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Abstract: Evaluation of intensive land use (ILU) over long time series is essential for the rational use
of land and urban development. We propose a novel framework for analyzing ILU in the Pearl River
Delta (PRD) region of China. First, we used Google Earth Engine (GEE) to obtain cities’ built-up land
information. Second, we calculated the ILU degree and constructed an evaluation index system based
on the Pressure–State–Response (PSR) theoretical framework. Third, we employed Geodetector to
determine the dominant influencing factors on ILU. The findings are as follows: (1) It is accurate and
effective to extract land use data using GEE. From 2000 to 2020, all cities’ built-up areas increased, but
the increases differed by city. (2) While the ILU level in all cities has increased over the past 20 years,
the ILU level in each city varies. Specifically, Shenzhen had the highest ILU degree in 2020, followed
by core cities such as Guangzhou, Dongguan, and Zhuhai, while cities on the PRD region’s periphery,
such as Zhaoqing and Jiangmen, had relatively low ILU levels. (3) In terms of time, the dominant
factors influencing ILU in the PRD region have shifted over the past two decades. During this period,
however, two factors (economic density and disposable income per capita) have always played a
dominant role. This suggests that improving economic output efficiency and the city’s economic
strength is a feasible way to raise the ILU level at this time.

Keywords: intensive land use (ILU) degree; Google Earth Engine (GEE); Pressure–State–Response
(PSR) theoretical framework; Geodetector; Pearl River Delta (PRD) region

1. Introduction

With the accelerated urbanization process, the demand for land is constantly increasing.
As an essential asset for a city, land provides a crucial foundation for social and economic
development. Since the 1990s, due to the massive increase in population and rapid socio-
economic development, China has faced many land problems [1], resulting in a scarcity
of land resources, gradually becoming a major constraint to urban development. This
situation dictates the need to use land intensively, thereby optimizing land use structure
and improving its efficiency [2]. Only by expanding the use of intensive land use (ILU) will
it be possible to resolve the conflicts. In detail, ILU refers to the continuous improvement
of land use efficiency and the achievement of economic, social, and ecological benefits
through the rational layout of the city, optimization of land use structure, and sustainable
development [3–6].

More and more scholars are currently devoted to scientifically evaluating and ana-
lyzing the ILU level, which has become a popular topic in recent years, with the ultimate
aim of supporting the Sustainable Development Goals (SDG) [4,7–9]. Researchers have
conducted many studies on ILU evaluation. Among these studies, various statistical and
spatial evaluation methods have been implemented, such as the model establishment
method [6,10], the comprehensive modeling method [4,7], etc. The former refers to con-
structing an evaluation index system based on the definition of ILU and the characteristics

Sustainability 2022, 14, 13284. https://doi.org/10.3390/su142013284 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142013284
https://doi.org/10.3390/su142013284
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-0166-5130
https://doi.org/10.3390/su142013284
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142013284?type=check_update&version=2


Sustainability 2022, 14, 13284 2 of 15

of the selected study area. In contrast, the latter refers to evaluating ILU based on existing
comprehensive modeling methods (e.g., Data Envelopment Analysis and stochastic frontier
analysis). The former is widely used in research because it is more flexible and straight-
forward, allowing researchers to complete assessments based on their own needs without
relying on relevant software. For instance, Chen developed an evaluation index system for
cultivated land use, including input intensity, use degree, and production efficiency, and
assessed the level of cultivated land intensive use in 2010 [6]. Qian developed a sustainable
intensification variable model to calculate the appropriate interval of regional ILU and
evaluated the degree in Jinan, China, in 2001, 2011, and 2015 [10]. After establishing the
indicator system, determining weights becomes the key to evaluation. Such determination
methods involve principal component analysis [11,12], hierarchical analysis [13,14], and
entropy weighting methods [15,16]. Among these methods, the entropy weighting method
is favored by researchers because it calculates weights based on the characteristics of the
data itself and avoids subjectivity [17].

The type of index data used in the ILU evaluation or other similar land evaluation
works (e.g., ecological environment evaluation) has gradually shifted from single to com-
posite as remote sensing technology has advanced. In particular, the data used in the
previous evaluation were derived primarily from statistical data. Land use information
has been incorporated into the evaluation system as a result of the advancement of satellite
imagery technology and machine learning (ML). For instance, Shang [9] classified Landsat
images by implementing the random forest classifier to obtain land use information, then
combined the land use information with social statistics to assess five cities’ ILU levels from
1990 to 2018. Wang [18] chose the Black River Basin as a typical area and calculated the
Biological Abundance Index (BAI), Vegetation Cover Index (VCI), and Water Density Index
(WDI) based on land use information, as well as the statistical data, to make a comprehen-
sive evaluation of the ecological environment from 2010 to 2030. It can be seen that using
information extracted from satellite images to construct the related evaluation indices can
effectively replace and alleviate the problem of relying solely on statistical data. Specifically,
with the popularity of cloud computing technology in the remote sensing classification field,
it has become easier to obtain land use information by calling the satellite image data based
on online platforms and combining it with ML algorithms for classification. The Google
Earth Engine (GEE), the most widely used remote sensing cloud computing platform,
which integrates powerful cloud computing services with vast quantities of multi-source
satellite images, can help users effectively explore scientific topics [19–21]. Hence, this
platform is used in this study as it allows for efficient and easy land use classification.

Furthermore, analyzing the dominant factor influencing the ILU degree is essential for
comprehending the inner mechanism of ILU in cities and, as a result, making appropriate
adjustments to urban planning. There are many approaches to revealing the driving forces
of the factors behind geographical phenomena [22–24], such as principal component analy-
sis and geographically weighted regression. However, as a new tool for factor detection,
Geodetector has been widely used by researchers since the model can detect the main
influencing factors expressing a spatio-temporal phenomenon without making assump-
tions [25,26]. Shrestha [27] also demonstrated that the Geodetector outperforms principal
component analysis and geographically weighted regression methods in determining the
influence of explanatory variables. The q value in the model attempts to measure the
explanatory power of the variables on the phenomenon. In other words, Geodetector
allows users to investigate the dominant factors.

With the growing disparity between land supply and demand in large cities, it is
critical to strengthen the function of urban land use, guide the rational design of the land
structure, and thus improve the ILU level for the long-term development of the regional
society, economy, and environment. As a representative of the “growth miracle” since
the reform and opening-up, the Pearl River Delta (PRD) region occupies an important
position in the development of urbanization in China [28]. The region has undergone
significant structural and spatial transformations over the past few decades. As a result,
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this paper focuses on the PRD region, with the goal of developing a framework for assessing
and analyzing ILU (Figure 1), using quantitative analysis to (1) extract the built-up land
information from the GEE platform in the PRD region between 2000 and 2020, (2) evaluate
the ILU degree of the PRD region based on the Pressure–State–Response (PSR) theoretical
framework, and (3) investigate the dominant influencing factors of the ILU level in the
PRD region.
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2. Materials and Methods
2.1. Study Area

The PRD region, one of the largest and most developed urban agglomerations in China,
is located in Guandong province and includes 9 cities (Figure 2): Guangzhou, Shenzhen,
Foshan, Dongguan, Zhongshan, Zhuhai, Jiangmen, Zhaoqing, and Huizhou. In 2020, the
PRD region had a total land area of 54,769 km2, a GDP of RMB 895.29 billion, and a resident
population of 78.23 million (National Bureau of Statistics). The region has strong land
resources, economic development, and population size. It is representative to use this
region as the study area. Therefore, assessing and analyzing the ILU level in each PRD city
will aid in the region’s transformation, upgrading, and high-quality development.
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2.2. Data and Preprocessing

The research data used in this paper include Landsat imagery data, nighttime light
(NTL) data, and socio-economic data. Landsat image data and NTL data are collected
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through the GEE platform. Socio-economic statistics are mainly obtained from the China Ur-
ban Statistical Yearbook, the statistical yearbooks of Guangdong Province, and municipalities
for the period 2001–2021.

We then used the GEE platform to access Landsat Top-of-Atmosphere (TOA) re-
flectance data for the long time series of 2000, 2005, 2010, 2015, and 2020 to obtain built-up
land information in the PRD region. Because of the long time span, TOA images from
Landsat 5 and Landsat 8 satellites containing common bands of blue, green, red, NIR, and
two short-wave infrared bands (SWIR1 and SWIR2) with a spatial resolution of 30 m were
combined in this study. We used the TOA images from May to October as the original
dataset. To fully use all available images, annual cloud-free composites were created for
each city, specifically applying the “SimpleCloudScore” algorithm [29,30] to the TOA data.
This algorithm assesses pixel quality by combining indices such as the Normalized Differ-
ence Snow Index (NDSI), brightness, and temperature to produce a minimum cloud image
covering the study area from 2000 to 2020.

Here, because the land use information used to evaluate ILU in this case is primarily
built-up land, only “built-up land” and “not built-up land” were labeled as samples in
the classification process. According to previous studies [9,31], the NTL data can be used
to select samples for both “built-up land” and “not built-up land”, assuming that pixels
with illumination are related to artificial structures that emit light. Obviously, this sample
selection strategy is convenient and avoids the past labor-intensive manual selection of
samples. Due to the study’s long time series, a single NTL product could not cover the
whole study period, so we employed two types of NTL products. For the period 2000–2010,
the DMSP/OLS nighttime lighting time series dataset was used. For the period 2015–2020,
the VIIRS nighttime light dataset was used. The two products were projected uniformly
and resampled to 500 m to maintain spatial resolution consistency. After selecting the
samples based on the NTL data, the samples were checked and modified via Google Earth
to avoid problems with sample selection. We used 70% of the samples for training and the
remaining 30% for validation.

In this paper, some socio-economic indices (Table 1) were selected based on the
Pressure–State–Response (PSR) theoretical framework, while combining land use informa-
tion to form a new evaluation system for the ILU level. The data format and precision were
all standardized.

Table 1. Evaluation index system of ILU degree.

Type Index Character Code Calculation Formula

Pressure

Population density * + P1 Resident population/built-up land area

Proportion of built-up land * − P2 Built-up land area/city’s area

Output value proportion of secondary
and tertiary industries + P3 Output value of secondary and tertiary

industries/GDP

State

Economic density * + S1 Output value of secondary and tertiary
industries/built-up land area

Road network density + S2 Total length of urban roads/city’s area

Personal disposable income + S3 See statistics

Employee density * + S4 Number of employee in secondary and
tertiary industries/built-up land area

Response

Investment in fixed assets + R1 See statistics

Public green space per capita + R2 See statistics

Electricity consumption per unit of GDP − R3 See statistics

Industrial wastewater discharge − R4 See statistics

Note: The index marked with * was calculated by extracting built-up land information from the GEE platform,
while all other indices were derived from the statistical data. The “+” indicates a positive index, while the “−”
indicates a negative index.
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2.3. Methods
2.3.1. Google Earth Engine (GEE) Platform

GEE is made up of a massive catalog of multi-source satellite image data as well
as powerful cloud computing capabilities [32]. Users can access the Internet-accessible
application programming interface (API) through an interactive web-based development
environment (Figure 3). Specifically, they can access all data in the catalogue or upload
private data to the cloud platform, and then use the computing power of the platform
to complete computational tasks such as land use classification [33], surface temperature
estimation [34], and so on. It is worth noting that GEE accounts are allocated space for
uploading data as well as a rich set of code examples, with output results that can be
downloaded for offline use.
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Figure 3. The GEE interactive development environment (50公里 = 50 km).

2.3.2. Random Forest Classifier

The random forest (RF) algorithm is based on the synthesis of decision tree classifiers,
and its final result is obtained by voting after each tree has given a result. Its accuracy
is higher than other prevalent algorithms (e.g., SVM or kNN) in many previous appli-
cations [35–37]. RF is currently one of the most widely used land cover classification
algorithms [29,30,38]. Furthermore, RF is a machine learning algorithm built into the GEE
platform. As a result, we chose RF to obtain built-up land information.

Based on previous research [39,40] and the data collected, we chose 9 features as input
features, comprising five spectral features, i.e., the blue, green, red, NIR, and SWIR1 bands;
one textural feature, namely Geary’s C coefficient [41] (Equation (1)); and three spectral
indices, i.e., NDVI [42], MNDWI [43], and NDBI [44] (Equations (2)–(4)).

Ci(d) =

(n − 1)
n
∑

i=1

n
∑

j=1
wij(xi − xj)

2

2
n
∑

i=1

n
∑

j=1
wij

n
∑

i=1
(xi − x)2

(1)

where wij is the spatial weight matrix between elements I and j, d is the distance, and xi
and xj are the characteristics of elements i and j, respectively. In this paper, texture feature
was extracted by selecting the NIR band, because it is more sensitive to the built-up land.

NDVI =
NIR − RED
NIR + RED

(2)
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MNDWI =
GREEN − SWIR1

GREEN + SWIR1
(3)

NDBI =
SWIR1 − NIR
SWIR1 + NIR

(4)

where NIR, RED, GREEN, and SWIR1 are the reflectance values for the near infrared, red,
green, and shortwave infrared bands of the images, respectively.

Overall accuracy (OA) and the Kappa coefficient are two commonly used accuracy
evaluation measures that indicate the quality of classification results. The OA and Kappa
equations are as follows:

OA =
∑k

i=1 xii

x
(5)

Kappa =
x∑k

i=1 xii − ∑k
i=1 xi∗x∗i

x
(6)

where xii is the number in row i and column i of the matrix, x is the total number of
validation samples, and xi* and x*i are the total number of samples in row i and column i,
respectively.

2.3.3. Construction of the Evaluation Index System

The principle of the PSR framework is that the various management activities con-
ducted by the city for its own growth have either a positive or negative influence (pressure)
on the environment of sustainable development. In response to pressure, the government
or social groups take actions to regulate, which can repress pressure while changing the
state of the system. This process is the “Pressure–State–Response” cycle.

Considering that ILU is more than just high-intensity input and high-efficiency output,
its aim is to achieve the coordinated development of various factors, such as the economy
and society. As a result, we constructed an evaluation index system for ILU using the PSR
framework. By referring to the related studies [3–8,10,45] and the study area conditions,
we adequately selected the indices that are representative and accessible. In total, there are
11 indices chosen for the evaluation, shown in Table 1.

2.3.4. Entropy Weighting Method

The entropy weighting method determines weights based on the dispersion of index
values, which is relatively objective compared to other methods. Hence, this paper refers
to the steps of previous studies [9,46] to calculate the indices’ weights. The steps are as
follows:

(1) The index data should be processed as dimensionless to normalize the extreme
differences, and this step can eliminate the dimension’s influence. The j-th index for the
i-th city in the λ-th year can be expressed in terms of xλij (1 ≤ λ ≤ h, 1 ≤ i ≤ m, 1 ≤ j ≤ n;
in this paper, h, m, and n are 5, 9, and 11, respectively). Equation (7) is used to normalize
the positive indices, and Equation (8) is for the negative indices. Equation (9) is used to
normalize all the Xλij values.

Xλij =
xλij − xmin

xmax − xmin
(7)

Xλij =
xmax − xλij

xmax − xmin
(8)

Pλij =
Xλij

h
∑

λ=1

m
∑

i=1
Xλij

(9)

where Xλij denotes the value of xλij after the standard normalization of the extreme devia-
tion, and Pλij denotes the normalized value of Xλij.
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(2) Determine the entropy value of each index, where k = 1/ln(h·m):

Ej = −k
h

∑
λ=1

m

∑
i=1

Pλij ln Pλij (10)

(3) Calculate the entropy redundancy for each index and the corresponding weight:

Dj = 1−Ej (11)

Wj =
Dj

n
∑

j=1
Dj

(12)

(4) Determine the ILU degree for each city and year:

Sλi =
n

∑
j=1

Pλ i j · Wj (13)

2.3.5. Dominant Factor Detection by Geodetector

Geodetector, a statistical tool proposed by [47], is a set of methods for revealing homo-
geneity and detecting the influencing forces behind it. This tool is based on the premise that
the spatial distribution of the independent and dependent variables should have similar
characteristics if the independent variables significantly influence the dependent variables.
In detail, according to the spatial distributions of these data, the tool can not only measure
the relationship between Y (geographical phenomenon) and X (influencing factor), but also
investigate the interaction relationship between two influencing factors (X1 and X2) to the
Y, without making any assumptions about the linearity of the association. We primarily
used the Factor Detector module to detect the influencing process, which quantifies the X’s
explanatory power to the Y via the q value, as shown below:

q = 1 − 1
σ2H

m

∑
i=1

nD,iσ
2HD,i (14)

where q is the explanatory power of factor D on ILU H, σ2 is the variance of the overall
study target’s degree, n is the amount of cities, m is the amount of sub-areas, and σ2HD,i is
the variance of the sub-area’s degree. q is in the range [0, 1], and the higher the q value, the
greater the explanatory power of this factor.

3. Results
3.1. Land Use Classification Results Based on the GEE Platform

Since the built-up and non-built-up land classification results were obtained based on
the GEE platform, we chose three localities to compare and check the classification results
(Figure 4). The transparent red parts of Figure 4 in the first row show the precisely extracted
build-up land sites, which include tall buildings, rural dwellings, and other building sites.

The accuracy results of the cities of the PRD region during 2000–2020 can be calculated
through validation, with the OA among all classification results exceeding 80% and the
Kappa coefficient ranging from 0.70 to 0.83. These precision results indicate that the
classification performance meets the study’s research needs. Figure 5 depicts the area of
built-up land for each city from 2000 to 2020. It shows that the built-up land area has risen
steadily over the past 20 years, but the amount of built-up land growth clearly varies by city.
Foshan has the largest increase in built-up land area of 650 km2, followed by Guangzhou,
Dongguan, Huizhou, Shenzhen, Zhongshan, Jiangmen, Zhaoqing, and Zhuhai. Zhuhai has
the smallest rise in constructed land area at 155 km2.
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3.2. Spatial and Temporal Characteristics of ILU Changes in the Pearl River Delta

The calculated ILU result of each city in the PRD region for the period 2000–2020
are shown in Figure 6. Over the past 20 years, all of these cities have shown an overall
ascending trend in ILU level, with most cities showing a continuous upward trend, but
some cities also show a brief downward trend at one stage (e.g., Zhongshan and Zhaoqing).
Among the nine cities, Shenzhen and Guangzhou have the highest levels of ILU, followed
by Foshan, Dongguan, Zhuhai, Zhongshan, Huizhou, Jiangmen, and Zhaoqing. This
ranking is generally in line with the traditional perception of the urban development level
in the PRD region.
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It is worth noting that while some cities have similar total ILU scores, they may not
have grown differently in the pressure, state, and response tiers. For example, cities such
as Guangzhou and Foshan achieve a high degree in the “Response” aspect. In contrast,
cities such as Shenzhen and Dongguan rely mainly on the driving forces of the “State”
aspect to improve their ILU levels. Jiangmen and Huizhou do not have high ILU degrees,
but their scores in the three aspects are close. This reflects that different cities have their
own development characteristics of ILU. The standard deviation was used to quantify the
ILU variation between cities; the result is shown in Figure 7. These cities show an upward
trend, and the variation within the PRD region has increased faster since 2010, reflecting
the increasing spatial variation in ILU levels between cities over time.
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The distribution result of the cities’ ILU degrees in the PRD region in 2000 and 2020
is shown in Figure 8. We classified the ILU degree in the PRD region into three levels by
the Jenks Natural Breaks method: relatively low, relatively moderate, and relatively high.
It can be seen that the distribution in 2020 is basically the same as in 2000. Guangzhou
and Shenzhen have been in a relatively high state, while Zhaoqing and Jiangmen have
been in a relatively low state. The state that changed considerably over the 20-year period
is Huizhou, which improved from a relatively low state to a relatively moderate state,
indicating that Huizhou has made significant progress in its ILU level.
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The distribution of the growth speed of ILU in the PRD region over the 20-year period
is shown in Figure 9. From this result, Guangzhou, Shenzhen, and Foshan had a relatively
high growth speed during this period, while Zhaoqing and Zhongshan had a relatively
low growth speed, and the rest had a relatively moderate growth speed. Coincidentally,
combined with the results of the ILU evaluation, it can be seen the three cities with relatively
high growth speeds are the ones with the highest ILU levels now. It also can be seen that
although Zhongshan has a relatively low growth speed, its ILU level is moderate among
the PRD region’s cities, which is different from that of Zhaoqing.
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3.3. Detection Results of Geodetector

To investigate the dominant factors influencing the PRD region’s ILU, we used the
indices of the index system as influencing factors. We explored the dominant factor in the
time dimensions using Geodetector.

We took the nine cities of the PRD region as a whole, then used Geodetector to explore
the three dominant factors from different times (i.e., 2000, 2005, 2010, 2015, and 2020).
The results are shown in Table 2. The dominant factors affecting ILU levels are clearly
similar, but differences remain. In 2000, the factors that played a dominant role were S1
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(q = 0.912), R1 (q = 0.815), and S3 (q = 0.799), which changed to R1 (q = 0.917), S3 (q = 0.904),
and S1 (q = 0.898) in 2005, to R3 (q = 0.965), S1 (q = 0.939), and S3 (q = 0.780) in 2010, to
S3 (q = 0.963), S1 (q = 0.947), and R3 (q = 0.917) in 2015, and back to S1 (q = 0.922), R1
(q = 0.872), and S3 (q = 0.695) in 2020, the same as in 2000. Among these factors, S1 and S3
dominate in all years, representing economic density and personal disposable income. R1
and R3, on the other hand, are the dominant factors influencing the ILU of the PRD region
only in certain years, representing investment in fixed assets and electricity consumption
per unit of GDP, respectively. It is worth noting that although the dominant factors of the
PRD region are the same in 2000 and 2020, the q values of these factors are different.

Table 2. Detection result of the dominant factor for each city.

Year Dominant Factors

2000 S1 (q = 0.912), R1 (q = 0.815), S3 (q = 0.799)
2005 R1 (q = 0.917), S3 (q = 0.904), S1 (q = 0.898)
2010 R3 (q = 0.965), S1 (q = 0.939), S3 (q = 0.780)
2015 S3 (q = 0.963), S1 (q = 0.947), R3 (q = 0.917)
2020 S1 (q = 0.922), R1 (q = 0.872), S3 (q = 0.695)

4. Discussion

ILU serves as an important way to address the pressure of population growth and miti-
gate conflicts between people and land. It emphasizes the improvement of productivity per
unit area of land and rational land use structure, layout, and ecological and environmental
benefits, which are important factors in promoting industrial shifts and smart growth in
cities [2,48]. We took the PRD region of China as the study object and carried out three
aspects of work for analyzing ILU, namely data acquisition, scientific evaluation, and
factor detection, aiming to provide references for the city’s industrial transformation and
urban planning.

Combined with the extraction results in Section 3.1, it is clear that the GEE platform
has potential for extracting land use information at urban agglomeration, national, or even
global scales [20,21], which eliminates the previous workload of pre-downloading data to
local computers. Therefore, we assessed the degree of ILU with GEE support, providing
new ideas and theoretical references for the future assessment of ILU. The amount of
growth in built-up area has varied across cities over the past 20 years, as shown in Figure 5.
This includes Foshan, which had the largest increase in built-up area at 650 km2, surpassing
Guangzhou and Shenzhen, the two cities with the highest ILU level, but its ILU level is not
as high as the above two cities, suggesting that the land increment mode may not be able to
sustainably raise the ILU level for cities. Furthermore, the application of the GEE platform
is not limited to the built-up land, as the platform can also be used to extract information
on other land use types (e.g., farmland [49]). This also provides a novel way to gauge the
ILU of other objects.

From the evaluation results of the ILU degree in Figure 6, we find that Shenzhen
(0.8028) has the highest ILU degree at this stage, followed by Guangzhou (0.7595), Foshan
(0.5563), Dongguan (0.4859), Zhuhai (0.4813), etc. In detail, Shenzhen, Guangzhou, and
Foshan have the largest increases in ILU degree, mainly in terms of “State” and “Response”
aspects. At the same time, cities such as Jiangmen and Zhaoqing do not achieve a high
level of ILU, mainly because their ILU degree comes mainly from the “Pressure” aspect.
Specifically, the “Pressure” indices include P1 (population density) and P2 (proportion
of built-up land). In contrast, the “State” aspect includes S1 (economic density) and
S3 (personal disposable income), which implies that relying on routes such as raising
population density or reducing the amount of built-up area to increase ILU has less impact
than relying on the “State” indices. This is also confirmed by the results of the Geodetector
(Table 2), as S1 and S3 are the two indices that have been playing a dominant role in
ILU over the 20-year period. Still, there are no corresponding indices in the “Pressure”
aspect that could play a dominant role. In addition, R1 (investment in fixed assets) and R3
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(electricity consumption per unit of GDP) can also play dominant roles at some stages, but
not as consistently as S1 and S2. This suggests that increasing the city’s economic output
efficiency is favorable and sustainable for raising the ILU degree, which is similar to the
findings of a previous study [9].

The ILU degree of the PRD region shows obvious spatial differences. Cities in the
peripheral areas of the PRD region, such as Jiangmen and Zhaoqing, have relatively low
levels of ILU, and they have relatively low growth speeds over the 20-year period. The
core areas of the PRD region, such as Guangzhou, Shenzhen, and Foshan, have had a
relatively high growth speed over the 20 year-period while maintaining a high level of ILU.
This further amplifies the spatial variation in the ILU level in the PRD region, which is
corroborated by Figure 7. The difference degree of ILU in the PRD region has increased
about fivefold over 20 years. This phenomenon shows that although the ILU level of the
cities in the PRD region has been increasing year by year, the differences among them in the
region have also gradually become larger, as reflected in the gap between the core cities and
the peripheral cities. To reduce the disparity in the ILU level of the PRD region, cities in
the peripheral region should work to revitalize their urban land stocks, and encourage the
upgrading and transformation of their industrial structures, particularly by transforming
their land management mechanisms and increasing the economic output efficiency of land.
Not all peripheral cities, however, have relatively poor ILU development performance.
Huizhou, for example, has made significant progress in the past 20 years, rising from
a relatively low ILU level in 2000 to a relatively moderate level today. This shows that
economic and other variables in the central PRD region are gradually influencing the
peripheral areas to drive regional development under the trend of industrial transfer and
economic connections.

On a final note, some challenges warrant further research. One challenge is that only
one urban agglomeration was selected as the study area in this work. To uncover the
development of ILU at the urban agglomeration scale, we need to further select more urban
agglomerations as the study area, e.g., the Beijing–Tianjin–Hebei urban agglomeration and
the Yangtze River Delta urban agglomeration, which are also the most developed urban
agglomerations in China. Another challenge is that the data used in this study are mainly
from image data and statistical data. In addition, there are more clouds and rain in the PRD
region, limiting the number of optical remote sensing images that can be used, and future
research can combine with radar images and other data for a more accurate classification.
New geographic data (e.g., POI data, Weibo check-in data), which are currently more
popularly used, are not included in the study, which may limit the discovery of more
valuable features in the development of ILU. Overall, under the development trend of
building future smart cities, making full use of advanced technology (e.g., big data and
ML) will provide scientific and effective support for the rational evaluation of ILU and
intelligent planning for urban spaces.

5. Conclusions

We constructed an index system based on the Pressure–State–Response theoretical
framework, extracted the built-up land information with GEE support, used the entropy
weighting method to calculate the ILU degree by combining socio-economic statistics,
and finally employed Geodetector to explore the dominant factors of the PRD region. In
other words, we realized a complete framework for ILU research, including the process of
extracting information, evaluating the ILU degree, and detecting dominant factors. The
findings are as follows:

(1) Based on the powerful cloud computing capability and the rich satellite image data
collected through the GEE platform, the built-up land use information can be extracted
efficiently and accurately. The increase in a built-up area for each city is an inevitable
trend in urban development. Still, the magnitude of the change varies among the cities
in the PRD region. Foshan has the largest increase in built-up land, while Zhuhai has the
smallest increase.
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(2) Each city’s ILU level has shown an upward trend over the past 20 years. Still, there
are differences in the ILU levels of different cities, spatially manifested as a gap between
the core and peripheral regions. Specifically, Shenzhen had the highest ILU level in 2020,
followed by core cities such as Guangzhou, Dongguan, and Zhuhai, while cities such
as Zhaoqing and Jiangmen, which are in the peripheral region of the PRD region, have
relatively low levels of ILU.

(3) In terms of the time dimension, the dominant factors affecting ILU in all cities have
changed over two decades. The explanatory power of these dominant factors for the ILU
degree has varied over time. However, two factors (i.e., economic density and disposable
income per capita) have always played a dominant role in this period. Improving the
economic output efficiency and the city’s economic strength is a feasible way to increase
the ILU degree at the current stage.
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