, manager or administrative
region to which they belonged [15]. Based on the concept of a multi-airport region, some
scholars further studied the progress of multi-airport regions and focused on two main
aspects: the operational status and the travel behaviors of individuals.

In terms of the operational status of a multi-airport region, the authors of [16] studied
the San Francisco Bay Area region and found that most of the time, the operational patterns
of airports within a multi-airport region do not change easily and that competition among
airports for shared airspace resources is more pronounced, which can further reduce
airport capacity and efficiency. The authors of [17] summarized three major problems
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that exist in operations within a multi-airport region that share the same departure points,
shared airspace and neighboring airport configurations. In addition, the high degree
of interdependence of operations in each multi-airport region makes it quite difficult to
manage them effectively. The authors of [18] proposed a framework for the design of
dynamic arrival and departure routes in a multi-airport region, which fundamentally
changed the operation in MAR airspaces for a much improved efficiency. In addition, other
aspects such as terminals and runways in a multi-airport region were also investigated in
various studies (e.g., [19–21]).

Previous research focuses on what people have chosen across airports in the face of
the heterogeneity of airport attributes, which was seen as a form of airport competition,
and provides the forces that drive the passenger movement patterns within a multi-airport
region. First, the impact of air fares on a multi-airport region was repeatedly shown. When
choosing an airport, air fares ware the dominant predictor ([3,22,23]). The authors of [24]
found that 60% of leisure passengers and 45% of business passengers rated ticket fare as the
most important factor when choosing a flight. The authors of [25,26] found that passengers
were willing to travel further and/or longer in exchange for a better air fare. Second, there
are a number of airport connectivity characteristics that influence airport choice such as
travel time, flight frequency and market served. The authors of [2] used a nested logit
model (NL) to analyze airports in the San Francisco Bay area and concluded that travel time
to an airport was the dominant predictor for airport choice. The authors of [27] found that
passengers prefer non-stop or fewer-stop routes when choosing a flight. The authors of [28]
drew the analogy with Huff models to calculate airport attractiveness to passengers and
showed that airport connectivity and different elements of airport utility are key drivers of
airport choice.

2.2. Airport Efficiency

The evaluation of airport efficiency is an important tool to be used for measuring the
development and competitiveness of airports. There are a number of methods of airport
performance measurements in the previous literature, with the most preferred and cited
one being the data envelopment analysis (DEA). DEA is a non-parametric approach that
can handle multiple inputs and outputs, and there are many DEA applications to assess
airport efficiency [29–32]. The main drawback of what constitutes traditional DEA models
is that they neglect intermediate products of linking activities or fail to identify the sources
that lead to airport inefficiency [33]. In recent years, the SBM-DEA model was also designed
to evaluate airport efficiency. For example, [31] made use of the SBM-CRS model to access
the major Asia-Pacific airports performances from 1987 to 2005. The authors of [34,35]
also utilized the SBM-NDEA model with the VRS framework to investigate the efficiency
of 15 Taiwanese airports in 2006. This study split airport efficiency into production and
service efficiency and estimated the input excesses and output shortfalls in the production
and service processes, respectively. The authors of [36] considered undesirable outputs and
employed the SBM model to analyze the Spanish airports’ efficiency. The authors of [37]
used the SBM model and MPI to investigate productivity changes and the efficiency of
New Zealand’s major airports between 2010 and 2012 and further analyzed the efficiency of
eleven New Zealand airports between 2006 and 2006 [38]. In a similar vein, [39] estimated
the efficiency of the Italian airport system using the SBM model, and [40] used SBM-DEA
to measure the efficiency of nine major airports in Southeast Asia and evaluated their
strengths and weaknesses.

Based on the measurements of airport efficiency, there is a wide range of variables that
are used to explain the variations in efficiency scores in airports. Some of these physical
variables were also used as inputs and outputs, such as airport size, aircraft movements,
cargo traffic, location connected and regular flight [41–44]. In addition, regional charac-
teristics of the airport are also important. For example, the location of the airport plays
a critical role in its performance. The authors of [12] found that hub airports possess the
location advantages, and airport location may explain the productive efficiency. Typically,
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airports located in big cities, metropolitan areas and coastal areas tend to have higher
efficiency [14,45,46]. The authors of [47] also studied the efficiency of small remote airports
and found that most of these airports do not achieve positive economic benefits. In addition,
the hinterland population also affected airport efficiency, which can be evaluated in two
ways, number of persons in the catchment area of the airport (hinterland population) or the
level of income of the city (GDP). The authors of [48] found a positive and significant effect
of population on airport efficiency, and GDP always has been taken into account as an
explanatory variable in the regression model [10,37]. Other scholars studied the efficiency
variables of airport operations in Spain and Greece and found that airports with increased
population density and GDP per capita are likely to have higher levels of efficiency [49,50],
while similar circumstances were observed in New Zealand [38].

It is clear that while there are many studies on the evaluation of airport operational
efficiency in a multi-airport region, few paid attention to the spatial variation of airport
operational efficiency in multi-airport regions, especially the spillover effects of changes in
airport attributes on the efficiency of individual airports and the interaction and diffusion
effects between the local and nearby airports within a multi-airport region. To the best of
our knowledge, the only study that came close to this variation is [51], which proposed a
spatial panel regression model as a way to discuss this type of simultaneous interaction
between different airports. Incidentally, they also conducted a case study in the Pearl River
Delta region (PRD region) with their proposed model. In their study, the findings showed
that airport degree, flight frequency, income, population and GDP are significant factors
affecting the airport’s capacity, and the spatial panel analysis showed that competition
across the four airports in the PRD region is intensifying.

Based on a review of the relevant literature, the existing studies are important insights
and implications for understanding the efficiency of airport operations. However, to
date, there are still relatively few assessments of the efficiency of the entire system of
multi airports. In addition, to our knowledge, there is no study so far that has used the
spatial analysis approach to estimate impacts of regional competition on airport efficiency
in a multi-airport region. To fill this gap, this paper attempts to consider the spatial
linkage to measure the effects of some of these factors on airport operational efficiency
in a multi-airport region. Through theoretical model analysis, efficiency measurement
and influence factor analysis, this paper aims to explore the correlation characteristics
among a multi-airport region from the perspective of airport operational efficiency and
provide a theoretical reference for the construction and development of a multi-airport
region in China.

3. Methodology

At the core of this study is the estimation of spillover effects between each airport
in a multi-airport region. To this end, firstly, the SBM-DEA model was used to evaluate
the operational efficiency of each airport in the MAR, and a spatial Durbin model was
employed and gauged spillover effects by the spatial correlation in the airport performance.
In this paper, the main contribution actually concerns the measurement of a dynamic spatial
model that assesses the factors associated with the airport efficiency in a multi-airport
region and how neighboring airports affect the airport efficiency to a given airport in
the region.

3.1. Data Envelopment Analysis-Slack-Based Measurement

Many studies used DEA with operational variables to analyze airport efficiency [52].
Since the pioneering work of [53], DEA was demonstrated to be an effective technique for
measuring the relative efficiency of a set of DMUs that utilize the same inputs to produce
the same outputs, such as airports under consideration, and the efficiency score has a value
between 0 and 1. DMUs with an efficiency score of 1 are situated on the frontier as the best
practices. The DEA method has numerous advantages that contribute to its prominence
in airport performance evaluation. Compared to other approaches, DEA does not need
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any assumption about either the technology or behaviors of actors and can be performed
without detailed financial data. However, the traditional DEA model does not consider
the redundancy and slackness of the input and output, which implies that an efficient
DMU with an equivalent efficiency score of 1 could be inefficient. To solve the issue, [54]
proposed a direct slack-based efficiency measure to assess a DMU’s performance in terms
of input and output slacks. A DMU with an efficiency score equal to 1 is highly proficient
with SBM. The SBM efficiency score is obtained from Equation (1). The SBM efficiency
index of an airport is denoted as ρ, which represents the inputs xik that produce the outputs
yrk( r = 1, . . . , s); m and s are the number of inputs and outputs, respectively. Meanwhile, k
can be regarded as the number of DMUs. The vector S−i and S+

r are slacks, which represent
the input excess and output shortfall. In addition, the λj is the dual variable or the scalar
vector associated with each airport.

Minimise ρ = 1− 1
m ∑m

i=1

S−i
xik

/1 +
1
s ∑s

r=1
S+

r
yrk

(1)

subject to
n

∑
j=1

xijλj + s−i = xik, i = 1, . . . , m;

n

∑
j=1

yrjλj − S+
r = yrk, r = 1, . . . , s;

λj ≥ 0, j = 1, . . . , n

S−i ≥ 0, i = 1, . . . , m;

S+
r ≥ 0, r = 1, . . . , s

In the SBM model, the efficiency score in different DMUs is 1, and it is not possible
to differentiate and compare these DMUs further. In order to differentiate efficient DMUs
from a radial efficiency assessment, Ref. [55] proposed the Super SBM model based on the
SBM model to rank efficient DMUs by giving the efficiency score of the strongly efficient
DMUs an efficiency score of larger than 1 in order to differentiate efficient DMUs under the
slacks-based measure. The super-efficient SBM model is as follows in Equation (2):

Minimise ρ =
1
m ∑m

i=1
xi
xik

/
1
s ∑s

r=1
yr

yrk
(2)

subject to

xi ≥
n

∑
j=1, j 6=k

xijλj, i = 1, . . . , m;

yr ≥
n

∑
j=1, j 6=k

xrjλj, r = 1, . . . , s;

λj ≥ 0, j = 1, . . . , n, j 6= k;

xi ≥ xik, i = 1, . . . , m;

yr ≥ 0, yr ≤ yrk, r = 1, . . . , s

From the above model, minimizing the ratio implies the simultaneous pursuit of
improvements in both airport inputs and outputs [36]. However, we should know that the
super-efficiency model always contains an efficiency score greater than or equal to 1. Even
an inefficient DMU always has an efficiency score achieved by the super efficiency model.
Therefore, to measure the efficiency and super efficiency scores for all DMUs, this paper
first applies the SBM model to all DMUs and then applies the super-efficiency model to the
efficient DMUs filtered out in the first step for their super-efficiency scores.
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3.2. Spatial Durbin Model

Spatial analysis is used to measure and explain the spatial interaction between an
economic attribute in one region and the same economic attribute in another region. In
general, when locations such as airports are characterized, and the types of spatial attributes
are determined, the relationship between the attributes and the mutual influences they
have on each other are analyzed. In a regional area, several notable models have been
used; Ref. [56] first defined the concept of spatial correlation in traditional panel models.
On this basis, Ref. [57] introduced the spatially lagged error term into the traditional
panel model. In addition, Ref. [58] refined the spatial lag model (which is known as the
spatial autoregressive model or SAR) and the spatial error model (SEM). The SAR only
incorporates the neighboring effect of the dependent variable (efficiency output) which is
introduced in Equation (3).

SAR : Yt = ρWYt + Xtβ + εt (3)

In addition, the SEM only contains the interactions among error terms which are
introduced in Equation (4).

SEM : Yt = Xtβ + (1− γW)εt (4)

However, the spatial durbin model (SDM) contains both interactions between the
outcome and independent correlations. This paper uses the SDM to measure the spillover
effects of airport operational efficiency. The general form of this model is as shown in
Equation (5).

SDM : Yt = ρWYt + Xtβ + WXtθ + εt (5)

where the outcome variable Yt can be regarded as an n-dimensional vector of efficiency
measurement values for the n airport in MAR; t = 1, · · · , T is an index for the T time
periods; ρ is the auto-regressive parameter that measures the strength of dependence be-
tween airports; W is a n× n spatial weight matrix that describes the neighbor relationships
among the MAR airports; Xt is an n×m matrix containing m covariance that measures
the operational and regional related factors for each of the n MAR airports over the time
period t; β is an associated parameter contained in a m-dimensional vector; θ are vectors
of response parameters for the spatial lags of covariance; and εt is the overall disturbance
term, which also specifies the potential spatial auto-correlation within the error terms.

3.3. Spatial Weight Matrix

Determining the appropriate spatial weight matrix is an important step in applying
spatial econometrics to measure spillover effects. However, there is no unique definition for
a spatial weight matrix. Scholars construct spatial weight matrices based on specific forms
of spatial associations corresponding to their study context [59]. Commonly used matrices
include the adjacency weight matrix, geographic distance weight matrix and economic
distance weight matrix. Based on the purpose of this research paper, the weight should be
placed at the travel time between airports. In a MAR, when making a choice, passengers
will choose between airports with lower travel time costs in mind, rather than overflowing
demand to closer airports. Hence, the travel time is set as the spatial weight of the airport.
The spatial weight matrix was defined in Equation (6):

wij =
1

dij
(6)

w =

 0 · · · w1j
...

. . .
...

wi1 · · · 0
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In the above equation, wij, i, j = 1, · · · , n is the inverse square travel time between
airport i and airport j. By definition, the diagonal elements of W are set to zero to exclude
self-dependence. In addition, this paper assumes W to be row normalized; that is, the sum
of each row in the matrix is 1.

4. Data and Selection of Variables
4.1. Data

The data employed in this study are derived from several databanks. The data of
aviation such as air passenger traffic and air cargo shipment were obtained from the
website of VariFlight and the International Air Transport Association (IATA). The data of
control variables of airport regional characteristic come from the China Statistic Yearbook
(2008–2018) compiled by the National Bureau of Statistics of China. In the analysis of
the spatial model, all variables are transformed into a natural logarithm form to reduce
possible heteroscedasticity. Note that when a city is served by more than one airport, such
as Shanghai, all airports in the same city are combined together to calculate the traffic
volume to facilitate comparison.

The YRD region is the part of leading economic development zones in China (see
Figure 1). Including the two airports in Shanghai, altogether there are sixteen airports in
this region. In 2018, airports in the YRD region completed air passenger traffic of 230 million
passengers and air cargo shipment of 5.59 million tons, with the total scale of passenger
transportation accounting for about 18% of the total passenger traffic of domestic airports
and the scale of air cargo accounting for about 33% of the total cargo shipment of domestic
airports. With the large volume of handled passengers and cargoes, Shanghai Pudong In-
ternational Airport (PVG) has been considered as a leading hub in this region. Traditionally,
the classification of airports in a MAR is based on a certain distance from the hub [60], or on
a legally defined locale (city/country) in which the airports are situated. Here, this paper
defines airports in the city as within a two-hour-public transport time to Shanghai as air
passengers’ target airports within the same MAR [51]. Therefore, the airports belonging to
the YRD region in this study include Hangzhou Xiaoshan International Airport (HGH),
Nanjing Lukou International Airport (NKG), Ningbo Lishe International Airport (NGB),
Wuxi International Airport (WUX) and Changzhou Airport (CZX). However, because the
total travel demand of WUX and CZX did not exceed 10 million passengers, so they were
not included in our study.
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4.2. Selection of Variables

To measure the airport efficiency score by DEA, the first step is to define the inputs
and outputs generated by the airport. Considering the units of measurement, inputs and
outputs are divided into two types, physical and financial. On the physical side, the length
of runways and terminal area were always used as input in the studies [29,46]. Physical
outputs always include aircraft movements, number of passengers and tons of cargo [11].
Many other studies also used financial variables. In the study about Taiwan airport’s
performance, [35] used labor (employees) as an input. Operational expenses and revenues
were also used as the input and output in the studies of [37]. However, considering the data
for these financial inputs or outputs, measures are not available for most Chinese airports.
Therefore, length of runways and terminal area were used as airport inputs, and aircraft
movements, number of passengers and tons of cargo were used as airport outputs in this
study. A summary of the descriptive statistics relating to the airport inputs and outputs for
five major YRD region airports is presented in Table 1.

Table 1. Descriptive statistics of airport input and outputs.

Mean Standard
Deviation Minimum Maximum

Terminal Area (‘000) 32.4188 20.09249 4.35 62.2
Runway Area (‘000) 37.08 21.86176 15.3 90

Passenger (‘000) 2782.28 1788.292 403.1 7405.4
Cargo (‘000) 88.5808 119.9764 4.7 382.4
Flight (‘000) 21.13 12.43348 3.8 50.4

In order to explore the spatiality of airport operational performance, a clear under-
standing of the factors influencing airport operational efficiency is an important prerequisite
for the optimal development of a MAR. There are a number of factors impacting perfor-
mance of an airport. Based on the research results of many scholars, this paper summarized
the previous research on the factors influencing the efficiency of the airport. The inde-
pendent variables were selected from two aspects: airport operational characteristics and
regional characteristics. On the operational side, regular flights [31], airport capacity utiliza-
tion [8] and airport destinations connected [41] were used in this paper. On the other side,
this paper used the most influential factors, including hinterland population [37], income
and GDP [10,13] to measure airport regional characteristics, which can potentially affect
air travel demand of an airport in a multi-airport region. The definitions of variables are
shown in Table 2, and the descriptive statistic results of variables are shown in Table 3.

Table 2. Definition of variables.

Independent
Variables Definition

operational
characteristics

ln(Fli) Number of regular flights
ln(Cap) Number of seats on scheduled flights
ln(Des) Number of air destination

regional
characteristics

ln(GDP) Gross domestic production
ln(Pop) Number of hinterland population
ln(Inc) Per capita income
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Table 3. Descriptive statistic results of variables.

Mean Standard
Deviation Minimum Maximum

ln(Fli) 5.9532 0.8535 4.4886 7.4776
ln(Cap) 11.0517 0.9295 9.4042 12.7375
ln(Des) 4.7596 0.7172 3.4657 5.9889

ln(GDP) 9.2485 0.5544 8.3634 10.3945
ln(Pop) 6.8828 0.5376 6.3474 7.7938
ln(Inc) 10.6049 0.2747 10.1253 11.0694

5. Empirical Study
5.1. Airport Efficiency Scores and Comparative Analysis

Based on the panel data of major airports in the YRD region from 2009–2018, this
paper measures the operational efficiency of each airport in the Yangtze River Delta using
the SBM-DEA super-efficiency model as shown in the following Table 4:

Table 4. 2009–2018 DEA-SBM super efficiency scores for 4 urban airports.

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Shanghai 1.60 1.90 1.86 1.94 1.92 2.00 1.98 1.96 2.04 2.12
Hangzhou 0.77 0.84 0.93 1.03 1.00 1.00 1.02 1.05 1.23 1.34

Nanjing 0.85 0.92 1.00 1.03 1.07 1.03 1.17 1.21 1.36 1.45
Ningbo 1.07 1.07 1.10 1.07 1.11 1.19 1.24 1.27 1.33 1.37

An examination of Table 4 revealed that the SBM efficiency scores of airports in the
YRD region did not show a single upward or downward trend during 2009–2018; the
growth rate is staggered positively and negatively. Because there are two airports in
Shanghai, the traffic volumes of both airports were combined here to facilitate comparison.
As expected, Shanghai′s airport efficiency was the most efficient throughout the study
period. This is mainly due to its status as an international hub, which allows it to take
advantage of more advanced airport equipment and advanced management. The efficiency
values of the remaining three cities′ airports (HGH, NKG and NGB) fluctuate over the
decade but are almost all above 0.80 and play a dominant role in the YRD region.

In addition, the industrial competitiveness or efficiency can be evaluated through the
analysis of average efficiencies [37]. Figure 2 demonstrated the growth of efficiency of
the average and each airport with the DEA-SBM super-efficiency model. The mean SBM
efficiency scores of YRD airports increased from 1.075 in 2009 to 1.570 in 2018, indicating
that in general, YRD airports improved their operational efficiency during the study period.
However, as seen in Figure 1, the growth rate of average efficiency in the YRD region
declined significantly in 2013 and 2014, and the growth rate in Shanghai in 2013 is negative.
Among these four airports, Shanghai airport is the traffic leader; therefore, the declined
efficiency scores of Shanghai airport further affected the efficiency scores of the YRD region.
Presumably the main reason for its declining efficiency level in Shanghai was that its
capacity is gradually becoming over-saturated. It is worth mentioning that the growth
rates of efficiency scores in Hangzhou and Nanjing airports are huge, and at these rates,
these two airports will surpass Shanghai airport in a few years.
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5.2. Spatial Autocorrelation Test

As a preliminary diagnostic test, Moran’s I statistic [61], a commonly used measure of
spatial autocorrelation [56,62], was employed to detect the spatial association across the
airports in the YRD region. The corresponding formula is shown in Equation (7):

I =
N ∑n

i=1 ∑n
j=1 wij(xi − x)(xj − x)

∑n
i=1 ∑1

j=1 wij ∑n
i=1(xi − x)2 (7)

The results of Moran’s I statistic from 2009–2018 are illustrated in Table 5. The value
of the statistic shows a significant negative value for the whole panel period, thus leading
to a rejection of the null hypothesis of no spatial dependence in favor of negative spatial
dependence across the regions. The results give a clear indication of the spatial model,
which is capable of taking spatial dependence among the outcome variables (the observed
efficiencies of all airports) into account.

Table 5. Moran′s I of airport operational efficiency in the YRD region.

Year Moran′s p Year Moran′s p

2009 −0.213 0.005 2014 −0.200 0.007
2010 −0.225 0.003 2015 −0.189 0.001
2011 −0.306 0.000 2016 −0.213 0.000
2012 −0.393 0.000 2017 −0.145 0.000
2013 −0.232 0.010 2018 −0.100 0.000

5.3. Spatial Regression Analysis

Based on the spatial correlation of airports’ operational efficiency in the YRD region, it
is necessary to choose the right model to consider the interactions between neighboring
airports when analyzing the influencing factors. Based on LM-lag and LM-err tests, the
hypothesis θ = 0 is rejected at the 1% or 5% significance level. This paper further conducted
LR and Wald tests; the hypothesis θ + λβ = 0 cannot be supported; this implies that SDM
cannot be simplified to either SAR or SEM and suggests that SDM can be safely adopted as
an appropriate model specification.

As in many other studies, this paper selected six indicators affecting airport efficiency,
including GDP (GDP), income (Inc), hinterland population (Pop), number of regular flights
(Fli), number of airport destinations (Des) and airport capacity utilization (Cap), as key
explanatory variables from the regional side and airport operational side. Replacing
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the corresponding items in Equation (5) with the above variables, then the final model
specifications can be written as Equation (8).

lnEFFIt = ρWlnEFFIt + βgdplnGDPt + βpoplnPopulationt + βinclnIncome
+β f lilnFlight + βdeslnDestination
+βcaplnCapacity utilizationt + θgdpW(lnGDPt)
+θpopW(lnPopulationt) + θincW(lnIncomet)
+θ f liW(lnFlightt) + θdesW(lnDestinationt)
+θcapW(lnCapacity utilizationt) + u + εt

(8)

Based on the above spatial model, the estimation results explaining the efficiency
changes of our spatial panel regression model are reported in Table 6. The parameter
estimate, Rho, of the spatially lagged outcome variable (W × lnE f f iciency) is negative and
statistically significant. It indicates the existence of negative effects in airport efficiency
among YRD airports, and it can be interpreted as an “airport competition” effect in the
YRD region. Furthermore, the value of Rho is −0.1667, which mean that each 1% increase
in the efficiency of neighboring airports leads to a 0.1667% decrease in the efficiency of local
airports. In addition, among all the factors being considered, the estimates of explanatory
variables, except for population and income, are significant and have expected signs
showing positive impacts on airport efficiency. It appears that the sampled YRD region
airports with increasing GDP are likely to have high efficiency levels and outperform their
counterparts during the study period. The value is 0.1450, suggesting that an increase in
GDP would lead to a 0.1450% improvement in airport efficiency. Similar circumstances
were observed in Greece [49], Spain [50] and New Zealand [38]. In addition, having more
regular flights, destinations and capacity positively affected airport efficiencies, which
could be caused by more airport characteristics being available to attract more passengers
to bring more air traffic volumes.

Table 6. Estimation results of spatial panel regression.

Coefficients Estimated
Value

Standard
Error p-Value

ln(GDP) 0.1450 0.0502 0.060 *
ln(Pop) 0.0490 0.0313 0.214
ln(Inc) 0.0169 0.0167 0.296
ln(Fli) 0.2996 0.0430 0.002 ***
ln(Des) 0.0869 0.0181 0.038 **
ln(Cap) 0.3975 0.0320 0.000 ***

W × ln(GDP) 0.0532 0.0154 0.304
W × ln(Pop) 0.0657 0.0304 0.007 ***
W × ln(Inc) 0.0234 0.0163 0.092 *
W × ln(Fli) −0.1574 0.0269 0.05 *
W × ln(Des) −0.0505 0.0308 0.450
W × ln(Cap) −0.2536 0.0188 0.016 **

Rho −0.1667 0.0549 0.009 ***
sigma2 0.1458

Log− likelihood 268
* Significance level: p < 0.01 (***); p < 0.05 (**); p < 0.1 (*).

Due to the presence of a spatial lag term, the spillover measures cannot be obtained
easily by estimated parameters. As the total, direct and indirect effects of each explanatory
variable need to be calculated and decomposed based on the variance covariance matrix of
the SDM estimation results [62]. The equation is as follows:

yt = (In − ρW)−1(Xtβ + WXtθ + µ + εt) (9)
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Then, the effects of a change in any of the explanatory variables Xt on the value of Y
are measured by the partial derivative in Equation (10):

[
∂yt

∂x1kt
, . . . ∂yt

∂xnkt

]
=


∂y1t
∂x1kt

· · · ∂y1t
∂xnkt

...
. . .

...
∂ynt
∂x1kt

· · · ∂ynt
∂xnkt

 = (In − ρW)−1(βk In + Wθn) (10)

Here, following the definitions in [58], the direct effect is measured by the average
of the diagonal elements in the matrix of Equation (8), which measures the effects that a
change in an independent variable in airport i has on efficiency variations in the airport
itself, while the spillover effect is calculated by the average of the off-diagonal elements of
the matrix, which measures the effects of a change in an independent variable xk in airport
i on efficiency variations in all the other airports in the YRD region. The direct, spillover
and total effects computations are reported in Table 7:

Table 7. Direct, spillover and total effects.

Direct Effects Spillover Effects Total Effects

ln(GDP) 0.1433
(∗) 0.0746 0.2179

ln(Pop) 0.0458 0.0881
(∗ ∗ ∗)

0.1339
(∗∗)

ln(Inc) 0.0186 0.0457
(∗)

0.0643
(∗∗)

ln(Fli) 0.2992
(∗ ∗ ∗)

−0.1367
(∗)

0.1625
(∗ ∗ ∗)

ln(Des) 0.0918
(∗∗) −0.0631 0.0287

ln(Cap) 0.3830
(∗ ∗ ∗)

−0.2632
(∗∗)

0.1198
(∗ ∗ ∗)

* Significance level: p < 0.01 (***); p < 0.05 (**); p < 0.1 (*).

Firstly, from the results of the direct effects, the coefficients of the variables of the
number of regular flights and capacity utilization are 0.2992 and 0.3830, respectively, and
are significant at the 1% level. In addition, the coefficient of the variable number of
destinations is 0.0918 and is significant at the 5% level. This suggests that variables of
airport characteristics have a positive impact on airport operational efficiency. For this,
this paper argues that airports with more destinations usually attract more passengers,
which results in more passenger loads. In addition, the more frequently visited the airport
is, the wider the range of options available to passengers. The capacity utilization of an
airport indicates the amount of passenger traffic that the airport can handle, and typically
an increase in airport traffic will lead to an increase in airport efficiency, which is similar to
the findings of [43]. In addition, in terms of regional characteristics, it can be demonstrated
from Table 7 that among the three variables of GDP, population and income, only the
variable GDP is significant at the 10% level, and the coefficients is 0.1433. These results may
probably be due to the expansion in economic level, which may encourage the concentration
of high-quality resources to the one-airport city, and which may further lead to an increase
in airport traffic demand which will improve the operational efficiency of the airport. The
positive effect of regional GDP on an airport’s efficiency was also reported in the study
of [12,38].

In terms of spillover effects, the coefficient of the hinterland population is 0.0881 at the
1% significant level. The coefficient of income is 0.0457 at the 10% significant level. This
indicates that an increase in population and income of neighboring airports also drives
the operational efficiency of regional airports. A reasonable explanation for this is due
to the proximity of airports in the multi-airport region, the existence of the hinterland
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crossover phenomenon and the mobility of passengers between airports. Thus, the increase
in the number of people and income in the hinterland will not only increase the traffic of
the local airport; it will also spill over to other airports in the region, which is conducive
to the synergistic improvement in the efficiency of the whole multi-airport region. In
addition, from Table 7, it can be seen that the coefficient of the number of regular flights
and the capacity utilization is negative, which means that a one log unit increase in the
number of regular flights, or in the capacity utilization, leads to statistically significant
negative spillover effects on airport efficiency. Airports with multiple flight options to
the same destination within the multi-airport region generally attract more passengers.
In addition, the airport capacity utilization may be considered as a proxy for demand
level, and high utilization implies the situation of high passenger demand. Thus, the
concentration of passengers to one airport in the region will inevitably have a negative
impact on neighboring airports, which also will lead to an increase in the competitive
relationship between airports in the multi-airport region. This is similar to the previous
study that different elements of airport utility such as airport destination, capacity and
flight are key drivers of airport choice [28].

6. Conclusions and Implications
6.1. Conclusions

Airports are commonly regarded as an important infrastructure for the local munic-
ipality to promote regional economic development, while the improvements in airport
efficiency and competitiveness are considered critical for airport management. This paper
uses the super-SBM method to measure the operational efficiency of airports in four major
cities in the Yangtze River Delta region during 2009–2018. The results were then analyzed
for different periods and regions, and finally, the spatial Durbin model was applied to
explore the factors influencing the operational efficiency of the airports in two dimensions:
airport physical characteristics and regional characteristics. The conclusions are as follows.

During the examination period, the mean super-SBM efficiency score of the YRD
region airports will increase from 1.075 in 2009 to 1.570 in 2018; thus, the overall operational
efficiency of airports in the YRD region is on the rise. Among them, the Shanghai airport
has the highest efficiency value, which indicates its key role played in the YRD region.
However, as its capacity gradually became over-saturated, its efficiency value declined
after 2013, which further led to a decline in the average efficiency growth rate in the YRD
region. In addition, the efficiency values of Hangzhou and Nanjing airports are less than
Shanghai, but they showed a steady upward trend and had different degrees of operating
space. In terms of the efficiency growth rate, the growth rates of efficiency scores in the
Hangzhou and Nanjing airports were huge, and at these rates, these two airports will
surpass Shanghai airport in a few years.

The global Moran′s I of airport operational efficiency in the YRD region is generally in
the range of −0.2 to −0.4 (p ≤ 0.01), indicating that the overall efficiency shows negative
spatial autocorrelation and a strong spatial aggregation effect. The global Moran′s I fluc-
tuates and decreases over time, indicating that the spatial correlation gradually decreases
over time.

The airport operational efficiency of the YRD region has a negative spatial spillover
effect, indicating that the airport operational efficiency among neighboring airports has an
evolutionary characteristic of competitive interaction. In terms of the direct effects of the
influencing factors, the number of regular flights, the number of airport destinations and the
capacity utilization of the local airports have significant positive effects on the operational
efficiency of this airport. In terms of regional characteristics, local GDP also appears as
a significant positive effect on airport operational efficiency. In terms of spillover effects,
the number of regular flights and capacity utilization of neighboring airports negatively
affect the operational efficiency of regional airports, while the population and income of
the hinterland show a positive effect.
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6.2. Implications

In the context of the new national airport master plan, which has just been imple-
mented, this paper argues that a sustainable development plans for a multi-airport region
should be developed, and different airports in the region should be positioned differently.
Shanghai airport, as an international hub airport, is the most efficient airport in the sample.
In fact, Shanghai airport is the biggest passenger and cargo hub of the YRD region as its
passenger and cargo volume per year outnumbered other rivals. The leading position of
Shanghai airport is thanks to its strategic geographic location, superb connectivity, highly
developed facilities, adequate passenger and cargo handling capacity and free port status.
However, the efficiency scores of Shanghai airport declined since 2013 as its airport capacity
gradually saturated. Facing the growing air demand in the YRD region, increasing traffic
will not significantly improve Shanghai airport’s efficiency but will greatly improve the
efficiency of other small airports [63]. In addition, the efficiency growth rates of Nan-
jing airport and Hangzhou airport are at the high level, which means these airports still
have potentials of producing more outcomes. Thus, to improve the overall efficiency of
a multi-airport region, the single airport policy is not practical; it should be developing
collaboration between these airports in the region to achieve sustainable development.

In addition, the spatial spillover effect is fully utilized by focusing on the key factors
influencing the operational efficiency of the airports that could help airport managers
and policy makers better understand ways for improving their efficiencies [37,38]. For
example, airport authorities and regional operators in the YRD region should further
recognize the important role of airport hinterland populations and the differences in their
behavioral choices. As people′s living standards improve, aviation demand is growing,
with a large percentage of travelers traveling for leisure; fare is key factor of their travel
choices. Nanjing Airport, Hangzhou Airport and Ningbo Airport should make great efforts
to introduce low-cost airlines to reduce airport operating costs, tap more potential aviation
demand and increase their market share. Considering that time is important for business
travelers, they should also make an effort to promote air-rail patterns to maintain more
seamless air connectivity to air travels, especially in smaller regions or remote aeras. The
convenience of access to the airport not only saves travelers time, but also enhances the
role of airports in supporting regional economic development. In addition, the number
of regular airport flights and airport capacity utilization have a greater impact on airport
operational efficiency than other independent variables. However, the share of international
traffic has a negative impact on airport efficiency as it calls for sophisticated infrastructure
and operational complexity [32,64]. Thus, increasing the frequency of busy short-haul
routes and expanding the capacity available for flights of Nanjing and Hangzhou airports
while maintaining the international share of Shanghai airport are important strategies for
the development of the YRD multi-airport region. This will not only relieve the pressure
on the operation of large airports, but also alleviate flight delays of passengers′ concerns by
increasing the frequency of flights from smaller airports. This is useful and instructive for
the development of airport management and aviation services.
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