
Citation: Li, J.; Liu, J. Predicting

Freshwater Microbial Pollution Using

a Spatial Model: Transferability

between Catchments. Sustainability

2022, 14, 13583. https://doi.org/

10.3390/su142013583

Academic Editors: Christos

Tzimopoulos, Pantazis Georgiou,

Mike Spiliotis and George

Papaevangelou

Received: 10 June 2022

Accepted: 18 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Predicting Freshwater Microbial Pollution Using a Spatial
Model: Transferability between Catchments
Jiawei Li 1 and Junyou Liu 2,*

1 School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK
2 School of Architecture and Art, Central South University, Changsha 410083, China
* Correspondence: 204801023@csu.edu.cn

Abstract: Freshwater microbial contamination has become a worldwide problem, but fecal indicator
organism (FIO) data are lacking in many catchments and large-scale management is expensive. There-
fore, a model that can assist in spatial localization to simulate microbial risk maps and Critical Source
Areas (CSAs) is needed. This study aims to generate a predicted risk of microbial contamination in
Kent and Leven, Northumberland, and East Suffolk based on the ArcMap hydrological tool using
the land use parameters in the Wyre and Yealm catchments. Then, this study will compare the value
obtained with the E. coli concentration data (observational risk) in order to evaluate whether land
cover weightings are transferable between different catchments and provide microbial risk guidelines
for ungauged catchments. In the research, the East Suffolk catchment showed strong fitting with
actual values in the rainy and dry seasons after using the predictive values weighted by Wyre and
Yealm, respectively. Specifically, as for the models with Yealm land cover weightings, the results show
that the adjusted R2 in the rainy season for East Suffolk is 0.916 (p < 0.01) while the adjusted R2 values
in the dry season is 0.969 (p < 0.01). As for models with Wyre land cover weightings, the adjusted
R2 values (rainy season) is 0.872 (p < 0.01), while the adjusted R2 values (dry season) is 0.991 (p < 0.01).
This indicates that this spatial model can effectively predict the risk of fecal microbial contamination
in the East Suffolk catchment. Second, this research believes that the land cover weightings are more
transferable in catchments that have close geographical locations or similar land cover compositions.
This paper makes recommendations for future catchment management based on the results obtained.

Keywords: microbial pollution; E. coli; transferability; ArcMap; land cover weighting

1. Introduction

River networks are the primary transport routes for environmental fluxes such as
water quality constituents and microbial pollutant within a watershed [1,2]. In 2014, the
level of damage to water quality caused by pathogens in the United States was the highest,
surpassing that caused by metals, nutrients, and oxygen depletion [3]. Some pathogens
such as Vibrio cholerae and Shigella Castellani may pose a threat to human health, causing
diseases such as cholera and dysentery [4]. This is an international issue deserving of
greater attention than it has received thus far. The direct detection of pathogens is uncom-
mon due to the laboratory test limits and high costs involved; therefore, fecal indicator
solitary organisms (FIOs) are commonly used to reflect the magnitude of pathogenic mi-
croorganisms. Escherichia coli (E. coli) is the most common type of FIO and is generally not
a direct pathogenic factor. However, a few species, such as E. coli O157:H7, are pathogenic
and may even pose a threat to human health [5]. There are two main methods for E. coli
detection recommended by the World Health Organization (WHO) and U.S. Environmental
Protection Agency (US EPA)—multiple tube fermentation (MTF) and membrane filter
methods (MF)—which are both based on lactose fermentation.

Many scholars have put forward various schemes to alleviate the problem of microbial
water contamination. For example, Kay et al. [6] implemented streambank fencing and
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found that FIO load inputs reduced considerably. Additionally, vegetation biofilters and
artificial wetlands have been shown to effectively mitigate the problem of the diffusion of
microbial pollution [7,8]. However, mitigation schemes are generally expensive and occupy
precious farmland, so high-risk hot spots need to be identified and located for targeted
management and protection. Due to the lack of spatial distribution data within rivers and
the need to determine the most likely risk sources within basins, many different monitoring
models have been developed. According to Lane et al. [9] and Milledge et al. [10], there
are three main types of diffuse pollution models (Table 1). (1) Transfer function models:
Based on measured data, the empirical model reflects the correlation between the non-point
source pollution load and runoff by statistical analysis, then calculates the output. (2) Land
unit modelling: This involves dividing the study area into subunits, estimating the potential
output of each subunit (such as human, livestock, and unit land area), and multiplying
them separately by the total amount. (3) Land transfer modelling: This involves simulating
the rainfall and runoff generation process and the pollutant migration process according to
the mechanism of non-point source pollution. As (1) and (2) do not cover the migration and
transformation process that takes place between the pollutants, the simulation accuracy
can be limited. The latter one (3) simulates the migration and transformation process and
calibrates the data, so it has been widely used in non-point-source pollution studies with
higher levels of accuracy and transferability [11–13]. There are some common land transfer
models, such as the Soil and Water Assessment Tool (SWAT), Annualized Agricultural
Non-Point Source Pollution (AnnAGNPS), and Hydrologic Simulation Program Fortran
(HSPF) (Table 1). These models require a large amount of data and materials, which are
difficult to obtain due to limitations of data sources.

Table 1. Comparison of the different modeling approaches used to identify non-point pollution in
catchments [14–20].

Model Type Explanation Characteristics
Water

Quality
Parameters

Spatial Unit Classification of
Land Cover Type Software Author

Transfer function
modelling (export

coefficient
modelling
approach)

Based on transfer
function, obtain
the output with
known inputs,

such as fertilizers
and manure

The calculation
method is

simple, but the
accuracy is not

high

Phosphorus
(kg ha−1 year−1) / / /

Ekholm et al.
[14]

Nitrate
(kg ha−1 year−1) Haag [15]

Land unit
modelling

Predict the
concentration of

pollutants in
freshwater based

on individual
land units, such
as grid square,
regardless of

spatial
heterogeneity

The relative
accuracy of the
results is high,

but it is not
possible to

investigate areas
lacking data

Carbon and
nitrogen

(kg ha−1 year−1)
/ Crops, food, livestock

The People
and

Landscape
Model

(PALM)
Matthews [16]

Nitrate
(kg ha−1 year−1) 250 m × 250 m Grassland,

beets, maize

ANIMO
model and

STONE
Wolf et al. [17]

Land transfer
modelling

On the basis of
land unit

modelling,
cross-landscape

dynamic analysis
is carried out

The process of
pollution

generation and
transfer is

simulated based
on the concept of
connectivity; this

has a higher
accuracy

Nitrate
(kg ha−1 year−1) 25 m × 25 m

Agricultural land,
deciduous forest land,
evergreen forest land,
pasture land, range
brush land, range
grass land, urban
land, and water

SWAT
model Lam et al. [18]

Nitrogen and
phosphorus

(kg ha−1 year−1)
30 m × 30 m

Bare land, urban land,
agricultural land,
forest, grassland,

water body

AnnAGNPS
model Li et al. [19]

Sediment (t/ha) 30 m × 30 m

Deep water, shallow
water, dense forest,

growing forest,
paddy, upland crops,

fallow land, and
eroded land

HSPF Mishra et al. [20]

The ArcMap hydrological model, as a land transfer modeling assessment simulation
tool, needs the least information when analyzing freshwater microbial pollution: a land



Sustainability 2022, 14, 13583 3 of 14

cover map and Digital Elevation Model (DEM). It can be used to identify Critical Source
Areas (CSAs). These areas are the locations where diffusion pollution is most likely to
occur, so they are the best places in which to implement mitigation measures and facilitate
targeted investment management. In addition, there have been few studies on the microbial
transferability risk of land use. With the research on transferability, this study can use the
model to identify the CSAs of pollution in some areas for which FIO data are lacking but
which have similar geographical environments and geographical compositions, then carry
out the monitoring and remediation of microorganisms in high-risk areas.

This paper aims to determine whether the land cover weight parameters are trans-
ferable between different watersheds and whether microbial pollution can be effectively
predicted by models in order to provide guidelines for microbial pollution risk in unmea-
sured areas. On the one hand, it compares the pollution risk predicted by ArcMap with the
risk observed by FIO (FIO concentration) so as to evaluate the effectiveness of ArcMap in
predicting FIO pollution risk in freshwater systems. On the other hand, the land cover risk
weight of the two watersheds determined can be transferred to a third watershed that has
not been studied in order to predict the degree of FIO. The assumption made in this paper
is that in East Suffolk and Northumberland, the accuracy of predicting FIO using the Yealm
land cover weight model is high (R Square). In the Kent and Leven area, the prediction
accuracy of FIO using the Wyre land cover weight model is high.

2. Material and Methods
2.1. Study Areas and Monitoring Points

This study used the E. coli. dataset (2010–2020) downloaded from the Environment
Agency of the UK using the standard method of membrane filtration (MF). Initially, this
study selected four study sites of interest, but the Broadland Rivers Catchment was orig-
inally an oil exploration area with high levels of pollution, and now has been artificially
restored to catchment. Considering that the study of this catchment will generally not
represent most natural catchments, only East Suffolk was chosen. Finally, three catchments
with fourteen sites were selected for this study; they are East Suffolk (eastern England),
Northumberland (northeastern England), and Kent and Leven (northwestern England)
(Figure 1). Panel A includes information for the Northumberland catchment, with the
study sites 1–4 marked in dark yellow; panel B includes information for the East Suffolk
catchment, with the study sites 5–10 marked in lavender; panel C includes information for
the Kent and Leven catchment, with the study sites 11–14 marked in rose pink.

In practical terms, the researchers first integrated the data sets over the years and
screened the water source type as river or running surface water, so as to make the data
conform to the research objective of this paper, i.e., freshwater. Then, they screened the
collection method as E. coli C-MF (i.e., the membrane filter method was used for collection).
Finally, they input the geographical coordinates of the remaining sites into ArcMap software
one by one and selected the river basins with more than four monitoring sites, i.e., East
Suffolk, Northumberland and Kent and Leven, in combination with the map of the UK.

2.2. Data Resources

In this study, the data resources used were:

• FIO water quality dataset from the Environmental Agency (EA) 2011–2020; each
catchment had four to five monitoring points; There are 904 data for 5 points in
the East Suffolk catchment, 29 data for 4 points in Northumberland, and 34 data for
4 points in Kent and Leven [21]. September to January was selected as the flood season,
and February to August was selected as the drought season, the geometric average of
E. coli content in the flood season and drought season was calculated, respectively.

• OS Terrain 5 DEM in Digimap [22].
• The use of a rough DEM resolution usually leads to a decline in model prediction

ability and output reliability [23], so this study focused on obtaining high-resolution
DEM data. Digimap is a website that provides online maps and spatial data for Great
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Britain. Digimap offers students unlimited DEM with a 50 m × 50 m resolution and
DEM within 400 tiles with a 5 m × 5 m resolution for one download. The 5 m × 5 m
DEM data were chosen for use in this study.

• Centre for Ecology and Hydrology Land Cover Map 2015 [24].

Figure 1. Map of the study area.

There are various land cover types of CEH Land Cover Map. Considering that the
use of multiple land classes can improve the modeling complexity, 23 land cover types of
CEH 2015 were condensed into 8 categories: woodland, arable, improved grassland, rough
grazing, bog, moorland, and other. Table 2 gives the relationships between the redefined
land cover classes and the broad habitat classes. The table is modified from [10,25]. This
division or merging was performed in consideration of the study objectives. For instance,
the other class (coastal water, rivers, canals and standing water, coastal rock, and sediment)
is basically a littoral terrestrial class that contributes little to the microbial contamination
of freshwater systems. Another example is intensively managed grassland for hay, silage,
and grazing marsh, which was incorporated as improved grassland because it is usually
reseeded periodically and receives large amounts of slurry or fertilizer as an input. Semi-
natural grassland and managed low productivity grassland are land cover types with a
low productivity, and they generally have little chance to be reseeded or fertilized. This is
because natural fertility takes a long time to develop, and artificial fertilizer is expensive,
and its use is limited by the physical properties of the land.
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Table 2. Centre for Ecology and Hydrology Land Cover Map classes for 2015 and how they are
condensed for reclassification.

CEH Class Description SCIMAP Class

Broadleaved
woodland and

coniferous
woodland

Deciduous, mixed, conifer, larch, evergreen, felled
forest, scrub and new plantation Woodland

Arable and horticulture Arable bare ground, freshly ploughed land, cereal,
non-cereal, horticulture, and rational horticulture Arable

Improved grassland Intensively managed grassland for hay, silage, and
grazing marsh Improved grassland

Neutral grassland,
calcareous grassland,

acid grassland

Semi-natural grassland and managed
low-productivity grassland Rough grazing

Fen, marsh, swamp,
bog,

saltmarsh

Swamp, fen/marsh, fen willow, bog, shrub,
grass/shrub and undifferentiated (all on deep peat) Bog

Heather,
heather grassland

Heather grassland and exposed rock as well as
habitats occurring at higher altitudes Moorland

Inland rock,
saltwater,

freshwater,
supra-littoral rock,

supra-littoral sediment,
littoral rock,

littoral sediment

Coastal water, rivers, canals, and standing water;
coastal rock and sediment Other

Urban,
suburban

Urban areas, including towns, cities, docksides,
industrial estates, and car parks; suburban areas
including a mix of built-up areas and vegetation

Urban

2.3. Risk Analysis

This model does not attempt to make quantitative predictions in actual units, but
rather, makes relative risk predictions for the whole watershed landscape and determines
the key source area or the spatial distribution of microbial pollution risk. If there is no
confluence on the flow path at any point, the unit cannot further transport water downhill.
At this time, the source of risk of freshwater microorganisms will be disconnected from the
river network [26,27], so only when the pollution source is transported to the river will the
pollution risk be concentrated. This paper adopts the ArcMap hydrological model, which is
based on the D8 flow direction model. The water flow is transported in a single line. Once it
encounters a depression, the surrounding water will concentrate in the depression, resulting
in the interruption of runoff. Therefore, it is necessary to fill the depression first to ensure
the formation of surface runoff. After calculating the flow direction, the cumulative amount
of confluence (also known as the upslope area) can be obtained, and its size represents how
many grids upstream of the flow direction finally journey through the grid. The greater the
value of the concentration accumulation is, the easier it is for surface runoff to form in this
area, and thus the greater the risk of connectivity is. The specific steps are summarized as
follows: (1) determine whether there are depressions (sinks) according to the DEM data;
(2) fill in the depressions and generate DEM without depressions; (3) calculate the flow
direction without sink (depression); (4) calculate the concentration accumulation: obtain
the unweighted concentration accumulation, the concentration accumulation weighted by
the Wyre land cover coefficient, and the concentration accumulation weighted by the Yealm
land cover coefficient; (5) capture the dumping point and use a multi-value extraction to
obtain the upslope area of each research site under different parameter weights.
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2.4. Flow Accumulation without DEM Sinks

In flow accumulation, flow refers to the number of pixels in the flow direction that
run through the hydrographic station, which is based on the concept of spatial scope. In
hydrographic terms, this is the upslope contribution area of the hydrographic station. If no
surface run off is generated at any point, it is impossible for water to flow further down.

2.5. Risk Weightings for Different Land Cover Types

David G. Milledge‘s research [10] shows that the main source of phosphorus
and nitrogen risks in the basin are often the function of land use spatial allocation;
thus, it is very important to consider how much weight to give to each of the land
cover classification types. This research uses the land use parameters in the article of
Kenneth D. H. Poter et al. [25] to conduct the analysis, and the specific content is shown in
Table 3 below. They used model inversion to obtain the land use parameter. Specifically, the
method looks at how the model is parameterized to simulate the observed contamination
so that it “fits” the observed data. The fitting method involves pseudo-randomly generating
simulations from the forward model, whose output is compared to the observed data to se-
lect the parameters that best match the observed data. In their example, the forward model
used is SCIMAP, and the user-definable parameters are the risk weightings for the different
land cover types. The model output is compared with the spatial FIO water quality dataset
provided by the Environmental Agency. These researchers used Monte Carlo sampling to
randomly assign 25,000 groups of risk weight combinations to different land cover types
and then input the results into a model, where they compared them with the known E. coli
concentrations (from Spearman correlation analysis) and selected the average value of the
best weight combination in the first 1% as the land cover risk coefficient in the Wyre and
Yealm regions. Please refer to [25] for the specific steps taken. A weight less than 0.5 means
that this type of land cover plays a role in reducing the risk of pollution sources, and the
closer the weight is to 0, the more the risk is reduced. On the other hand, a weight greater
than 0.5 means that this type of land cover can improve the risk of pollution sources, and
the closer the weight is to 1, the more the source risk will be increased.

Table 3. The optimum combination of land cover parameters in Wyre and Yealm and the role they
play in the operation of the model (dilution or diffusion). Modified from [25].

Land Cover
Type/Position Name Yealm Diffuse or Dilute to

FIO Pollution Wyre Contribute or Dilute
to FIO Pollution

Improved grassland 0.08 High dilution 0.63 Medium diffusion
Rough grazing 0.78 High diffusion 0.58 Medium diffusion

Moorland 0.5 Not influential 0.52 Not influential
Bog 0.5 Not influential 0.49 Not influential

Urban 0.5 Not influential 0.52 Not influential
Arable 0.54 Not influential 0.18 High dilution

Woodland 0.19 High dilution 0.04 High dilution

2.6. Statistical Analysis

The geometric mean [28–30] is the mean value by multiplying the values of items
together and extracting the root of the product corresponding to the number of items, that
is, the nth root product of n numbers is calculated, by which the central tendency or typical
value of a group of numbers is indicated. For a group of numbers X1, X2... Xn, the geometric
mean is defined as:

G = n
√

X1 × X2 × . . . × Xn =
n
√

∏N
i=1 Xi (1)

Statistical analysis of the model performance was undertaken using SPSS v. 20.0 for
Windows. Two different unary linear regression analyses were conducted for each site with
E. coli as the dependent variable input and the Wyre or Yealm land cover weightings as the
independent variable input. Six models were established and then analyzed.
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3. Results
3.1. Land Cover

The percentage statistics for the total area of each type of land composition in each
watershed and monitoring point were determined. In Figure 2, the land composition of the
Yealm and Wyre areas is on the left, and the land type composition of the Northumberland,
East Suffolk, and Kent and Leven catchments is on the right. The main land cover types
in the catchments of Northumberland and East Suffolk are cultivated land and improved
grassland, which are similar to the land type composition of Yealm, but the improved grass-
land in Northumberland accounts for a larger proportion, about 10% to 50%. The dominant
land cover types in the Kent and Leven county catchments are improved grassland and
woodland, which are similar to the land compositions of the Wyre catchment.

Figure 2. A bar chart shows the proportion of different land cover types among the study sites [25].

3.2. The Observed Geomean Value of E. coli in Running Surface Water

Figure 3 illustrates the variation in the geometric mean of E. coli concentration in
the wet and dry seasons at 14 monitoring points in three watersheds. It can be seen that
the concentration of E. coli in the rainy season is higher than that in the dry season at
each monitoring point. The data difference between the four monitoring points in the
Northumberland catchment is large, while the data difference between the monitoring
points in the Kent and Leven catchment is small, and the geometric mean value is much
lower than that of the other two catchments.

3.3. Upslope Contributing Area

Figure 4 shows a scatter diagram of the change in the upslope area for different
watersheds flowing through different monitoring points. Except for the monitoring points
in the Kent and Leven catchment (due to the small upslope area monitored, the change is
not obvious), the area before and after the input of the land cover weight into the Wyre
or Yealm parameter group shows a significant change compared with the area without
parameters. For the same monitoring point, there are also some significant differences
in the upslope area of the different parameter groups. It can be seen from Table 4 that at
monitoring point 7, there is a difference of nearly 25 km2 between the upslope area with the
Wyre catchment parameters and the upslope area with the Yealm parameters. Among the
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monitoring points in the East Suffolk catchment, the upslope area with the Yealm catchment
parameters is larger than that with the Wyre catchment parameters. In the Kent and Leven
area, the situation is reversed. In the Northumberland catchment, except for monitoring
point 4, the value of the Yealm parameter is large at the other monitoring points.

Figure 3. The geometric E. coli concentration variation among the study sites.

Figure 4. The change in the area of upslope accumulation weighted by different parameters at
different monitoring points.
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Table 4. The upslope area weighted by different parameters varies among the different study sites.

Monitoring Points Catchments Unweighted Flow
Accumulation (Km2)

Wyre Weighted Flow
Accumulation (Km2)

Yealm Weighted Flow
Accumulation (Km2)

1 Northumberland 60.98925 14.47405 28.0045
2 Northumberland 58.41975 20.8057 20.90293
3 Northumberland 12.49323 3.6116 4.73415
4 Northumberland 12.49323 0.235556 0.14814
5 East Suffolk 38.04375 8.542375 18.83795
6 East Suffolk 21.59735 5.002875 10.57358
7 East Suffolk 98.862 23.30825 48.0325
8 East Suffolk 61.724 14.92693 28.75775
9 East Suffolk 56.26825 13.31958 26.84325
10 Kent and Leven 0.857025 0.27527 0.182128
11 Kent and Leven 0.9558 0.4811 0.112465
12 Kent and Leven 0.282175 0.137879 0.074914
13 Kent and Leven 2.881125 1.13017 0.501063
14 Kent and Leven 2.904175 1.140095 0.511477

3.4. The Risk Map of E. coli

The fecal microbial risk map shows the key source area of risk—that is, the area most
likely to produce microbial pollution risk—which is the upslope area weighted by the Wyre
and Yealm land cover indexes (Figure 5). The color change from green to red represents
the risk moving from a low to high level; ‘a’ represents the risk map corresponding to the
land cover coefficient of Yealm; and ‘b’ represents the risk map corresponding to the land
cover coefficient of Wyre. It can be seen that the key source areas of microbial pollution
in Northumberland are distributed in the west, while the key source areas of microbial
pollution in East Suffolk are distributed around the eastern edge, and the key source areas
of microbial pollution in Kent and Leven are mainly distributed in the north.

Figure 5. CSA risk map of fecal microbial contamination.

3.5. The Relationship between the Land Cover Contribution Area and E. coli

A univariate linear regression analysis was carried out on the geometric mean of the
E. coli concentration in the dry and wet seasons and the upslope area weighted by the Yealm
and Wyre parameter groups. The result is included in Table 5. In this study, adjusted R2
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was selected to measure the calibration effect of the model. The closer R2 was to 1, the better
the fitting effect of the predicted risk and observed risk was. In contrast, the closer R2 was
to 0, the worse the fitting effect of the predicted risk and observed risk was. Considering
the significance in correlation analysis, the significance in the analysis of the East Suffolk
catchment is less than 0.01 (both rainy season and dry season), and the credibility of the
result is relatively high. This research believes that the available measured value data
from Northumberland and Kent and Leven are so small that there may be a relatively
large deviation between the actual value obtained by the researchers through geometric
averaging and the real situation. This may be a reason why the p value is larger than 0.05.

Table 5. Prediction of the regression models between geometric mean FIO (E. coli) concentrations and
rainfall accumulation areas weighted by different parameters.

Dependent Variable Independent Variable
Adjusted R2 Significance

Objective Risk Predicted Risk

Geometric average of the E. coli
concentration in the Northumberland

catchment during the wet season

Northumberland upslope area weighted
by the Yealm land cover weight 0.955 p < 0.05

Northumberland upslope area weighted
by the Wyre land cover weight 0.42 p > 0.05

Geometric average of the E. coli
concentration in the Northumberland

catchment during the dry season

Northumberland upslope area weighted
by the Yealm land cover weight 0.799 p > 0.05

Northumberland upslope area weighted
by the Wyre land cover weight 0.124 p > 0.05

Geometric average of the E. coli
concentration in the East Suffolk
catchment during the wet season

East Suffolk upslope area weighted by
the Yealm land cover weight 0.916 p < 0.01

East Suffolk upslope area weighted by
the Wyre land cover weight 0.872 p < 0.01

Geometric average of the E. coli
concentration in the East Suffolk
catchment during the dry season

East Suffolk upslope area weighted by
the Yealm land cover weight 0.969 p < 0.01

East Suffolk upslope area weighted by
the Wyre land cover weight 0.991 p < 0.01

Geometric average of the E. coli
concentration in the Kent and Leven

catchment during the wet season

Kent and Leven upslope area weighted
by the Yealm land cover weight 0.545 p > 0.05

Kent and Leven upslope area weighted
by the Wyre land cover weight 0.644 p > 0.05

Geometric average of the E. coli
concentration in the Kent and Leven

catchment during the dry season

Kent and Leven upslope area weighted
by the Yealm land cover weight −0.162 p > 0.05

Kent and Leven upslope area weighted
by the Wyre land cover weight −0.173 p > 0.05

4. Discussion
4.1. Assessment of Models: Prediction of Microbial Pollution and Transferability of Land
Cover Parameters

Table 5 and Figure 5 show that both the Wyre and Yealm models are able to sufficiently
predict and explain the microbial pollution risks and generate risk maps in the East Suffolk
catchment. This also shows that land cover parameters have certain transferability.

The three catchments had different performance effects on the Wyre and Yealm pa-
rameter settings, indicating that the transfer of land cover weight has adaptive conditions
and limitations. In fact, in the field of environmental pollution monitoring, there have been
many examples of research studying the transferability of model parameters. For example,
the model parameters of unmeasured basins can be regionalized by using the regression
method or by measuring the distance between known parameter basins and unmeasured
basins, which is called Prediction in Ungauged Basin (PUB). Hrachowitz et al. [31] stated
that in the efforts made by PUB to regionalize the model parameters of ungauged sta-
tions, regression methods or some distance measures between gauged and ungauged
sites can be used (including the spatially closest stream gauge data and the hydrological
data of the gauge station most relevant to the ungauged site). The authors of [32] tested
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the transferability of the main parameters (within the same basin, adjacent basins, and
basins under different environment settings) of a half-distributed SWAT model and found
that the parameters could be reasonably transferred between adjacent basins. However,
the aspect of transferability between catchments with different geographical conditions
still needs to be considered. The research of these authors also showed that the perfor-
mance of the model declined slightly as time and space increased. Regarding this point,
Zalzal, et al. [33] also presented similar descriptions in their studies on land use regression
(LUR) models. They hold the view that LUR models seem to support transferability be-
tween cities with similar geographical circumstances. Therefore, it is estimated in this paper
that the parameters of the diffuse pollution monitoring model are generally transferable
and applicable to study sites with adjacent geographical locations or similar geographical
conditions (such as similar land cover compositions).

It can be seen from Table 3 that in the Yealm land cover parameter system, on culti-
vated land, improved grassland, and forest land, there was no impact (0.54), dilution (0.08),
and dilution (0.19), respectively. In the Wyre parameter system, the corresponding types of
impact were dilution (0.18), contribution (0.63), and dilution (0.04). When different parame-
ter groups are used in the same model, they may obtain similar results (equivalence) [34];
this may explain why the Wyre parameter and the Yealm parameter showed similar results
in East Suffolk. This may occur because the dilution and contribution of some parameters
have an offset effect. For example, the contribution of improved grassland to freshwater
pollution in the Wyre parameter group may have been greatly diluted by the effects of the
cultivated land and forest land.

4.2. Limitation and Uncertainty

There are some possible reasons for poor levels of transferability or prediction. First, it
is possible that a certain land use type does not exist in an area, or that it only represents
a small portion of the whole land cover of an area (such as rough grazing), which may
mean that the land use signal is weak and ineffective. Second, the availability of FIOs
in the same land cover category may differ due to the use of too-wide coverage areas,
affecting the outputs of the model [28]. Improved grassland coverage levels include many
different management regimes that may represent different levels of availability of FIOs. For
instance, for livestock grazing purposes, the source of FIOs takes the form of livestock fecal
deposits, while for silage production management purposes, the risk of FIO contamination
is in the form of slurry. Second, the category of improved grassland may be used to raise
different kinds of livestock in different areas, and the FIO survival rate in the different feces
of different livestock may also be different. The research results of Hodgson, et al. [35]
showed that the E. coli survival rates were in the order of dairy cattle slurry > beef cattle
farmyard manure > beef cattle feces > sheep feces. Differences in livestock density in
different places may also be an important factor affecting these results. The Automated
Land-based Activity Risk Assessment (ALARM) export potentials produced for various
land use categories indicate that parameter values will differ for land used for different
agricultural purposes. For example, the parameters of irrigated commercial agriculture,
dryland commercial agriculture, and subsistence agriculture were found to be 0.300, 0.300,
and 1.000, respectively [30]. This paper classified areas used for different agricultural
purposes as arable land and set the parameters to be the same, which may have affected the
model’s accuracy. Third, as the E. coli concentration dataset spans 10 years, the land cover
may have changed a lot in some CSAs, and this could have affected the model’s results.

4.3. Ideas for Policy and Environment Management for Microbial Water Pollution

The quality of freshwater should be managed on the basis of the CSAs identified by
the spatial model. According to the different land types present within CSAs, different
levels of mitigation should be applied. The transfer model can help regulators choose fixed
locations for monitoring stations. This study produced a combined map of the study area
and CSA risk. This study suggests increasing the number of monitoring stations at the east
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side of the Suffolk catchment, increasing the number of monitoring stations at the west side
of the Northumberland catchment, and increasing the number of monitoring stations at
the west side of the Northumberland catchment. For ungauged catchments, the location
of pollution sampling points and monitoring sites can be determined according to the
risk map.

Generally, the largest source of fecal pollution of freshwater is animal husbandry,
which corresponds to the improved grassland and rough grazing land types. The pollution
in those areas is mainly caused by the direct deposition of animal waste into waterways. For
areas where there is a high degree of overlap between CSAs and improved grassland and
rough grazing areas, an appropriate mitigation measure is to build bridges over streams
to avoid the feces of livestock directly falling into freshwater as they cross streams [36].
Riparian fencing and buffering can not only prevent livestock from being drawn into
waterways, but also prevent microbes from being flushed from slopes into surface runoff.
The government should encourage livestock farms to be moved away from rivers and
construct wetlands as buffer zones between livestock farms and freshwater sources [37].

Government or environment agencies can instruct herdsmen and farmers to reduce or
avoid grazing and irrigation tasks on poorly drained soils or CSA areas. If the grazing area
happens to be within the CSA, with the consent of the herdsmen, the herdsmen can be paid
for their relocation expenses and given assistance to move to a low-risk area instead. The
quantity of fertilizer used should be smaller than that of the soil irrigation capacity, since
fertilizer irrigation can easily lead to microbial contamination seeping into groundwater
when the soil water is saturated or near saturated.

Grouping animals by age has also been shown to be an effective method for reducing
specific pathogens, since young animals often shed large numbers of egg sacs, while older
animals do not. Hence, calf droppings should be collected separately from those of older
animals [37]. It is necessary to develop bioenergy projects to develop wastewater processors
(such as the Omni processor) that use wastewater solids as fuel to convert wastewater into
drinking water and electricity. The government could provide reasonable funds to those
who provide sewage to encourage people to reduce the direct discharge of fecal sewage
from animals. For arable and urban areas, vegetated buffer strips (VBS) can be constructed
and placed along both sides of the downward slope of the farmland. The principle here is
that plants can effectively slow down the flow speed of liquid; with water slowly passing
through buffer filters, and pollutants being left in VBS, as they have larger particle sizes
than water. A good buffer zone is usually about 10 m wide, with a slope of less than 8%
and a vegetation coverage of about 90%.

5. Conclusions

This model uses simple information and data to effectively generate risk maps, demon-
strating that land cover weights may be transferable between catchments This research has
found that the predicted values of E. coli concentration in the East Suffolk catchment in the
dry and rainy reasons weighted by Yealm and Wyre are well fitted to the corresponding
measured values and show good significance. Although the linear regression between the
predicted value and the measured value of the Northumberland catchment and the Kent
and Leven catchment cannot pass the significance test, this research maintains that the
available measured value data from these two catchments are so small that there may be
a relatively large deviation between the actual value obtained by the researchers through
geometric averaging and the real situation. If there are more measured data, the results
of error analysis are likely to be better. This research believes that increasing monitoring
and providing more E. coli data by the UK’s government agencies and social organizations
are not only conducive to people better understanding the microbial contamination in wa-
tersheds, but also facilitate the researchers to carry out transferability studies and explore
the extent to which E. coli concentrations and microbial risks in other watersheds can be
predicted through transferability. Our results can act as a guide for the construction of
microbial risk models for ungauged catchments. However, this model had some limitations.
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First, different land use patterns may have been used for the same land cover type. Second,
the impact of time span was not considered. Third, there may have been errors in the
identification of land types by satellites, which may have affected the accuracy of the model.
In future studies, the accuracy of the model can be improved by dividing the location of the
sampling points during the monsoon and non-monsoon periods. In addition, consideration
will be given to further determining the division of land types in conjunction with field
visits and adding factors such as fecal density into the model. In terms of mitigating
microbial contamination, the identified key risk sources should be divided across different
types of land cover and managed in a targeted manner. Livestock manure management
should be carried out in improved grasslands and rough grazing areas, and vegetation
buffer zones should be used to alleviate manure pollution in arable areas.
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