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Abstract: Convergence between emerging technologies and traditional industries has become a
crucial strategy for enhancing a technology’s competitiveness. Technical convergence (TC) for smart
textiles aims to reveal the convergence of emerging technologies with textile technologies, including
the field, structure, and critical technologies of the TC. For the empirical analysis, the technology
life cycle (TLC) and network analysis method are utilized to observe the TC of 15,125 patent data
for textiles from the Derwent Patent Database. The results indicate the following: (1) after 2021, the
TC of smart textiles matured, with the number of patents reaching a peak in 2030. (2) Emerging
technologies and textile technologies are inextricably linked. In addition to textile technologies, the
primary technical fields involved in smart textiles are electronic engineering, tools design, chemical
engineering, and mechanical engineering. Electronic engineering is the most common of these fields,
accounting for 29.11%. (3) From a structural perspective, the density, breadth, and depth of the
TC continues to expand. (4) Measurement, computer technology, and audio technology will be
always essential to the TC, whereas electrical machinery, instrumentation, energy technology, other
specialized technologies, and chemical engineering have tremendous growth potential. The findings
above have substantial implications for the phenomenon of the TCs that have emerged in emerging
technology and traditional industry fields. They can also aid the government in formulating policies
that promote the transformation and growth of related industries.

Keywords: technological convergence; smart textile; traditional industry; technology life cycle;
network analysis

1. Introduction

In recent years, numerous innovative, disruptive technologies in information, biology,
energy, materials, and manufacturing have rapidly penetrated industry and spread in
recent years, accelerating the growth of emerging industries and having a profound effect
on traditional industries [1]. Technological convergence (TC) drives emerging technologies
such as cloud computing, big data, and blockchain [2]. It provides businesses with a
significant competitive advantage [3]. In addition, it offers businesses the potential to
overcome technological bottlenecks in product development and capacity expansion and is
anticipated to lead the next generation of technological innovation [4].

The convergence of emerging technologies and traditional industries has emerged as a
new mean for nations to enhance their competitiveness [5]. However, most current research
focuses on the TCs of high-tech fields and industries. For example, the convergence of
robot technology [1,6], the Internet of Things (IoT), and information and communication
technology (ICT) have been discussed at the technical field level [7,8]. In addition, the
biological information industry [9] and the ICT industry [10] have been studied extensively
at the industrial level.

In the meantime, the TCs of traditional industries have been disregarded. Con-
sequently, this study focuses on smart textiles, a representative example of emerging
technologies converging with the textile industry, which historically characterized as a
labor-intensive, less innovative industry [11].
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Smart textiles are woven, spun, or braided using smart fibers or other smart materi-
als [11–13]. As the key application object of the industrial internet, as well as the excellent
carrier of intelligent services, smart textiles have generated considerable interest in the
industry. The United States Joint Market Research (AMR) has revealed that the global smart
textile market will grow from USD 943 million in 2015 to USD 5.369 billion in 2022.

This study aims to investigate the fusion between textile technology and emerging
digital technology. Specifically, what is the technological life cycle of smart textiles? What
technical fields are involved in smart textiles’ TC? What is the structure of the TC? What
are the primary technologies? For the purpose of achieving these objectives, the life cycle of
smart textiles is classified into three development stages. The composition, structure, and
key technologies of the TC in each stage are then determined by utilizing the social network
method. The significance of our research is: (1) to lay a theoretical foundation for the future
technology integration of emerging technologies and traditional industries. (2) Network
analysis indicators can be employed to establish the relationship between technical fields
and determine the rules of the TC while providing academic references. (3) By analyzing
the technological cooperation trend of emerging technologies in the textile industry, new
technological opportunities can be found, and future research and development trends can
be predicted, which will help the government in formulating industrial policies.

The remainder of this study is organized as follows: Section 2 provides the litera-
ture review and hypotheses; Section 3 discusses the methodology; Section 4 contains the
empirical analysis results; and Section 5 covers the discussion and the conclusion.

2. Literature and Review
2.1. Technology Life Cycle

The evolution of technology is analogous to the evolution of life, which goes through
stages of birth, growth, maturity, decline, and death. Therefore, the evolution of technology
will progress through various stages and exhibit various characteristics. According to
the technology life cycle (TLC) theory, technology development can be divided into four
stages [14]: (1) during the germination stage, few technological innovations occur, and
most those that do are fundamental, and the technical direction is uncertain; (2) throughout
the growth phase, new technologies continue to spread throughout the industry while
technology is becoming more appealing, and more innovative entities invest in research
and development [11]; (3) research and development technology has reached maturity, but
the number of patent applicants remains relatively constant while the rate of technological
innovation slows as a result of the market’s restriction; and (4) technology is aging during
the recession as profitability declines and companies exit the market, resulting in a decline
in technological innovations [9].

The S-shaped growth curve is a frequently used method for evaluating the TLC [15].
Chen et al. (2010) [16] compared the life cycles and development potential of two emerg-
ing technologies, hydrogen energy and fuel cells, and forecast their future development.
Daim et al. (2006) [17] analyzed three emerging technologies: fuel cells, food safety, and
optical storage. Liu and Wang (2010) [15] used an S-curve and a logistic model to forecast
the development trend of biped robot walking technology in Japan. Finally, Huang et al.
(2017) [18] applied an S-curve and a logistic model to analyze the development trajectory of
3D printing technology; they believed that the technology began to sprout in 1985, entered
the growth stage in 2005, and would enter the mature stage in 2016.

2.2. Technology Convergence

A TC refers to the convergence and penetration of multiple technology fields [19].
A TC is typically measured through network analysis. Therefore, studying a TC via
social networking is feasible and practicable [20]. Furthermore, network analysis can aid
in understanding the state of a TC at each stage and the intricate interaction between
technologies during the TC process [5]. Network analysis indicators include both local and
global indicators. Local indicators include node strength and link coefficients. Meanwhile,
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global indicators include the network’s size, density, and average degree. Several studies on
TCs have examined the type, scale, heterogeneity, and other local indicator characteristics,
while others have examined the network’s global indicators [21].

Existing research on TCs is primarily concerned with establishing the phenomenon’s
mode, level, and evolution path. Choi et al. (2015) [22] examined the mode of TC dif-
fusion using Korean patent data and a logistic model and found that the forms of inter-
departmental diffusion were diverse. Lee (2007) [6] examined the mode and process of
technology fusion through the lens of intelligent robot technology. There are two distinct
types of technological fusion: one is fusion in which key technologies are combined to form
a variety of new technologies and the other is subtyping, wherein two different technologies
combine to form completely new technology. Lee et al. (2015) [23] predicted technology
fusion patterns using ternary patent data via association rules and link prediction methods,
and they used topic models to discover and predict emerging areas of technology fusion.

A TC’s structure and mode of action have been the subject of increasing research.
Kim et al. (2014) [24] investigated the structure of a TC through the lens of printing elec-
tronics and proposed core technologies at various stages. Lee et al. (2007) [6] predicted the
future trend of TCs using association rules and link prediction methods and discovered
emerging areas of TCs using topic models. Choi et al. (2015) [22] recognized the hetero-
geneity of TCs and classified it as cross-departmental and cross-field in nature; the findings
indicated that cross-departmental diffusion takes on a more diverse form.

3. Data and Methodology
3.1. Data

Patent data is widely regarded as the most trustworthy source of knowledge (Lee et al.,
2015) [23]. Typically, a patent is comprised of numerous technical classification numbers.
Therefore, the technical information contained is relatively comprehensive, serving as a
barometer of smart textile technology innovation and indicating the direction of technolog-
ical change. The patent data in this study is from the Derwent Patent Database (DII), which
is widely used for technological opportunity discovery research. The search strategy for this
study’s smart textiles is summarized in Table 1. First, this study created the search formula
TS = (“textile” or “textiles” or “cloth” or “clothing”) to conduct a keyword search for the
term “textile.” The search returned 584,990 records, with the search number being #1. Then,
for the “smart” keyword, the search formula TS = (“smart” or “intelligent” or “wearable”)
was constructed, and the subject search was conducted. A total of 854,539 records were
obtained, with the search number being #2. Finally, the two search results above (i.e., #1
and #2) were combined, yielding 15,125 search results. The search period was 2000–2019,
with the search date set to 21 November 2020.

Table 1. Retrieval structure.

Number Result Formula

#3 15,125 #1 and #2
#2 854,539 TS = (“smart” or “Intelligent” or “wearable”)
#1 584,990 TS = (“textile” or “textiles” or “cloth” or “clothing”)

3.2. Methodology
3.2.1. S-Curve Model

Richard Foster (1986) [25], an American scholar, proposed the S-curve model in his
book to exhibit the relationship between three periods: growth, maturity, and recession.
Kim (2003) [14] proposed that TLC assessments be made using patent data. By establishing
a visual graph with time as the horizontal axis and the cumulative number of patents as
the vertical axis, this technological development trend illustrates evolution similar to the
English letter “S”. The changes in the curve correspond to various stages of the TLC, as
illustrated in Figure 1.
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3.2.2. Identification of the TC

Since a TC is predicated on the technological frontier, the division of technology
fields is critical. The World Intellectual Property Organization (WIPO) established the
International Patent Classification (IPC), widely used in many countries worldwide. The
co-occurrence analysis method identifies the fusion of various technologies based on
multiple technical categories in a single patent, and each patent can determine its technical
category based on IPC information. Moreover, this method can identify the technical
category directly and accurately [21,23]. Hence, this study analyzed the TC using the patent
co-occurrence approach.

The IPC system is based on product and technology classification. Therefore, it does
not allow for the analysis of a TC within an industry. WIPO’s ISI-OST-INPI classification
system can accurately map IPC categories to industrial technologies. By mapping between
IPC subcategories and technology sectors, it is possible to identify cross-industry and
cross-sectoral TCs.

3.2.3. Construction of the TC Network

A TC denotes combining knowledge or innovations from various technological fields
to create a dominant invention [24]. These fields will eventually be connected via the social
network theory to form a TC network. Hence, existing technological elements coexist with
those of new technologies. In this case, a new invention incorporates multiple existing
technology fields, and the resulting phenomenon of the technology co-occurrence exhibits
evident network characteristics, forming a TC network.

In this study, BibExcel was used to calculate the frequency and co-occurrence of IPC
numbers and construct an IPC co-occurrence matrix. The matrix was then used to construct
the IPC co-occurrence network, and finally, the IPC number was mapped to the domain
number in the ISI-OST-INPI classification system, yielding the technical field co-occurrence
network, as illustrated in Figure 2.
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3.2.4. Network Analysis

(1) Number of network nodes

The scale of a TC is defined by the number of nodes in the TC network or the number
of technical fields represented in the TC network of smart textiles. The more nodes, the
more technical fields involved in the TC, and the larger the network scale.

Number of network nodes =
1
2

n

∑
i

n

∑
j

lij, i 6= j and lij =
{

1, mij > 0
0, else

where mij represents the frequency of the co-occurrence of technical field i and technical
field j, while n represents the total number of network nodes.

(2) Density of the TC network

The density of the TC indicates the degree of network aggregation, whereas the density
of the co-occurring networks in the technical field denotes the degree of proximity between
the technical fields represented by the TC. The value range is [0, 1], and the calculation
formula is the number of connections in the technical field’s co-occurrence network minus
the maximum possible connection ratio. Thus, the number and density of links, where n
denotes the total number of nodes, can be expressed as follows:

Density =
1
2

n
∑
i

n
∑
j

lij

nC2
, i 6= jandlij =

{
1, mij > 0
0, else

where mij represents the total number of patents where patent i and patent j are fused, and
lij indicates if patent i and patent j are fused.

(3) Average degree of the TC network

The average degree refers to the average degree of all nodes in a network, which
reflects the width of the TC. The formula is as follows:

Average degree =
∑n

i li,j
2n

, (i 6= j and lij =
{

1, mij > 0
0, else

)
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where mij represents the total number of patents where patent i and patent j are fused, and
lij indicates if patent i and patent j are fused.

(4) Weighted average degree

The weighted average degree reflects the depth of crossover or fusion between different
technologies in the TC network. By measuring the weighted average degree of the textile
technology fusion network in each time period, we can grasp the change in the textile
technology fusion intensity, as follows:

Weighted average degree =
n

∑
i,j=1

wi,j/n

where wi, j represents the weight of the i-th edge.

(5) Eigenvector center

The eigenvector center (EC) determines the significance of a single technical field
node in the textile technology fusion network. When a node has more neighbors who are
also significant, the node is considered significant. When a node’s EC value increases, it
gains importance in the network, and so EC reflects the key technology in the technology
convergence. It is calculated iteratively. The first iteration is obtained by multiplying the
adjacency matrix A by the vector of the point degree centrality. The subsequent iterations
are the product of the adjacency matrix A and the result of the previous iteration until the
convergence point. At this point, the eigenvector’s elements represent the EC of each point.
The calculation method is as follows:

EC(i) = λ
n

∑
j=1

AijXj (λ is a constant and n is an integer)

where EC(i) represents the eigenvector centrality of the i-th node, Aij denotes the i-th row
and the j-th column element in matrix A, and Xj is the j-th element in the eigenvector.

4. Results
4.1. Technology Life Cycle of the TC

Figure 3 is based on the technology life cycle method, which uses a logical model
to simulate the development stage of smart textile technology. From 2000 to 2006, there
were few patent applications for smart textiles technology, only a handful of companies
were conducting research and development, and the application scope of smart textiles
technology was limited. For example, Plug and Wear, which sells conductive materials for
knitting and sewing, was founded in 2000, and the Georgia Tech Motherboard shirt was
printed in 2003.
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From 2007 to 2013, the research and development of smart textile technology entered
a period of rapid development, and the range of its applications expanded. In 2009, Forster
Rohner introduced the Climate Dress, utilizing its innovative embedded technologies. The
MICA Fiber department began experimenting with conductive thread and electronics in
2011, resulting in the Midi Puppet Glove. In 2013, Machine released the Midi Controller
Jacket on Kickstarter.

Smart textiles entered a period of rapid growth from 2014 to 2020, and many nations
have implemented policies to promote the development of smart textile technology. For
instance, “Made in China 2025” clearly defines the intelligent transformation and upgrading
of the manufacturing industry, which is crucial in promoting the research, development,
and application of intelligent textiles. In addition, the number of patent applications
for smart textiles has increased significantly, indicating that smart textile technology has
rapidly expanded. In April 2016, collaboration between the DoD and M.I.T was worth
USD 302 million and the first-ever U.S. Commerce Department smart-fabric gathering took
place. Google’s first product, which was slated for release in 2017, was an intelligent jacket,
co-developed with Levi’s, that featured conductive sensory fibers woven into the sleeve for
touch-sensitive mobile phone device control.

Since 2021, the growth of intelligent textile technology has slowed considerably, in-
dicating that it reached its full potential. After 2030, this technology will reach its zenith,
intelligent textiles will become increasingly popular, the technical level will be higher, the
space for technological advancement will be gradually reduced, and the economy will
enter a recession. After a new technology paradigm is generated, a new growth cycle based
on the S-curve will commence.

4.2. Areas Covered in the TC

Smart textiles result from the penetration and cross-integration of the textile and
information technology tracks. In order to understand the fusion structure of smart tex-
tiles technology in greater depth, this paper first maps the IPC classification number of
15,125 smart textiles patents to one or more categories based on the standard industrial clas-
sification system and then uses the occurrence of a smart textiles technology subcategory
to demonstrate the main technical fields and percentage of the TC for smart textiles.

Table 2 outlines the technical classification of smart textiles’ top ten integrated patents
based on the standard industry and the international patent classification standard. Smart
textiles primarily combine the following technological fields: motor, instrument, energy
technology, audio-visual technology, telecommunications technology, digital communi-
cation technology, computer technology, control technology, medical technology, surface
technology, textile technology, and other consumer goods technology. Specifically, 29.1%
of the technology comes from electronic engineering, while 13.81% comes from consumer
goods-related technology in other fields. Since the industry classification standard places
clothing technology within this category, clothing technology is primarily included here. In
addition, 13.49% comes from the tool sector, of which 8.83% belongs to medical technology,
4.66% to the surface coating technology of the majority of chemicals, and 7.18% to the
textile machinery technology in the mechanical engineering sector.

Table 2 demonstrates that smart textiles are a technology resulting from integrating
textiles and information technologies. These include ten major technical fields such as motor,
instrument, energy, audio-visual, telecommunications, textile, and medical technology.
Apart from information and textile technologies, medical technology is a significant field,
consistent with the multiple applications of smart textiles in this industry in recent years,
such as smart patient clothing that monitors vital signs such as heart rate, blood pressure,
and pulse. This technology can also be integrated into patient pillowcases or bed sheets.
The spread of infection is another prominent challenge hospitals face. With antibacterial
coatings, smart textiles can solve this issue. This technology could make patient care more
efficient and automatic, bringing revolutionary changes to this field.
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Table 2. Top 10 technology fields of smart textiles.

Sector Field Patent Count Proportion IPC

Electrical Engineering
(29.11%)

1: Electrical machinery,
apparatusand energy 1066 6.29%

H01B, H01R, H01M, H05B, F21V,
H01H, H01G, H01C, H01F, H02J,
F21L, F21Y, H02N, H02G, F21S,

H02K, F21W, H01K, H01J, H02M,
H02P, H02H, H02S, H02B, H05F

2: Audio-visual
technology 737 4.35% H05K, G09F, G09G, H04N, H04R,

G11B, H04S

3: Telecommunications 739 4.36% H04B, H04M, H04Q, H01Q, H04K,
H01P, H04J, G08C, H04H

4: Digital
communication 684 4.04% H04L, H04W

6: Computer
technology 1703 10.06% G06F, G06K, G11C, G06T, G06G,

G10L, G06N, G06M, G06J

Instruments (13.49%)

12: Control 788 4.65%
G08B, G07C, G07F, G05B, G07B,

G07D, G08G, G07G, G09B, G09C,
G05D, G05F

13: Medical technology 1496 8.83%
A61B, A61F, A61N, A61L, A61H,

A61M, A61G, G16H, A61J,
A61C, A61D

Chemistry
(4.66%)

21: Surface technology
and coating 789 4.66% B32B, B05D, C23C, B05C, C25D,

C25B, C30B

Mechanical Engineering
(7.18%)

28: Textile and paper
machines 1216 7.18%

D03D, D02G, D06M, D04B, D01F,
A43D, D04H, B41M, A41H, B41J,
B41L, D06Q, D03C, D04C, D01D,
D01H, D01G, D05B, D06H, D03J,
D21H, B41F, D02J, D05C, D06P,

C14B, D06G, D01C, B31D, B41C,
D21C, A46D, D02H, D01B, D21F

Other Fields
(13.81%)

34: Other consumer
goods 2339 13.81%

A41D, A44B, A45C, A45F, A41B,
B42D, A44C, A42B, B43K, F25D,
A43B, A46B, G10K, A41C, A43C,
A42C, B44C, A62B, D06N, A45D,
D06F, D07B, A41F, A24C, B44F,

B68G, G10D, G10G, B44D, A41G,
D04D, A45B, B43L, G10H,

B68C, B42F

4.3. Structure of the TC

Figures 4–6 depict each stage’s technology fusion network diagram based on industrial
technology classification standards, with different industrial technology fields as nodes
and the fusion relationship between technologies as edges to reveal the status of the TC
in smart textiles. 1, 2, 3, 4 and 5 in the figure respectively represent sector of Electrical
Engineerin, Instruments, Chemistry, Mechanical Engineering and Other Field.
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In Phase I, as depicted in Figure 4, the number of links in the network is small and
the degree of TC is low. At this time, the majority of the TC falls under the first category
(electronic engineering), the second category (tools), the fourth category (textile and paper
machinery), and the fifth category (other consumer goods). In addition, Table 3 reveals that
the Phase I indicators are relatively low compared to those of Phases II and III, regardless of
the number of network connections, network density, average degree, or weighted average
degree. The number of connections is 171, the density is 0.287, and the average degree
and weighted average degree of technology fusion are 9.771 and 36,914, respectively. This
indicates that the breadth and depth of technology integration in the first stage are limited,
as are the number of technical fields involved and the degree f connection between them.

Table 3. The indicators of the TC for smart textiles.

Stage 2000–2006 2007–2013 2014–2020

Node numbers 171 267 408
Density 0.287 0.449 0.686

Average degree 9.771 15.257 23.314
Weighted average degree 36.914 64.514 244.286

The number of network connections in Phase II has increased significantly, as has the
overall technology convergence scale and the number of connections between technology
fields. At this stage, the vast majority of technical fields are represented in the TC. Compared
to the first stage, the technology of the third category (chemistry) has advanced significantly,
and the chemical industry is gaining importance. According to Table 3, the density, breadth,
and depth of the TC have significantly increased since the first stage. In Phase II, the
network connections increased from 171 to 267. The network density is 0.449, significantly
higher than the initial density of 0.287, but the network connectivity has not yet reached
50%. The average degree and weighted average degree of the network are 15.257 and
64.514, respectively, indicating that the number of technical fields involved in this stage has
increased significantly, as has the level of integration between technologies.

In Phase III, as depicted in Figure 6, the number of network links and the TC between
departments in the network have increased. During the first two phases, technologies
with few or no converged nodes were added to the network, such as sectors 9 (optical),
32 (transportation), and 33 (furniture, games). This reflects the evolutionary characteristics
of smart textile technologies, on the one hand, and the significance of these technical
fields, on the other. As a result, the scale of the technology convergence network is
expanding, as are the network’s complexity and level of integration, and the integration is
strengthening overall. As shown in Table 3, the network density at this stage is 0.686, the
network connectivity is high, and the network as a whole is relatively dense. The average
degree and weighted average degree reached 23.314 and 244.86, respectively, indicating
that the breadth and depth have been further expanded and that the types of technical
fields involved in the integration and the proximity between the technical fields have been
significantly enhanced.

4.4. Key Technology of the TC

When a node has more neighbor nodes, and the neighbor nodes are more important in
the TC network, the node can play a significant role in the network and is a key technology.
Thus, this study analyzes the network of the three stages above using EC; the specific
calculation results are presented in Table 4.
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Table 4. EC of the top 10 technologies at the three stages.

2000–2006 2007–2013 2014–2019
Technology EC Technology EC Technology EC

3: Telecommunications 1 34: Other consumer goods 1 34: Other consumer goods 1

12: Control 0.936 1: Electrical machinery,
apparatus, and energy 0.914 13: Medical technology 1

10: Measurement 0.903 13: Medical technology 0.838 1: Electrical machinery,
apparatus, and energy 0.976

6: Computer technology 0.813 21: Surface technology
and coating 0.831 10: Measurement 0.976

2: Audio-visual
technology 0.553 2: Audio-visual

technology 0.830 21: Surface technology
and coating 0.961

34: Other consumer goods 0.370 28: Textile and paper
machines 0.785 6: Computer technology 0.949

4: Digital communication 0.286 6: Computer technology 0.729 29: Other special machines 0.948
28: Textile and paper

machines 0.177 9: Optics 0.723 2: Audio-visual
technology 0.931

13: Medical technology 0.119 10: Measurement 0.722 28: Textile and paper
machines 0.927

21: Surface technology
and coating 0.067 29: Other special machines 0.719 23: Mechanical

engineering 0.911

According to Table 4, five of the top ten technologies in terms of network eigenvector
centrality have EC values of less than 0.5 in the first stage. The EC values of the ten tech-
nologies are 0.719 and 0.911. These technologies can be roughly divided into two categories.
One is a technology that is always critical to the network, such as 10 (measurement), 6
(computer technology), 2 (audio-visual technology), 34 (other consumer goods), 28 (textile
and paper machinery), 13 (medical technology), and 21 (surface technology, coating). These
are considered to be critical technologies for smart textile technology. In measurement
technologies, such as pressure-sensitive, light-sensitive, and thermal sensors, smart textiles
are able to sense changes in their external environment, such as the Lenovo’s pressure
and temperature regulation smart shoes patent, which collects user movement data and
actively collects data that adjusts temperature and pressure. In computer and audio-visual
technologies, using cameras and sound collection devices to collect data, in conjunction
with computer technology to process the data, renders textiles “intelligent.” This includes
smart shirts that monitor the wearer’s heart rate and respiration. Numerous companies
have also conducted research in medical technologies, such as Philips’ ECG monitor vest
and Healthwatch’s abnormal monitoring clothing for pregnant women. The application
of various antibacterial, thermal insulation, breathable, waterproof, UV-resistant, and
flame-retardant coatings has improved the performance of textiles and spawned new smart
textile products such as antibacterial bandages and fireproof clothing. The other category
is technology which gradually gains influence due to network evolution. This type of
technology has enormous potential for development and deserves consideration in areas
such as 1 (motors, instruments, and energy), 29 (other specialized machines), and 23 (chem-
ical engineering). With the advancement of technology, various instruments and types of
equipment have become increasingly sophisticated, allowing for the embedding of numer-
ous devices into fabrics and achieving “intelligence.” For example, British Broadsword
uses conductive fabrics to create power supplies for wearable clothing and Samsung has
introduced fabric-based energy generators.

5. Discussion and Conclusions

The TC of emerging technologies and traditional industries has developed into a
critical innovation mode for a country’s competitiveness enhancement. Smart textiles are
novel textile products created by combining modern textile technology with chemical,
electronic, biological, and other technologies. A smart textile is a classic example of the
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fusion of emerging technology and established industrial technology. The network method
and life cycle theory were used in this study to investigate the TC of global smart textiles
using patent data. First, this study analyzed the life cycle of smart textiles and divided the
stages of development into three categories. Then, using the IPC co-occurrence method,
it determined the composition of technical fields and constructed the TC network to
investigate the structure and key technology of the TC in three distinct stages. The findings
indicate that:

(1) After 2021, the TC for smart textiles will reach maturity, and the number of patents
will peak in 2030. Similar to the process of life, TC development includes stages such
as germination, growth, maturity, and decline. This study used a logistic model to sim-
ulate the development stage of smart textile technology and divided the development
period into three stages based on the TLC theory.

(2) Using the IPC co-occurrence method, this study identified the fusion technology
and analyzed the technical areas covered by smart textiles. Electronic engineering,
tools, chemical, mechanical engineering, and others were the primary technical fields
involved in smart textiles. Electronic engineering had the highest proportion among
them, accounting for 29.11%.

(3) Finally, this study analyzed the structure of the TC based on establishing the TC
network of smart textiles. The TC’s density, breadth, and depth exhibited upward
trends. Measurement, computer technology, and audition technology, for example,
have always played significant roles in core technologies, while electrical machinery,
instrumentation, energy technology, and other specialized technologies, as well as
chemical engineering, have significant development potential.

The above findings have significant implications for the phenomenon of technical
convergence that has occurred in the fields of emerging technology and traditional industry.
Governments and businesses should promote TC, encouraging research and development
organizations to participate in TC to actively shape the future technology paradigm. These
findings can aid national policy decisions or company-level strategies when deciding which
technologies to promote via TC. Furthermore, the analysis of the technologies’ classification
structure and convergence patterns can inspire a research funding framework. The findings
suggest a policy direction for promoting technological development from a TC standpoint.
Moreover, they indicate that the research and funding priorities of research institutions,
industries, and academia are concentrated on critical technical fields and that these fields
play a role in industrial and technological innovation.

Despite its importance, this study has limitations that may necessitate additional
research. First, the data analysis is limited to patent-related data. While patents are the
most comprehensive and widely used data sources, additional valuable data sources are
available. There is a need to integrate these disparate data sources in the future to obtain
valuable information. Second, the method is relatively ineffective at forecasting and can
only identify significant fusion technology pairs. In this case, the future integration trend
must be bolstered. Finally, applying link forecasting techniques will aid in enhancing the
impact of the analysis results on future predictions.
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