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Abstract: In this paper, a drive-by damage detection methodology for high-speed railway (HSR)
bridges is addressed, to appraise the application of Mel-frequency cepstral coefficients (MFCC) to
extract the Damage Index (DI). A finite element (FEM) 2D VTBI model that incorporates the train,
ballasted track and bridge behavior is presented. The formulation includes track irregularities and
a damaged condition induced in a specified structure region. The feasibility of applying cepstrum
analysis components to the indirect damage detection in HSR by on-board sensors is evaluated
by numerical simulations, in which dynamic analyses are performed through a code implemented
in MATLAB. Different damage scenarios are simulated, as well as external excitations such as
measurement noises and different levels of track irregularities. The results show that MFCC-based
DI are highly sensitive regarding damage detection, and robust to the noise. Bridge stiffness can be
recognized satisfactorily at high speeds and under different levels of track irregularities. Moreover,
the magnitude of DI extracted from MFCC is related to the relative severity of the damage. The
results presented in this study should be seen as a first attempt to link cepstrum-based features in an
HSR drive-by damage detection approach.

Keywords: structural health monitoring; drive-by damage detection; high-speed railway bridges;
mel-frequency cepstral coefficients; vehicle-bridge interaction

1. Introduction

With the continuous development of new HSR lines around the globe, bridges account
for a large proportion of these infrastructures and, as a result, the demand for condition
assessment of such a great number of bridges is steadily increasing [1–3]. In recent decades,
vibration-based Structural Health Monitoring (SHM) has been extensively explored as
one of the most common assessment methodologies. Indeed, SHM has been an active
field of research for over three decades. In conventional approaches (direct SHM), the
dynamic responses of structures are typically evaluated using sensors installed directly
on the bridge. However, these types of monitoring are time-consuming and laborious in
deploying sensors and equipment, which are often planned on a one-system-per-bridge
basis [4,5].

For this reason, indirect approaches for SHM of bridges have garnered increased
interest, particularly as an efficient and comprehensive method of inspecting many railway
bridges with a single run. The main approach used consists in the drive-by estimation
of passing railway bridges based on the on-board measured data of an in-service train
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traveling on the specific routes [6,7]. Based on VBI, these approaches analyze the vibration
signals of a moving vehicle, using embedded sensors. The idea of these systems is that a
moving vehicle crossing a bridge can function as a mobile exciter and sensor. Because of
the dynamic interaction between the passing vehicle and the vibrating bridge, the vehicle’s
response contains bridge-related information and can be used for bridge health evaluation.
Not only do indirect SHM frameworks require no instrumentation on the bridge, but they
also give a greater spatial resolution monitoring system, as the response of the passing
vehicle and the bridge is measured at multiple contact points along the bridge [8].

Drive-by bridge evaluation has been proposed for cost-effective SHM, and numerous
research on bridge performance evaluation and damage detection using this method
have been conducted in the highway field. However, there are not enough studies on
procedures for drive-by bridge inspection on HSR [9]. The feasibility of estimating bridge
conditions by extracting their natural frequencies using moving vehicles was introduced
and described theoretically and experimentally by [10,11]. Afterward, the parameters that
influence the drive-by evaluation of bridges were discussed [12], and a filtering approach
was proposed for this drive-by extraction method [13]. In addition to these pioneering
efforts, the estimation of bridge vibration using the drive-by system has been researched
worldwide, with a focus on scaled-down model experiments [14–17]. Moreover, further
investigations on drive-by bridge evaluation (referred to as vehicle scanning) and its
applications to highway bridges and railway tracks have recently been conducted [18].

In recent years, a variety of drive-by bridge inspection methods have been proposed,
such as those employing particle filters [19], data-driven neural networks [20], frequency-
independent underdamped pinning stochastic resonance [21], the bridge displacement
profile [22], the bridge frequency with two vehicles [23] and a data-driven approach [8]. In
most of these investigations in SHM, the fundamental frequency of the bridge was discov-
ered indirectly via a frequency domain analysis of the mixed bridge responses of vehicles,
which has been limited to relatively slow-moving vehicles that remain on the bridges for an
extended period, due to limited frequency resolution and bridge–vehicle interactions [24].
At high vehicle speeds, the frequency resolution of the on-vehicle measured data and the
transmission of the bridge reaction to the car via bridge–vehicle interactions are signifi-
cantly undermined [6]. In like manner, to identifying bridge frequencies, other parameters
of the bridge such as bridge modal shapes, bridge damping [25–28], and bridge damage
can also be identified from vehicle responses. A comprehensive analysis of the most recent
development of the drive-by bridge assessment is presented in [29], with its applications
categorized according to the following aspects: modal identification, damage detection,
pavement roughness detection, attempts by or including modern devices, identification of
vehicle properties and railway track detection.

Regarding bridge damage detection as a relevant application of the drive-by bridge in-
spection method [30–33], based on the identified modal parameters, the structural damage
of the bridge under different conditions can be detected [6,34–37]. For damage detection
of railway tracks, a theoretical framework for a two-axle test vehicle traveling over train
lines was proposed by [38]. The driving component of the contact-point response was
processed by the Hilbert transform to take the instantaneous amplitude squared (IAS),
which was identified as a good damage indicator, yet the damaged region cannot be excited
appropriately at higher vehicle speeds.

An overview of recent progress in vibration-based damage identification methods and
theoretical development of damage detection strategies for bridge structures is provided
by [39], including intelligent algorithms, the Bayesian theory, and time-domain signal
processing–based methodologies. Structural damage detection and SHM methods can be
categorized as modal-based [40] or signal-based [41]. Modal-based approaches employ
alterations in measured modal parameters or their derivatives, to determine structural
deterioration. Signal-based approaches rely on vibration measurements, which are indica-
tive of structural damage. These methods use adequate signal processing techniques to
detect damage by tracking alterations in the features generated directly from the recorded
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dynamic responses or their associated spectra. Principal vibration signal processing tech-
niques are based on time and frequency analysis, time-frequency analysis, and cepstral
analysis [41,42]. Indirect damage detection was also studied, by utilizing mature technolo-
gies to process the vehicle responses, such as wavelet transform [30], frequency response
function [43], and machine learning approach [44–48], among others. Deep learning algo-
rithms have also been applied to the prediction of time-history responses of the bridge
under vehicular loads with few and measurable input features extracted from VBI systems
and vehicle responses to produce reliable training data [49].

Recent research has focused on the novel idea of cepstrum-based operational modal
analysis [42,50–54]. Cepstrum analysis provides information from the vibration signal as a
function of quefrency, and appears to be effective for identifying subtle spectrum changes.
Initial studies of cepstrum-based analysis have demonstrated the method’s great potential
for SHM applications [55]. Nevertheless, in this field, there are few recent research papers on
employing cepstrum for damage detection, and they all involve non-destructive evaluation
or direct SHM. Cepstral distance has been used to extract features for damage detection in
layered carbon fiber reinforced polymer [56] and to generate frequency response functions
using response-only measurements, where the difference between baseline and damaged
frequency response functions was then used to compress the data and to train neural
networks for damage-detection [52].

Mel-frequency cepstrum (MFC) is a type of cepstrum analysis that has also drawn
the attention of SHM researchers. In contrast with the performance of conventional de-
lamination detection methods, which are easily impacted by environmental noise and the
subjectivity of the inspector, independent component analysis and MFCC were associated
with a radial basis function network for delamination detection, and experiments and field
tests have demonstrated the robustness of the technique to noise, even with insufficient
training data [57]. Damage identification based on auto-regressive coefficients was also
undertaken as a point of comparison with adapting MFCC, and their Mahalanobis dis-
tance used as damage features in a computational 10 degrees of freedom (DOFs) and on a
nonlinearly behaving laboratory structure. The method based on MFCC presented better
results than the one based on auto-regressive coefficients [58]. MFCC were also adopted as
features in a vibration-based SHM methodology proposed to assess the health conditions
of monitored civil structures by drawing knowledge from rich classification models trained
on large datasets, such as audio sets (the source domain) commonly used for speech and
speaker recognition purposes [59–61].

Despite being a research subject that has recently aroused interest in the SHM area,
there are still only a small number of works applying MFCC to indirect health monitoring
for damage detection. Indeed, to the best of the authors’ knowledge, only two studies have
addressed this topic. Firstly, a novel damage feature extracted from adapted MFCC was
proposed for damage detection of bridges using drive-by data, focusing on the highway
SHM field and the concept of using mobile sensor network [62]. The numerical analysis
and laboratory experiment results showed that the approach could identify the existence
of damage and provide useful information about its severity. Subsequently, the aforemen-
tioned adapted MFCC was applied to a drive-by damage detection framework [63]. The
method’s feasibility was verified numerically with a single DOFs sprung mass model and
by a laboratory experiment.

In this paper, a drive-by damage detection methodology for HSR bridges is addressed
to appraise the application of MFCC to extract features that are related to bridge damage.
The organization of the article is as follows: firstly, a 2D VTBI model that incorporates the
train, ballasted track and bridge behavior is presented, in which the train cars consist of four-
axle vehicles, the track is modeled as a beam resting on uniformly distributed spring-mass
systems, and the bridge deck of the HSR is modeled as a simply supported Bernoulli-Euler
beam. The formulation includes track irregularities and damage conditions induced in a
specified structure region. Secondly, the proposed drive-by damage detection strategy is
demonstrated, and the premises of the damage index extraction from the MFCC approach
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are discussed. Afterward, the feasibility of applying cepstrum analysis components to
the indirect damage detection in HSR by on-board sensors is evaluated by numerical
simulations, in which dynamic analyses are performed through a code implemented in
MATLAB® [64]. Different damage scenarios are simulated, as well as external excitations
such as measurement noises and different levels of track irregularities. Finally, the key
results are summarized in the last section, and some prospects are highlighted. The results
presented in this study should be seen as a first attempt to link cepstrum-based features in
an HSR drive-by damage detection approach.

2. Methodology
2.1. Vehicle-Track-Bridge Dynamic Interaction System

The passing trains induce severe vibrations in the substructures, which may affect the
proper operation of the track and bridge structures. In turn, the track and bridge’s sharply
dynamic behaviors can influence the trains’ dynamic performance. In order to evaluate the
dynamic performance and service life of the train–track–bridge system, it is necessary to
take the train, the track, and the bridge as a coupled system into account and analyze them
simultaneously [65].

In general, in train–bridge dynamic interaction models, the bridge subsystem is
usually modeled on the finite element method (FEM) or continuous beam theories, whereas
the theory of multi-body system dynamics is adopted to establish the moving vehicle
subsystem, which implies that most of the vehicle degrees of freedom, or equations of
motion, are assigned to the motions of the vehicle bodies [66,67]. A comprehensive literature
review of railway vehicle modeling is provided in [67], and a substantial state-of-the-art
review of train–track–bridge dynamic interaction is presented in [65].

This section describes the 2-dimensional VTBI model used in the present study to
numerically simulate a high-speed train response to a bridge-crossing event. Plane VBI
systems can satisfactorily predict vertical dynamic response [68,69]. As to ballasted railways
tracks consisting of rails, pads, sleepers, ballast, and sub-ballast, it is possible to depict
the track with varying degrees of complexity, which may be roughly categorized by the
number of sprung layers taken into account [70].

2.1.1. Vehicle Model

The multi-rigid-body vehicle model considered is schematically depicted in Figure 1a.
It is assumed that the train is composed of Nc independent vehicles and crosses the bridge
at a constant speed v. Each vehicle has one carbody, two bogies, and four wheelsets. The
carbody frame has been modeled as a rigid body with a concentrated mass mc and rotary
inertia Jc. Similarly, each bogie frame has also been modeled as a rigid body and has a
concentrated mass mb and a rotary inertia Jb. The carbody and bogie frame rotary inertias
are about the transverse horizontal axis through its center of gravity. The wheelsets are
represented as lumped masses mw that are connected to the bogie frames by means of
spring-dashpot sets representing the primary suspension with spring stiffness k1y and
damping coefficient c1y. Bogie frames are coupled to the carbody by spring-dashpot sets
with spring stiffness k2y and damping coefficient c2y, representing the secondary suspension
system.
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Figure 1. 2-D vehicle-track-bridge dynamic interaction system: (a) vehicle model, (b) track model,
and (c) bridge model.

In total, the vehicle model has ten independent DOFs that correspond to seven vertical
displacements for the masses (yc, yb1, yb2, yw1, yw2, yw3, and yw4), and three rotations of
the rigid bars (θc, θb1, and θb2). This model has been extensively discussed in the literature,
and its equations of motion may be found in a variety of sources [70,71].

2.1.2. Track Model

As depicted in Figure 1b, the track is modeled as a beam resting on uniformly dis-
tributed spring-mass systems. The rail is modeled specifically as an Euler–Bernoulli beam
using FEM discretization, whose behavior is characterized by four parameters: Young’s
modulus Er, sectional area Ar, moment of inertia Ir, and mass per unit length a mass
per unit length of mr. The sleepers are represented as masses Ms separated by a regular
spacing Ls and coupled to the rail by a spring-dashpot system with stiffness Kp and viscous
damping Cp representing the pad. The ballast is depicted as a lumped mass Mba that
interacts with the sleeper via a spring-dashpot layer with stiffness Kba and a damping
coefficient Cba. The third layer represents the dynamic qualities of the sub-ballast, using
an additional spring-dashpot system in parallel with stiffness Ksb and viscous damping
Csb, respectively. The rail irregularities r(x) at the x-coordinate are taken into account by
introducing random irregularity profile functions on the rail surface, which describe the
deviation from a perfectly smooth track. The track irregularities are measured relative to
the beam’s vertical static equilibrium locations (mean horizontal axle).

2.1.3. Bridge Model

The bridge deck of the HSR is modeled as a simply supported Bernoulli-Euler beam
(Figure 1c) with a mass per unit length of m, Young’s modulus Eb, sectional area Ab, moment
of inertia Ib and equivalent damping coefficient c. The bridge is implemented utilizing
FEM formulation with beam elements. Numerous papers have detailed the elemental
matrices [70,72], and the assembly of these matrices into global form yields the set of
motion equations that characterize the dynamic behavior of the bridge. In order to simulate
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the structure damage being identified and localized indirectly by the passing vehicle, a
beam region has its bending stiffness affected by a coefficient fsr (reduction stiffness ratio).

2.1.4. Equations of Motion for the VTBI System

All the above-mentioned subsystems are incorporated into a single VTBI model. The
train convoy is composed of c = 1, 2, . . . , Nc independent cars traveling in succession. The
vehicles travel on a rail supported by three layers of spring-dashpot systems representing
the pad, ballast, and sub-ballast. The track is then supported by either the bridge or a rigid
foundation (Figure 1b). The length of the track is adequate to prevent the vehicle from
reaching the bridge until it has reached dynamic equilibrium. It is also sufficiently long for
the vehicle to completely exit the bridge [70].

A set of motion equations specifies each subsystem. These second-order differential
equations can be expressed in a general matrix form, using the mass, damping, and stiffness
time-dependent global matrices—M, C, and K, respectively—together with the vector of
external forces F and solved for the vector X of the global displacements (DOFs). The
coupled equations of motion of the model as a whole can be represented in a sub-matrices
form asMV 0 0

0 MT 0
0 0 MB




..
XV..
XT..
XB

+

 CV CVT 0
CTV CT CTB

0 CBT CB




.
XV.
XT.
XB

+

 KV KVT 0
KTV KT KTB

0 KBT KB


XV
XT
XB

 =


FV
FT
FB

 (1)

where the subscripts V, T, and B the vehicle, track, and bridge subsystems, respectively. In
Equation (1), the coupling of the subsystems is mathematically described with additional
off-diagonal block matrices. These coupling terms are determined by the beam element’s
shape function and the mechanical parameters of the system. A complete derivation of
these mathematical expressions is presented by [73] in greater detail.

The coupling terms between the vehicle and the track depend on the vehicle’s position;
hence, they are time-dependent and must be computed at each time step. Conversely, the
coupling terms between the track and bridge stay unchanged, since their configuration
does not vary within a single simulation. It should be noted that when the vehicle and
track are connected, some of the vehicle’s DOFs are combined with those of the track.
Consequently, the mass matrix of the track MT must be modified at each time step, to
account for the increased masses of the wheels [70–73].

2.2. Irregularity of Track Vertical Profile

In general, with the exception of areas with turnouts, road crossings, and deteriorating
rail lines, the irregularities of the track’s vertical profile can be viewed as stationary ergodic
Gaussian random processes in a space domain along the track’s length, which is character-
ized by a superposition of random harmonic waves with varying wavelengths, phases, and
amplitudes [74]. Power spectral density (PSD) is the most significant and widely employed
statistical function for simulating random track irregularities. PSD of track irregularities are
curves of constant variation, in which spectral density is the ordinate and either frequency
or wavelength is the abscissa, in which the relationship between irregularity amplitude
and frequency is clearly evidenced [72].

For the numerical simulations presented in Section 3, two vertical track profiles
with random vertical irregularities were generated using a random function r(x) of zero
expectance and constant variance presented by [75], and expressed by a trigonometry
series as

r(x) = 2
N

∑
j=1

√
S
(
Ωj
)
∆Ωcos

(
Ωjx + φj

)
, (2)

where φj is a random phase with uniformity distribution in [0, 2π rad], S
(
Ωj
)

is the PSD func-
tion evaluated in the jth spatial frequency Ωj(rad/m) of the discrete domain
Ωj = Ωl + (j − 1/2)∆Ω, with j = 1, 2, . . . , N, and whose frequency band ∆Ω = (Ωc − Ωr)/N
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is defined by the lower and upper limit’s spatial frequencies, respectively Ωl = 2π/Lr,max
and Ωu = 2π/Lr,min, and by the wavelength range [Lr,min, Lr,max] in which the PSD func-
tion is included.

For Equation (2), the following were assumed: N = 3540 (number of spatial frequen-
cies), Lr,min = 1.524 m, Lr,max = 304.8 m, and the German PSD function has been used,
which is written by

SV(Ω) =
AVΩc

2

(Ω2 + Ωr2)(Ω2 + Ωc2)

[
m2

rad/m

]
, (3)

where Ωc and Ωr are the cut-off frequencies and AV is the roughness constant, whose values
are presented in Table 1. Figure 2 shows the irregularity profiles used in the numerical
simulations.

Table 1. Roughness coefficients and cut-off frequencies for German track irregularity PSDs [72].

Track Class Ωc (rad/m) Ωr (rad/m) AV (m2×rad/m)

Low disturbance 0.8246 0.0206 4.032 × 10−7

High disturbance 0.8246 0.0206 1.080 × 10−6
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2.3. Drive-by Damage Detection Using MFCC

The main goal of feature extraction is to turn the unprocessed input signal into a
representation with minimal variables, which contains the most discriminating information
and which can adequately reduce the input’s dimensionality and eliminate redundant or
irrelevant information, in order to produce the series of feature vectors. With this intention,
cepstral analysis is frequently used to derive MFCC features from raw data [42]. The MFCC
represents a signal’s short-term power spectrum, using a linear cosine transform of a log
power spectrum on a nonlinear Mel frequency scale [76].

Cepstrum analysis scans and extracts information for a range of frequencies instead
of merely looking for peaks, and assigns equal weights to different frequency ranges.
In contrast, MFC analysis assigns more weights to lower frequency, which is crucial for
bridge monitoring. MFC is originally designed to mimic how human beings respond
with their auditory system, for which the conceptual distance between 100 Hz and 200 Hz
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is substantially more meaningful than the same linear distance between 10,000 Hz and
10,100 Hz. The scenario is comparable to the bridge’s frequency domain, where the lower
frequency range containing the most significant modes is usually more meaningful than
the higher frequency ranges [62].

The framework proposed in this paper for drive-by damage detection of HSR bridges
using MFCC for feature extraction is discussed in this section, and can be summarized by
the flow chart depicted in Figure 3.
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2.3.1. Vehicle’s Acceleration Segmentation Short-Term Spectra

The Short-time Fourier Transform (STFT) is used to analyze how the frequency content
of the vehicle’s acceleration signal changes over time. Thus, the vehicle’s vertical accelera-
tion time history responses for both the healthy (undamaged) scenario and a damaged one,
respectively au(t) and ad(t), are discretized into j segments, by sliding a window function
over them. This function hops through the original signals at intervals of a pre-established
number of samples. After segmentation and windowing, the vehicle’s short-term spectra of
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each frame of both cases, Xu
j ( f ) and Xd

j ( f ), are obtained by the STFT by taking the discrete
fourier transform (DFT) of all the segments.

This work used the Hanning window function in the signal time discretization. When
dealing with non-stationary signals, as is the case for a variety of structural response
time-histories, the framing and windowing techniques are particularly advantageous. In
fact, when the monitored system is excited by a very non-stationary input, such as high-
speed train excitation in a bridge, the response exhibits non-stationarity features in its
transient part, which is frequently the only time history recorded for short-term SHM
applications [58].

2.3.2. Adapted Mel-Frequency Scale and Frequency Warping

After the STFT has been evaluated, the frequency spectrum of each frame, in a proce-
dure known as frequency warping, is undertaken to emphasize the signal’s Mel-frequency
characteristics.

Although MFC is used for numerous applications, there is no single formula for the
correspondence between Hertz and Mel frequency scales. The most widely used is given by

m = 1127ln(1 + f /700), (4)

where m is the Mel-scale frequency, and f is the Hertz-scale frequency. Considering
that lower frequency of bridges is always more important, an adapted formula for the
transformation, to mimic the trending of Mel-scale in Equation (4) was proposed by [62]
and is as follows

m = 5ln(1 + f /5), (5)

where m is the Mel-scale frequency, and f is the Hertz-scale frequency.
Frequency warping is accomplished by applying a set of N triangular filters, called

filter bank, to weigh the DFT values. The filter bank points are uniformly spaced on the
Mel-frequency scale, and their centers are symmetric with respect to one another [61]. This
procedure reduces distorted information in the spectrum (or Mel-spectra, or cepstrum)
of the vehicle responses at high frequencies, higher than the significant ones from the
bridge. For exemplification purposes, Figure 4 shows a frequency warping for a filter bank
composed of twenty filters whose Hertz-scale frequency range from 0 to 60 Hz.

2.3.3. Mel-Frequency Cepstral Coefficients (MFCC)

The next step is obtaining the list of MFCC associated with the short-term spectra. The
inverse discrete cosine transform (DCT) is employed, and then the mfccj discrete vector
related to jth short-term cepstrum Xj( f ) becomes

mfccj =
{

m f ccj
k

}T
, k = 1, 2, . . . , N f − 2, (6)

with the kth component m f ccj
k given by

m f ccj
k =

N f −1

∑
n=2

LogXncos
(

π

N − 2

(
n − 3

2

)
k
)

(7)

In Equations (6) and (7), N f is the number of filters in the filter bank, and LogXn
denotes the nth filter log-energy output, which can be written as

LogXn = log

(
L

∑
l=1

TFn( f )×
∣∣Xj( f )

∣∣2), (8)

in which TFn is the nth triangular filter that is applied over the jth short-term power
spectrum

∣∣Xj( f )
∣∣2, in its l = 1, 2, . . . , L samples.
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2.3.4. Damage Index

In the last stage of the procedure, MFCC are used to calculate the damage indices (DI),
from which the HSR bridge damage prognosis is performed by comparing the aforemen-
tioned mfccu

j vectors extracted from the recorded vehicle’s responses when it crosses the

undamaged bridge, with the mfccd
j ones provided by the vehicle passing over the bridge

under the presence of damage. The along bridge span DI are taken by the Root Mean
Square Deviation described as

DIj =

√√√√√√√√
N−2
∑

k=1

(
m f ccj(u)

k − m f ccj(d)
k

)2

N−2
∑

k=1

(
m f ccj(u)

k

)2
. (9)

3. Numerical Simulations: Results and Discussion

The previously discussed VBI model and the drive-by damage detection procedure
were implemented in MATLAB® [64], and the feasibility of using damage features extracted
from MFCC in indirect SHM of HSR infrastructure is numerically evaluated in this section
for two different levels of track conditions: low disturbance (LD) and high disturbance
(HD) (as described in Section 2.2), in addition to the case where no irregularity is considered
(NC), for train speeds of 144 km/h and 288 km/h. To analyze the sensitivity of the method
regarding the intensity of the damage, five damage scenarios were simulated on the bridge,
assuming bending stiffness reductions of fsr = 5%, 10%, 15%, 20% and 25% in a region of
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the Euler-Bernoulli beam with 1.2 m length (The bridge span is L = 45 m). On the other
hand, to verify the sensitivity of MFFC-based DI as to the damage location, these damage
scenarios were considered for different cases, in which these regions were located around
the cross-section situated at the midspan and at 1/4 of the span from the left support.

The bridge parameters are summarized in Table 2 and were determined from an
idealized cross-section with a reinforced concrete deck and ballasted track (Figure 5). The
rail profile was assumed to be smooth, and a track length of 40 m was considered before
the bridge. The VTBI model was discretized with a bridge mesh size of 0.6 m, a rail mesh
size of 0.2 m. At the first and second bridge modes, the Rayleigh damping coefficients were
set to achieve a damping ratio of 0.5%. Vehicle properties were assumed for the Siemens
ICE3 Velaro High-Speed Train [69] and are listed in Table 3.

Table 2. Properties of the bridge model.

Properties Notation Value Unit

Deck Reinforced concrete
density ρc 2500 kg/m3

Reinforced concrete
area Ac 6.0191 m2

Ballast [72] Ballast density ρb 1750 kg/m3

Ballast area Ab 3.6315 m2

Sleeper [72] Sleeper mass (half) ms 170 kg
Sleeper spacing (half) ls 0.60 m

Rail [72] Rail mass per unit
length (per rail seat) mr 60.64 kg/m

Euler-Bernoulli beam:
Mass per unit length m 13,350 kg/m
Modulus of elasticity E 39 GPa
Cross-section moment of inertia I 2.60 m4

Span length L 45 m

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 28 
 

Table 3. Mechanical, geometrical, and suspension properties of the 2D vehicle model (ICE3 Velaro) [69]. 

Properties Notation Value Unit 
Concentrated masses Carbody 𝑚  47800 kg 
 Bogies 𝑚  3500 kg 
 Wheelsets 𝑚  1800 kg 
Rotary inertia Carbody 𝐽  1.96 × 106 kg.m² 
 Bogies 𝐽  1715 kg.m² 
Stiffness coefficient (*) Primary suspension 𝑘1  2.40 × 106 N/m 
 Secondary suspension 𝑐1  2.00 × 104 N.s/m 
Damping coefficient (*) Primary suspension 𝑘2  7.00 × 105 N/m 
 Secondary suspension 𝑐2  4.00 × 104 N.s/m 
Distances     
Distance between bogie centers in one car 𝐿  17.375 m 
Distance between wheelset axles in one bogie 𝐿  2.50 m 
Distance between bogie centers from adjacent cars 𝐿  7.40 m 

(*) For the 2-D model, the stiffness and damping coefficients of each spring-damper set in the sus-
pension systems correspond to the equivalent constants of a parallel arrangement of the axle boxes 
at both sides of each axle. Thus, the assumed values were taken from the reference values (given 
per axle box) multiplied by two for these properties. 

 
Figure 5. Idealized cross-section of the bridge numerical model (Adapted from [77]). 

3.1. Dynamic Analysis 
In the dynamic analyses, a train composed of three cars was considered for all the 

numerical simulations. VTBI’s equations of motion system—Equation (1)—were solved 
by Newmark-𝛽 method algorithm, considering a constant time step Δ𝑡 equal to 0.0005 s. 

In the assembly of the global VTBI matrices of Equation (4), on the bridge level, the 
structural damping was computed assuming Rayleigh proportional damping, defined by 
setting a damping ratio of 𝜈 = 2.5% for the bridge’s first and second vertical mode. Table 
4 presents the first eight natural frequency values of the bridge. The obtained vehicle’s 
natural frequency values and their corresponding mode shapes are enumerated in Table 
5. 

Figure 5. Idealized cross-section of the bridge numerical model (Adapted from [77]).



Sustainability 2022, 14, 13290 12 of 26

Table 3. Mechanical, geometrical, and suspension properties of the 2D vehicle model (ICE3
Velaro) [69].

Properties Notation Value Unit

Concentrated masses Carbody mc 47,800 kg
Bogies mb 3500 kg
Wheelsets mw 1800 kg

Rotary inertia Carbody Jc 1.96 × 106 kg·m2

Bogies Jb 1715 kg·m2

Stiffness coefficient (*) Primary suspension k1y 2.40 × 106 N/m
Secondary suspension c1y 2.00 × 104 N·s/m

Damping coefficient (*) Primary suspension k2y 7.00 × 105 N/m
Secondary suspension c2y 4.00 × 104 N·s/m

Distances
Distance between bogie centers in one car Lc 17.375 m
Distance between wheelset axles in one bogie Lb 2.50 m
Distance between bogie centers from adjacent cars Lac 7.40 m

(*) For the 2-D model, the stiffness and damping coefficients of each spring-damper set in the suspension systems
correspond to the equivalent constants of a parallel arrangement of the axle boxes at both sides of each axle.
Thus, the assumed values were taken from the reference values (given per axle box) multiplied by two for these
properties.

3.1. Dynamic Analysis

In the dynamic analyses, a train composed of three cars was considered for all the
numerical simulations. VTBI’s equations of motion system—Equation (1)—were solved by
Newmark-β method algorithm, considering a constant time step ∆t equal to 0.0005 s.

In the assembly of the global VTBI matrices of Equation (4), on the bridge level, the
structural damping was computed assuming Rayleigh proportional damping, defined by
setting a damping ratio of ν = 2.5% for the bridge’s first and second vertical mode. Table 4
presents the first eight natural frequency values of the bridge. The obtained vehicle’s
natural frequency values and their corresponding mode shapes are enumerated in Table 5.

Table 4. Bridge’s natural vibration frequencies.

Vertical bending mode 1st 2nd 3rd 4th 5th 6th 7th 8th
Frequency (Hz) 2.14 8.55 19.24 34.21 53.45 76.96 104.75 136.82

Table 5. Vehicle’s natural vibration frequencies.

Mode
Frequency (Hz)

Carbody Front Bogie Rear Bogie

Vertical (bouncing) 0.804 6.317 6.323
Pitching 1.089 10.525 10.525

3.1.1. Bridge Response

In order to analyze the impact of track irregularities and damage conditions on the
bridge response, the displacements (Figure 6) and accelerations (Figure 7) at midspan were
compared for the two operating speeds mentioned above, with respect to the three track
irregularity levels and to two damage conditions, where fsr = 0 (undamaged case) and
fsr = 25% (the most extreme condition) were located at the midspan and 1/4 of the span
from the left support, respectively.
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(The y-axis was reversed, according to the positive direction adopted in the VBI modeling).



Sustainability 2022, 14, 13290 14 of 26

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 28 
 

 
Figure 6. Time-histories of the bridge vertical displacements at the midspan for different track and 
damage conditions; and for different operating speeds: (a) 𝑣 = 144 𝑘𝑚/ℎ and (b) 𝑣 = 288 𝑘𝑚/ℎ. 
(The y-axis was reversed, according to the positive direction adopted in the VBI modeling). 

 

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 28 
 

 
Figure 7. Time-histories of the bridge vertical accelerations at the midspan for different track and 
damage conditions, and for different operating speeds: (a) 𝑣 = 144 𝑘𝑚/ℎ and (b) 𝑣 = 288 𝑘𝑚/ℎ. 
(The y-axis was reversed, according to the positive direction adopted in the VBI modeling). 

Regarding the influence of the track conditions, it can be observed that the irregularities 
do not considerably impact the vertical displacement response of the structure (the maximum 
variation between results was limited to the order of 1 mm). However, in contrast, some in-
fluence is observed on the vertical acceleration response. The same considerations can be ob-
served regarding the influence of the simulated damage conditions on the dynamic behavior 
of the bridge, but with the exception that, with increasing speed, the influence of the damage 
condition for the same level of track irregularity reduces significantly. 

3.1.2. Vehicle Response 
In order to evaluate the influence of track and damage conditions on the responses 

of the vehicle components, the time-histories of the vertical acceleration of the carbody 
and the front bogie are depicted in Figures 8 and 9, respectively, for the same scenarios 
used for the previous discussion on the bridge response. 

Figure 7. Time-histories of the bridge vertical accelerations at the midspan for different track and
damage conditions, and for different operating speeds: (a) v = 144 km/h and (b) v = 288 km/h.
(The y-axis was reversed, according to the positive direction adopted in the VBI modeling).

Regarding the influence of the track conditions, it can be observed that the irregu-
larities do not considerably impact the vertical displacement response of the structure
(the maximum variation between results was limited to the order of 1 mm). However,
in contrast, some influence is observed on the vertical acceleration response. The same
considerations can be observed regarding the influence of the simulated damage conditions
on the dynamic behavior of the bridge, but with the exception that, with increasing speed,
the influence of the damage condition for the same level of track irregularity reduces
significantly.
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3.1.2. Vehicle Response

In order to evaluate the influence of track and damage conditions on the responses of
the vehicle components, the time-histories of the vertical acceleration of the carbody and
the front bogie are depicted in Figures 8 and 9, respectively, for the same scenarios used for
the previous discussion on the bridge response.
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was reversed, according to the positive direction adopted in the VBI modeling).

In contrast to what was observed for the bridge, the degree of track irregularity
significantly influences the dynamic responses of both vehicle components. As for the effect
of structural damage on vehicle responses, the following observations are worth noting:

1. As shown in Figure 9, different damage conditions are not visibly distinguished by the
bogie responses. However, due to the reduction provided by the secondary suspension
system in both the frequencies and the amplitude of the carbody’s responses relative
to those of the bogie, different damage conditions were picked up by the car body’s
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vertical accelerations, albeit subtly. For this reason, the methodology proposed in this
paper was applied, concerning the carbody accelerations.

2. Figure 8a,b shows that the differences between the responses to damage severity be-
come less apparent with increasing speed. This aspect represents the main challenge to
be overcome in developing vibration-based drive-by damage detection methodologies
for indirect SHM of HSR bridges.

3.2. Performance of the Proposed Drive-by Damage Detection Using MFCC

To analyze the performance of the proposed damage detection procedure, all the
scenarios described at the beginning of this section were used to obtain the results discussed
below. The post-processing of the output data from the dynamic analyses for extracting
the MFCC and obtaining the short-term DI were carried out according to the following
considerations:

1. The output dataset corresponding to the time-histories of the carbody’s vertical
acceleration recorded at each case were corrupted by 5% white noise, to simulate the
effect of measurement disturbances.

2. No bandpass filters were used in the signal processing, since this procedure is already
covered in the frequency warping stage, with the filter bank application.

3. The filter bank was configured with 50 triangular filters, whose corresponding 50
frequency values in Hertz, equally spaced on a Mel-frequency scale, had a cut-off
frequency of 60 Hz.

4. For the segmentation/windowing of the carbody’s signal recorded, the STFT was set
up with a window function length of 211 samples (22 frames) to guarantee enough
segments for damage identification on the bridge. Moreover, as the window functions
taper off at the edges to avoid spectral ringing, the corresponding overlapping used
was 34/64 of the windowing length.

Damage Detection Performance

The performance of MFCC in providing DI that can determine whether the system is
under a structural damaged condition is now being discussed. Figures 10 and 11 display, for
the train running speeds of v = 144 km/h and v = 288 km/h, respectively, the DI values
obtained for the cases where different damage scenarios were applied in the section at 1/4
of the span, under the three levels of track irregularities mentioned earlier. Analogously,
Figures 12 and 13 show the DI values obtained for the same conditions, but with the
damage located at mid-span.

By looking at these graphics (Figures 10–13), one can immediately see that the DI
values obtained from MFCC provided robust features regarding the location of the damage.
The DI values were able to indicate accurately the damage location and severity in all cases.

It can also be seen that, although the sensitivity of the proposed DI to the degree of
damage and its location is unaffected, the magnitude of the feature correlates with both
the speed at which the vehicle passes over the bridge and the degree of track irregularities.
In this last aspect, the detectability of the technique corroborates the fact that abnormal
excitations induced by roadway irregularities are more expressive than damage (especially
for slight damage).

Figure 14 shows that for a multiple damage scenario, it is observed that the DI values
are approximately the same as those observed for singular damage scenarios.
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The different patterns of distribution of its values, in response to different damage
conditions and sources of excitation, together with the potential to detect the presence and
severity of the damage, suggest its feasibility and the merits of investigating its application
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in a drive-by methodology for damage detection of HSR bridges in a pattern recognition
approach. Once these cepstrum-based features become available, they can be statistically
analyzed to recognize their pattern and correlate it to a damage location.

4. Conclusions and Prospects

This research assesses the applicability of MFCC to a drive-by damage detection
approach for HSR bridges. The proposed framework was implemented in MATLAB, and,
using numerical simulations, damage indices (DI) were extracted from the root mean square
deviation of the MFCC. They were calculated using the recorded vehicle responses when
it crossed an undamaged bridge and those obtained when it passed over the structure,
under induced damage scenarios in which a region of the bridge had a bending stiffness
reduction in a delimited extension of its length. The dynamic analyses were performed
using a finite element (FEM) 2D VTBI model that incorporates the train, ballasted track
and bridge behavior. The influence of external excitations such as measurement noises
and different levels of track irregularities in the methodology effectiveness were explored.
Finally, the key results were summarized in the last section, and some prospects were
highlighted. The results presented in this study should be seen as a first attempt to link
cepstrum-based features in an HSR drive-by damage detection approach. The following
major conclusions are obtained from our analysis:

1. The DI values acquired from MFCC offer robust information regarding the location
of the damage. In all circumstances, the DI values reliably reflect the location and
severity of the damage.

2. The amplitude of the feature extracted from MFCC correlates with the vehicle’s speed
over the bridge and the degree of track irregularities. The DI values are more sensitive
to excitation sources caused by track irregularities than those induced by damage.

3. The results indicate that the distribution patterns of DI differ concerning different
damage locations, with a tendency to exhibit peaks near these damaged zones.

4. In this paper, no attempt has been made to apply any dimensionality reduction
techniques to the extracted features, such as principal component analysis, in which a
linear mapping of the MFCC can be performed to extract the components more likely
to be influenced by structural properties than by other excitation sources. Neither
have more sophisticated techniques such as deep learning or time series analysis been
applied, to compare the statistical distributions of the MFCC and extract damage
location from them. These prospects will be investigated in the future.
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