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Abstract: Electricity theft harms smart grids and results in huge revenue losses for electric companies.
Deep learning (DL), machine learning (ML), and statistical methods have been used in recent research
studies to detect anomalies and illegal patterns in electricity consumption (EC) data collected by
smart meters. In this paper, we propose a hybrid DL model for detecting theft activity in EC data.
The model combines both a gated recurrent unit (GRU) and a convolutional neural network (CNN).
The model distinguishes between legitimate and malicious EC patterns. GRU layers are used to
extract temporal patterns, while the CNN is used to retrieve optimal abstract or latent patterns from
EC data. Moreover, imbalance of data classes negatively affects the consistency of ML and DL. In
this paper, an adaptive synthetic (ADASYN) method and TomekLinks are used to deal with the
imbalance of data classes. In addition, the performance of the hybrid model is evaluated using a
real-time EC dataset from the State Grid Corporation of China (SGCC). The proposed algorithm
is computationally expensive, but on the other hand, it provides higher accuracy than the other
algorithms used for comparison. With more and more computational resources available nowadays,
researchers are focusing on algorithms that provide better efficiency in the face of widespread data.
Various performance metrics such as F1-score, precision, recall, accuracy, and false positive rate are
used to investigate the effectiveness of the hybrid DL model. The proposed model outperforms its
counterparts with 0.985 Precision–Recall Area Under Curve (PR-AUC) and 0.987 Receiver Operating
Characteristic Area Under Curve (ROC-AUC) for the data of EC.

Keywords: class imbalance; gated recurrent units; convolutional neural network; electricity theft
detection; non-technical losses; smart grids

1. Introduction

Electricity has become a basic need in the modern world, as it is used in homes,
businesses, and industry. To distribute electricity to these sectors, a network is formed,
which is called the power grid. Technically, the power grid consists of a production side and
a demand side. Electricity generation is increased or decreased depending on the demand
side’s needs. Unfortunately, some of the electricity produced is lost during generation,
transmission, and distribution. Energy losses are divided into two main classes: non-
technical losses (NTL) and technical losses. Various methods, techniques, and tools are in
practice or are proposed to address technical losses.

On the demand side, one of the NTLs is electricity theft. Electricity loss is a major issue
for power utility companies, as it causes major disruption to their operations, which leads
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to loss of revenue, increased generation load, and excessive electricity bills for legitimate
consumers. Moreover, electricity loss also causes issues related to economic growth and
power infrastructure stability. NTL, also known as commercial losses, happen mostly due
to electricity theft and fraud. Power utility companies still lose large amounts of revenue
due to unlawful electricity theft and fraud by electricity consumers. This theft places a
heavy burden on the power grid infrastructure and results in fires that threaten public
safety. They also cause loss of revenue for electrical generation companies [1–3]. It is a
challenge to address power caused by theft. Theft can be done by tampering with electricity
meters, double-tapping attacks, changing meter readings through communication links,
and using shunt devices. It is an open secret that power utilization is strongly connected
with the development of a country and is hence a vital measure that shapes the foundation
of industrialization. With the consistently increasing need for power usage, electricity theft
is at a peak. Fossil fuel combustion from electricity generation causes 70% of greenhouse
gas (GHG) emissions [4]. In spite of endeavors to reduce GHG outflows, electricity theft
overshadows these endeavors in developing countries. The capacity to create electric
power is diminished as a result of resources lost to energy theft. Due to electricity theft,
unnecessary blackouts/load-shedding occur, which encourages users to opt alternative
energy resources to fulfill their requirements, including using petrol and diesel generators
that cause GHG emissions.

The majority of climate talks have focused on how to lower GHG emissions; very
few have examined the consequences of energy theft. By continuously monitoring the
electrical system and isolating energy-theft hotspots from a distance, Smart Meters (SM)
are suggested as a strategy to prevent energy theft. All transformers, distribution poles,
and customer houses should have SMs. The measurements are subsequently transmitted
over a communication network to the distribution company’s database for examination,
and if trouble areas are found, power is cut off remotely. This technology would enhance
performance, which would immediately result in a decrease in GHG emissions while also
increasing total returns to the distribution firm. It would also promote transparency in the
metering process.

Moreover, NTLs cause USD 75 billion in lost revenue in the United States. This amount
is enough to power 77,000 households for a year [5]. A World Bank report shows that
China, Brazil, and India suffer 16%, 25%, and 6% losses in electricity supply, respectively [6].
According to Joker et al. [7] such losses are not only limited to developing countries; de-
veloped countries such as the U.S. and the U.K. bear losses of USD 6 billion and GBP
173 million, respectively, each year. The above discussion shows that an efficient electricity
theft detection (ETD) model is required to detect NTLs. In the literature, hardware devices,
and data-driven and game-theoretic approaches are used to detect NTLs. Hardware-based
approaches use sensors and radio identification tags to distinguish between honest and
malicious samples. However, these approaches are expensive, require huge maintenance
costs, and do not provide optimal results under extreme weather conditions [3,8–10]. Meth-
ods based on game theory design a utility function among electric utilities, stakeholders,
and customers. However, it is difficult to implement an accurate utility function. Moreover,
these approaches are less accurate and have a high false-positive rate (FPR) [11–14].

The introduction of smart power grids opens new opportunities for ETD. A smart grid
is an upgraded version of a conventional power grid and consists of smart meters, sensors,
and computing devices that have self-healing mechanisms and communication technolo-
gies. The smart meters and sensors obtain data on consumers’ electricity consumption
(EC), electricity prices, and the status of the grid infrastructure [15,16]. The data-driven
approaches are trained on the collected EC data to distinguish between honest and mali-
cious samples. These approaches have received a lot of focus from the research community,
but they have the following limitations: curse of dimensionality, class imbalance problems,
and low detection rates for standalone ML and DL models. Moreover, conventional ML
models such as k-nearest neighbors and naïve Bayes have high FPRs. As mentioned in the



Sustainability 2022, 14, 13627 3 of 20

literature, electric utilities cannot tolerate low detection rates and high FPRs because for
on-site inspection they have limited resources.

This paper presents a hybrid DL model (named HGC) that is a combination of a
gated recurrent unit (GRU) and a convolutional neural network (CNN). GRU extracts
temporal features, while CNN retrieves abstract patterns from EC data. The advantages
of the models are summarized in the HGC model. It also outperforms existing models.
The uneven distribution of class patterns leads to poor performance. This problem leads
to majority class bias, which leads to incorrect results. In this paper, a hybrid approach
consisting of undersampling and oversampling methods is presented to deal with the
uneven distribution of class samples. The main contributions of the paper are listed below.

• We present an HGC model that combines the advantages of GRU and CNN. It is the
first study that combines the advantages of sequential and non-sequential models.

• A CNN model extracts latent or abstract patterns, while a GRU retrieves temporal
patterns from EC data. The curse of dimensionality is addressed with both DL models.

• The adaptive approach of synthetic minority oversampling and TomekLinks are used
to discuss the problem of class imbalance.

• The performance of the HGC model is evaluated using a real EC dataset obtained
from the State Grid Corporation of China (SGCC).

• To verify the real efficiency of the proposed model, extensive experimentation is
performed based on recall, accuracy, precision, F1 score and FPR.

The rest of the paper is organized as follows. Section 2 presents an overview of related
literature. We present the Problem Statement in Section 3, followed by Materials and
Methods in Section 4. The Proposed Model is outlined in Section 5. Section 6 contains the
Experimental Analysis and Discussion. The Experimental Outcome and Arguments are
discussed in Section 7. Finally, we come to an end in Section 8.

2. Related Literature

The tools and techniques proposed in the literature to detect NTLs are studied in this
part of the document. In [5], a model combining CNN and multilayer perceptron (MLP) is
used. It integrates the advantages of both DL models, which is why it gives better results
than standalone models. The first model is employed to extract hidden, abstract patterns,
while the latter one is used for extracting meaningful information. The class imbalance
problem, however, is not addressed, which makes the ML and DL models biased towards
majority class samples and ignore minority ones. Moreover, MLP does not give results on
sequential datasets. Joker et al. [7] propose an electricity theft detector that is developed
using an SVM classifier to differentiate between malicious and honest customers. It is
the first study that integrates a ML model and hardware devices to capture drift changes
in data that can happen due to many reasons: e.g., a different number of members in
a household or weather changes. Some authors utilize random undersampling to solve
the uneven distribution of class samples. However, this technique creates underfitting.
Moreover, they utilize hardware devices that make the proposed solution expensive. In [17],
the authors propose a theft detector that contains gradient boosting classifiers. The authors
introduce the concept of stochastic features, which enhance the detection rate and reduce
the FPR. Moreover, they conduct a comparative study and prove that boosting classifiers
perform better than SVM on an Irish dataset. Moreover, electricity theft cases are updated
by arguing that existing theft cases’ resemblance to real-time samples is the least. Random
oversampling is employed to handle the uneven distribution of class samples, which
creates an overfitting problem. The curse of dimensionality is a big nuisance and reduces
the detection-rate of ML and DL models. In [18], the authors use heuristic techniques to
select optimal combination of features from EC data, which solves overfitting, memory
constraints, and computational overhead issues. However, they use accuracy as a fitness
function to evaluate the efficacy of meta-heuristic techniques, which is not a good practice.

In [19], a long short-term memory (LSTM)-dependent framework is suggested. It is
proposed for differentiating between malicious and normal patterns as well as changes
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due to drift. Based on our knowledge, this is the first study that considers drift changes
with malicious patterns and reduces FPR. The Power utilities are unable to bear high FPR
due to their limited resources to inspect on the site. Fenza et al. [20] propose a model that
integrates the benefits of both CNN and random forest. The former is used to obtain abstract
features, while the latter is used to differentiate malicious and normal patterns in EC data.
The class imbalance problem is handled using SMOTE, which creates overfitting. In [21], a
DL model is proposed that integrates the benefits of both LSTM and MLP. This is the first
article that has leveraged the benefits of both sequential and non-sequential data. The class
imbalance problem is not considered, which is why ML and DL models give biased results.
In [22], an ensemble deep CNN is used for detection of atypical behaviors in EC data.
Imbalanced data are a severe issue in ETD and is handled through random bagging. Finally,
a well-known voting ensemble strategy is utilized to decide between malicious and normal
patterns. Ghori et al. [23] conduct a comparison study between different conventional ML
classifiers using a real EC dataset. The ANN and boosting classifiers such as LightBoost,
CatBoost, and XGBoost give better performance than other models. Moreover, the curse of
dimensionality is dealt with by selecting optimal combination features.

In [24], the authors put forward a fascinating technique for NTL detection using smart
meter data. Moreover, auxiliary information is utilized to enhance the accuracy of ML
models. Different features are built using distance and density outlier-detection methods.
The proposed model is employed in smart grids to distinguish illegitimate patterns from
legitimate patterns. In [25], Hasan et al. put forward the idea of identifying low-voltage
stations and comparing the performance of supervised and unsupervised learning methods.
The suggested method gives better results in contrast to SVM and DT-SVM.

Ismail et al. [26], merge the integrated model of CNN and LSTM. This is the first study
that integrates the benefits of both DL learning models. Moreover, the uneven distribution
of class samples is another severe issue. SMOTE is utilized to handle this issue. The
proposed hybrid model achieves 89% accuracy, which is more than conventional ML and
DL models.

The poisoning attack problem in smart grids is proposed by Maamar et al. [27]. They
introduce a sequential and parallel DL-based autoencoder based on GRU and LSTM
models. The deep neural network performs better than a shallow neural network. In [28],
it is revealed that existing studies mostly monitor attacks on the consumer side. No
one focuses on the distribution side, where hackers hack utility meters and create higher
electricity bills. In their study, they introduce a hybrid C-RNN-based model and prove
that it performs well compared to other DL models. The proposed model is evaluated on
SCADA meter readings.

In [29], a new hybrid approach is introduced that integrates the benefits of k-mean
clustering and a deep neural network. Irish Smart Energy Trials data are used for model
evaluation. However, if the authors utilize other advanced clustering algorithms, then
proposed model increases the performance. Shehzad et al. [30] introduce a smart system for
ETD. The system integrates the benefits of statistical methods and different DL models such
as MLP, LSTM, RNN, and GRU. The proposed technique is evaluated on real data from
Singaporean homes. However, the performance of the suggested technique is not checked
using other performance measures such as F1-score, recall, precision, FPR, ROC-AUC, and
PR-AUC.

3. Problem Statement

In [3], the authors propose a theft detector consisting of an SVM to discriminate
between malicious and normal samples. However, they do not use a feature selection or
extraction approach to deal with the curse of dimensionality. Overfitting leads to high
accuracy when using training data compared to test data when ML and DL models are used.
Moreover, in [17], the black-hole algorithm (BHA) is used to handle the high dimensional
data. BHA is a meta-heuristic method that requires high and complex computations to
find an optimal feature combination with which ML models achieve better results. For
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this reason, it is not suitable for real-time smart-grid applications. Moreover, the problem
of class imbalance is another serious problem in ETD. There are more samples of normal
classes than malicious classes. Zheng et al. [1] do not use any approach to solve this
problem. In [8], SMOTE is used to improve the minority class samples. However, with
this approach, there is a tendency for the ML or DL models to run into an overfitting
problem as sample size increases. In [3], a random undersampling approach is employed to
compensate for the unequal distribution of normal and malicious samples. However, this
approach removes important information and creates the problem of underfitting. In the
literature, authors usually use conventional ML models such as SVM, DT, and NB. These
models have low detection rates and high FPRs. Therefore, an efficient framework with
accurate identification of NTLs in EC needs to be proposed.

4. Materials and Methods

Section 4.1 is about acquiring the dataset; data preprocessing is covered in Section 4.2,
which include handling missing values, removing outliers, normalizing data values, and
class imbalance problems; and in Section 5 the proposed model is discussed.

4.1. Acquiring the Dataset

In this study, to appraise the performance of the suggested model, data from the
State Grid Corporation of China (SGCC) are used, as it is the only publicly available
dataset; it includes 42,372 records of consumers, 3615 of which are thieves, while the
rest are ordinary consumers (https://github.com/henryRDlab/ElectricityTheftDetection
(accessed on 2 March 2022)). Each consumer has a label, either 1 or 0, where 0 represents a
normal consumer, and 1 represents a malicious consumer. SGCC assigns the labels after
conducting on-site inspections. The dataset is in tabular form, with rows representing
consumers, and columns indicating the daily EC of each consumer from 1 January 2014 to
31 October 2016. Facts and figures regarding the SGCC dataset are mentioned in Table 1.
Here, it is important to mention that the dataset contains some incorrect and missing values.
Therefore, to handle this issue, data preprocessing is used, as described in Section 4.2.

Table 1. Details about the data.

Description EC Time Window Class of
Customer Power Source Data

Resolution
Total

Customers
Honest

Customers
Thief

Customers

Values 1 January 2014 to
31 October 2016 Residential Utility Daily data 42,372 38,757 3615

4.2. Data Preprocessing

Data preprocessing is an important step and includes the following steps: removal of
missing values and outliers, normalization of data values, feature extraction or selection,
and handling the class imbalance problem.

4.2.1. Handling the Missing Values

The SGCC dataset contains missing values and non-numeric values, indicated by
’NAN’. These values occur for many reasons, such as improper operation of smart meters,
human typos, data storage problems, and distribution line faults. If the data contain
missing values, ML and DL methods do not produce good results. If the records with
missing values are removed, it may also take away important information which creates
the problem of underfitting. The missing values are tackled with linear imputation to avoid
the problem of underfitting. The mathematical equations are given below.

f (zi) =


zi,j−1 + zi,j+1

2
, zi,j = NaN, zi,j±1 6= NaN,

0, zi,j−1 = NaN or zi,j+1 = NaN,

zi,j, zi,j 6= NaN.

(1)

https://github.com/henryRDlab/ElectricityTheftDetection
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In Equation (1), zi denotes the EC of consumer i on the current day, and zi−1 and zi+1
show the EC of the previous day and the next day, respectively.

4.2.2. Removing the Outliers

Some outliers are also found in the data. In the preprocessing of the data, one of
the most important steps is to remove or treat the outliers. In the literature, experimental
results show the sensitivity of the ML and DL models to splitting data and generating
false results. To treat the outliers, the three-sigma rule (TSR) is used in this study. The
mathematical equation of the TSR is given below.

f (zi) = (zi) ∗ σ(zi) i f zi,j > µ(zi) + 3 ∗ σ(z) otherwise f (zi) = zi (2)

In Equation (2), zi shows the EC history of a consumer i, µ(zi) represents the averaging
of EC, and σ(zi) denotes the standard deviation.

4.2.3. Normalizing the Data Values

After performing the above steps, normalization of the data is done by a min–max
method. The reason for this is that ML and DL do not work well on diverse data. The
mathematical equation is given below.

zi,j =
zi,j −min(Zi)

max(Zi)−min(Zi)
(3)

In Equation (3) min(Zi), represents the minimum EC, while max(Zi) denotes the
maximum EC of consumer i.

Algorithm 1 shows the data pre-processing phase, which contains following steps:
handling the missing values, removing the outliers, and normalizing the data values.

Algorithm 1: Data pre-processing phase.

1 Data: EC data: Z
2 X = (zi,j, yi), (zi+1,j, yi+1), ..., (zm,n, ym)

3 m = number of records, n = number of features
4 Variables: mini = minimum consumption, maxi = maximum consumption, zi =

mean consumption, σi = standard deviation,
5 for i← m do
6 for j← n do
7 Handle the missing data:
8 if zi,j−1 && zi,j+1 6= NaN && zi,j == NaN then
9 zi,j = (zi,j−1 + zi,j+1)/2

10 end
11 if zi,j−1 ‖ zi,j+1 == NaN then
12 zi,j = 0
13 end
14 Remove anomalies:
15 if zi,j > zi + 3σi then
16 zi,j = zi + 3σi
17 end
18 Data normalization through min–max method:

19 zi,j =
zi,j−mini

maxi−mini

20 end
21 end
22 Result: Znormalized = Z
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4.2.4. Class Imbalance Problem

The problem of class imbalance or uneven distribution of class samples is a severe
issue in ETD, where there are more samples of one class than other classes. When ML or
DL are trained on an imbalanced dataset, they provide biased results with high FPRs. As
mentioned in the literature, power generation companies cannot tolerate high FPRs because
they have limited resources for on-site inspections. Two approaches are generally used in
the literature to deal with class imbalance problems: undersampling and oversampling. In
the former, replicates of the minority class are generated, while in the latter, samples are
eliminated to balance the classes. However, both techniques have the following drawbacks:
overfitting, duplication of existing data, and loss of information. In this paper, a hybrid
sampling approach based on adaptive synthetic sampling (ADASYN) and TomekLinks
is proposed. The former uses oversampling while the latter uses undersampling to solve
the problem of class imbalance. The proposed hybrid approach solves the problems of
undersampling, oversampling, and duplication of data. A detailed description of ADASYN
and TomekLinks can be found below.

ADASYN (Adaptive Synthetic):

To solve underfitting, ADASYN is employed to generate minority class samples,
which are harder to learn. The overall working mechanism of that sampling approach is
elaborated below.

• The ratio of the minority to the majority class is calculated using the below equation:

d =
mmin
mmaj

(4)

where mmin is the total number of minority class samples, and mmaj is the number of
majority class samples in the dataset.

• The ratio of how many samples will be generated is decided using the following equation:

G = (mmaj −mmin)β (5)

where G is the total number of minority class samples that will be generated to
handle undersampling; β is a random number whose value is between 1 and 0, with
0 indicating that no samples of the minority class will be generated, while 1 shows
that minority samples will be generated until both classes have an equal number of
samples, β = (0, 1).

• In this step, the number of majority class samples near minority class samples are cal-
culated using k-nearest neighbors. After that, each minority class sample is associated
with a different number of neighbors that belong to the majority class.

rj =
majority

k
(6)

Here, rj shows the dominance of the majority class samples over each minority class
sample. A higher rj shows that it is difficult for ML and DL models to learn/remember
the patterns of minority class samples. Thus, a greater number of samples are cre-
ated for minority class samples that are surrounded by large/maximum numbers of
majority class samples. This phenomena gives an adaptive nature to ADASYN.

• To normalize the rj values, we use

rj =
rj

∑ rj
∑ rj = 1 (7)

• For minority class samples, we compute the amount of synthetic samples with

Gj = Grj (8)
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• In the last step, Algorithm 1 selects the minority class samples from training data and
generates new samples. If training data contain m number of minority class samples,
then new samples are created using the following equation.

sj = xj + (xj − xrandom) ∗ λ, j = 1 . . . m. (9)

In the above equation, λ is a random number between 1 and 0, j is the newly generated
sample, xj is a first sample of training data, and xrandom is a randomly selected sample
from the training data.

TomekLink:

TomekLink is used for undersampling class imbalance problems. It is a modification
of Condensed Nearest Neighbor ((CNN), not to be confused with Convolutional Neural
Network). It uses the following rules to select pairs of observations (e.g., X and Y) that
satisfy the properties listed below:

• The observation that X’s nearest neighbor is Y (and vice versa);
• The observation that X and Y belong to different classes: either the minority class or

the majority class.

Mathematically, this is expressed as (Xmin and Xmaj), representing the Euclidean
distance between Xmin and Xmaj, where Xmin and Xmaj belong to the minority and majority
classes, respectively. If there is no sample Xk that satisfies the following conditions:

d(Xmin, Xk) < d(Xmin, Xmaj) (10)

d(Xmaj, Xk) < d(Xmin, Xmaj) (11)

The pair (Xmin, Xmaj) are TomekLink samples, which removes noise and duplicated
values from data. Consequently, ML and DL models learn diverse patterns from data and
do not get stuck in underfitting.

5. Proposed Model

In [5], a combined MLP and CNN model is proposed, which proves that the hybrid
model outperforms standalone models of ML and DL. In [22], the authors present CNNs
with LSTMs. GRUs and LSTMs utilize different approaches toward gating information to
prevent the vanishing gradient problem. RNNs have two variants: GRU and LSTM. The
vanishing gradient problem is solved by the author of [31] by comparing the performance
of GRU and LSTM with an RNN model using different sequential datasets. Extensive
experimentation are performed by Ding et al. on 10,000 LSTM and RNN architectures [32].
The final results advocate that GRU outperform as compared to all contemporary models.
For the above reasons, in this research paper a hybrid DL model is presented that combines
the advantages of both GRU and CNN models. The GRU extracts the time-related patterns,
while the CNN retrieves abstract or latent pattern data. The HGC model consists of the
following parts/modules: GRU, CNN, and Hybrid. One-dimensional data are fed as input
to the GRU module, while 2D data are fed as input to the CNN to learn abstract features.
The hybrid module takes the extracted features from both modules as input and combines
them to discriminate between malicious and normal patterns. From the literature, hybrid
models work well because they allow combined training and testing of both DL models. In
the following, the individual modules are explained in more detail.

5.1. Gated Recurrent Unit (GRU)

GRU is an enhanced form of a recurrent neural network (RNN). One of the main
problems in RNNs is the vanishing gradient problem, which stops the learning process
and pushes the sequential DL models into local optima. To solve the prior problem, GRU
model was introduced. GRU structure consists of an update gate and a reset gate that affect
the learning of temporal patterns from EC data. Basically, the information to be passed
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to the next layers or units is determined by the update gate. Otherwise, the amount of
information from the past that should be forgotten is determined by the reset gate. This
information is not important for future decisions. The GRU layers are trained on past data,
learn and remember the important information, and remove the redundant values that
are not important for distinguishing between malicious and normal patterns. These GRU
layers are able to retrieve time-related patterns from EC data. The equations of the update
and reset gates are given below.

UGt = σ(Uug, [hdnt−1, Zt]), (12)

RGt = σ(Urg, [hdnt−1, Zt]), (13)

ˆhdnt = tanh(U, [rt ∗ hdnt−1, Zt]), (14)

hdnt = (1−UGt) ∗ hdnt−1 + UGt ∗ ĥt. (15)

DenseGRU = Flaten(hdnt ∗WGRU + bGRU) (16)

where Zt and hdnt−1 show the input value and hidden layer value of the previous time
step, respectively, UGt indicates the update gate, RGt shows the reset gate, Uug and Urgr
are weights of the update and reset gates, respectively. DenseGRU layers are used to merge
extracted features of GRU and CNN models to enhance the prediction accuracy. The
hyperparameter settings for GRU are mention in Table 2.

Algorithm 2 describes the working mechanism of the proposed hybrid DL model
containing a GRU, a CNN, and fully connected layers.

Algorithm 2: Working of HGC model.

1 Data: EC data: ZBalance
2 Data in 1D format:
3 Z1D = zi,j, zi,j+1, zi,j+2, ..., zl,m
4 l = 42372, m = 1034
5 Convert data to 2D format

6 Z2D =

x1,1 · · · x1,k
...

. . .
...

xj,1 · · · xm,k


7 Pass Z1D data to GRU model
8 for i < Epoch do
9 rt = σ(Urg, [hdnt−1, xt])

10 ˆhdnt = tanh(U, [rt ∗ hdnt−1, xt])

11 hdnt = (1− zt) ∗ hdnt−1 + zt ∗ ˆhdnt
12 DenseGRU = relu(U · hdnt, b])
13 FlGRU = f latten(DenseGRU)
14 Z2D[u, v] = (Z2D)[m, v] = ∑j ∑k f [j, k]Z2D[m− j, v− k]
15 u, v⇒ dimension of output matrix
16 FlCNN = f latten(Z2D)
17 hHGC = (WHGC · [FlCNN , FlGRU ] + b)
18 Denselayer = [U · hHGC + b]
19 b ⇒ bias term, U ⇒ weight
20 YNTL = σ(Denselayer)

21 Loss(YNTL, Y) = −∑42372
i=i (Yi · log YNTLi )

22 YNTL = Predicted, Y = Actual
23 Reduce the loss value
24 end
25 Result: YNTL
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Table 2. GRU hyperparameter settings.

Model GRU Layers Activation Function Dropout Rate Kernel Initializer Hyperparameter Epochs

GRU 40 Sigmoid 0.4 henormal Optimal values 15

5.2. Convolutional Neural Network (CNN)

The CNN algorithm belongs to the group of DL models. It is mainly used in the
recognition of images and videos. It is an extended version of the MLP. It takes images
as input, learns important features using a weight-learning mechanism, and develops a
relationship between learned features and labels. Technically, CNN design consists of a
number of convolution layers with filters (kernels), pooling layers, then one or more fully
connected (FC) layers; it applies a softmax function to classify an object with probabilistic
values between 0 and 1. Each layer has its own functionality that extracts abstract or latent
features that cannot be detected by the human eye. In this study, a CNN model is used to
extract latent patterns from data provided by electric utilities. The extracted features are
fed into the hybrid layer to make final decisions about malicious and normal consumers.
The final hidden layer of the CNN model is shown below.

DenseCNN = Flaten(X ∗WCNN + bCNN) (17)

where WCNN and bCNN represent the weight and bias values, respectively, of hidden CNN
layers and the feature matrix by X. The hyperparameter settings for CNN are explained in
Table 3.

Table 3. CNN hyperparameter settings.

Model Filters Strides Padding Activation Batch Size Epochs Time

CNN 32 1 Same ReLu 64 15 202 s

5.3. Hybrid Module

The GRU model learns temporal patterns from 1D data, while CNN extracts the
patterns, which are viewed through the human eye from 2D data. The extracted features
of both models are concatenated using Keras API and then passed to a hybrid layer that
decides whether there is an anomaly in the EC data; hHGC is the last hidden layer of the
hybrid module. Its output is passed to the sigmoid function to give a final decision about
malicious and normal consumers.

hHGC = (WHGC[DenseCNN + DenseGRU ] + bHGC), YNTL = σ(hHGC) (18)

where WHGC and bHGC represent the weight and bias values of the hybrid layer, and σ
denotes a sigmoid function. The settings of hyperparameter for HGC are mention in Table 4
and the pictorial representation of the proposed framework is given in Figure 1.

Table 4. HGC parameter settings.

Model Layers Dense Batch Size Epochs Optimize Time (s) Dropout Activation Kernal Initializer Pool Size

GRU 40 20 64 10 ADAM 1704 0.4 - henormal -

CNN 32 20 64 10 ADAM 1704 - ReLu - 2 × 2
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Figure 1. Proposed system model.

6. Experimental Setting and Analysis

In this section, we analyze the performance of the proposed model on the SGCC
dataset using various performance measures. We also compare the results obtained with
the proposed model to those of benchmark models.

6.1. Performance Measures

Uneven distribution of class samples is a critical problem in ETD, where the number
of samples of the normal class is higher than that of the malignant class. When an ML
or DL model is trained on this type of data, it attracts majority class samples and ignores
minority class samples, producing false results/alarms. The literature indicates that electric
utilities cannot tolerate false alarms due to limited resources for on-site testing. Although
the training dataset is balanced with the proposed sampling technique, the test data are
unbalanced. Therefore, appropriate performance measures are needed to evaluate the
performance of the benchmark and proposed models. In this paper, the performance
measures used are accuracy, F1 score, recall, ROC-AUC, and PR-AUC. To calculate the
above measures, we use a confusion matrix: a confusion table that contains true negative
(TN), true positive (TP), false negative (FN), and false positive (FP) results.

6.1.1. Accuracy

Accuracy is the ratio between the number of correct predictions and the total number
of records in the dataset.

Accuracy =
TN + TP

TN + TP + FN + FP
(19)

where TN and TP are the sums of total number of true negatives and true positives,
respectively, and TN, TP, FN, and FP are the sums of true negatives, true positives, false
negatives, and false positives, respectively.
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6.1.2. Recall

Recall is determined by dividing the correctly predicted positive records by the total
number of positive records. The equation of recall is given below, as described in [33]:

Recall =
TP

FN + TP
(20)

where FN is the number of dishonest consumers predicted by the model as honest consumers.

6.1.3. F1-Score

The F1-score is also a good performance measure for imbalanced datasets. When
ML/DL models have a high F1-score, they are considered good for predictions in real-
world scenarios. The equation for the F1-score is given below, as described in [34,35]

F1− Score =
2 ∗ precision ∗ recall

precision + recall
(21)

To calculate the precision, the number of true positives divided by the sum of false
positives and true positives, as mentioned in [33].

The ROC curve is obtained by plotting recall and FPR on the y-axis and x-axis, respec-
tively. It is a good measure for imbalanced datasets because it is not skewed toward the
majority class. Its value ranges from 0 to 1. However, ROC only considers the recall/true
positive rate, so it focuses on positive records and ignores the negative ones. The PR curve
is another important measure that considers recall and precision simultaneously and gives
equal importance to twain classes.

6.2. Implementation Environment

The proposed and benchmark models are implemented using Google Colabora-
tory [36], which provides distributed computing power. Their performance is studied
using the SGCC dataset collected from the largest electric utility in China. DL models are
implemented using TensorFlow (v2.8.2), while ML models are trained and evaluated using
the Scikit library (v1.0.2), and the Keras API is used to develop the hybrid model.

6.3. Proposed Deep Learning Model Performance Analysis

In this section, we analyze the performance of the proposed model using accuracy and
loss curves for training and testing data. Figure 2 shows the performance of the model on
training and test data using accuracy curves. Both curves move side-by-side with a small
difference, indicating that the proposed model does not suffer from overfitting. However,
after the fourth epoch, the test accuracy starts to decrease, which means that the model
suffers from overfitting. Thus, if more than four epochs are trained, the performance of
the model decreases. To improve the model’s performance in the future, meta-heuristic
algorithms will be used to help select the optimal parameters for deep and machine
learning to avoid overfitting. It is very complex and time-consuming to select these
parameters manually.

Figure 3 also shows the same phenomena using loss curves on training and testing
data. The value of loss can be decreased with more epochs.

However, there is a high probability that the model encounters overfitting, which
affects generalization. In addition, the proposed model consists of GRU, CNN, and dense
layers. The gates like, update and reset in the GRU layer control the information flow
through network. These gates remember valuable information and ignore redundant
and noisy patterns from the data. CNN layers help the proposed hybrid model learn
global/abstract patterns from EC data and reduce the curse of dimensionality, which
directly increases the convergence speed. The literature shows that dropout layers simplify
the model and prevent overfitting. Finally, the dense layer takes inputs from the GRU
and CNN models and passes them to a sigmoid function to distinguish between normal
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and malicious samples. For all these reasons, a hybrid model performs better than the
individual models.
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Figure 2. Accuracy curves on training and testing data.
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Figure 3. Loss curves on training and testing data.

6.4. Benchmark Models

This section implements various DL and ML models that have previously been
proposed in the literature and compares their performance with that of the proposed
hybrid model.

6.4.1. Wide and Deep Convolutional Neural Network

In [5], Zheng et al. propose a DL model that is a fusion of CNN and ANN. This is
the first study to combine the advantages of both models. The authors feed 2D data to a
CNN, while 1D data are fed into an ANN to learn local and global patterns from the SGCC
dataset. However, the ANN model does not give good results on 1D data because it is
designed for tabular data. In this work, we use the same hyperparameter settings and the
same dataset for a fair comparison.

6.4.2. Logistic Regression (LR)

This is a basic supervised learning model used for binary classification. It is also
known as a single-layer neural network. It simply contains an input layer whose values
are multiplied by weights, and the resulting value is fed into a sigmoid function that
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produces either 0 or 1 as input. LR consists of various solvers such as Newton’s method
and stochastic gradient descent that are used to tune the hyperparameters.

6.4.3. Decision Tree (DT)

DTs are used in both regression and classification tasks. They consist of a root node,
edges, and leaf nodes that are used to predict the result. A DT works like the human mind
and creates a tree-like structure in which the dataset is divided into many branches based
on features. The best attributes/features are selected based on the information gain and
Gini index criteria as root nodes. DTs are easy to implement and give good results on
smaller datasets. However, for larger datasets there is a risk of overfitting. In addition, a
small change in the data leads to poor generalization.

6.4.4. Support Vector Machine (SVM)

SVMs are a supervised learning model used for both regression and classification
purposes. They are able to classify linear and nonlinear data by using the power of kernel
functions. These kernel functions draw a decision boundary to classify between normal and
malicious samples after converting non-linear data into linear patterns. In [7], the authors
develop a current theft detector based on consumption patterns using an SVM classifier to
draw a decision boundary between benign and stolen samples. From the literature, SVM is
well-suited for smaller datasets, as it requires a lot of computational time to draw a decision
boundary between normal and malicious patterns for larger datasets. In this work, the RBF
kernel is used for the SGCC dataset due to the nonlinearity of the data.

6.4.5. Random Forest (RF)

An ensemble technique called RF is used to solve complex problems by training
multiple decision trees on datasets. It has applications in banking, e-commerce, and other
fields. RFs control the problem of DF overfitting and increase precision. They give good
results with little adjustment of hyperparameters. They also minimize overfitting and
increase the precision when the number of DTs is increased during the training period.
However, they require a lot of computation time for larger datasets, since multiple DTs are
trained on a single dataset, which reduces their effectiveness in real-world problems.

6.4.6. Naive Bayes Classifier

This is a classification method derived from Bayes’ theorem. The Naive Bayes (NB)
does not consider the linkage between inputted features and targeted column, and uses the
probability distribution to distinguish between normal and malicious samples. There are
many versions developed depending on the type of dataset. In today’s world, there are
many applications in various fields such as sentiment analysis, email filtering, recommender
systems, spam, and natural language processing. In this work, we use Gaussian NB since
the SGCC dataset has continuous features.

7. Experimental Results and Discussions

The performance of the proposed HGC model is compared with the state-of-the-art
classifiers. The same datasets with different ratios for training and testing are used for DT,
NB, LR, CNN, GRU, RF, SVM, and WDCNN. As discussed earlier, the CNN design consists
of a number of convolution layers with filters (kernels) and pooling layers, followed by one
or more fully connected (FC) layers, and applies a softmax function to classify an object
with probabilistic values between 0 and 1. Each layer has its own functionality and extracts
abstract or latent features that cannot be detected by the human eye.

The GRU layers have two important gates; update and reset. These are used to
learn necessary patterns and remove unnecessary values. As discussed earlier, the flow
of information is controlled by GRU gates to improve the performance of the model.
The GRU-extracted features are then combined with the latent or abstract patterns. The
proposed HGC model extracts abstract and periodic patterns from EC data using GRU
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and CNN hence HGC outperforms as compared to counterparts of it. The combination
of optimal features helps the HGC to attain 0.96 PR-AUC and 0.97 ROC-AUC values,
which are higher than those of all the above-mentioned classifiers. The performance of
proposed model is compared with conventional models using PR and ROC curves in
Figures 4 and 5. The proposed hybrid model achieves better results than its counterparts.
SVM achieves 0.88 ROC-AUC and 0.85 PR-AUC. We use a linear kernel instead of an RBF
kernel to train the SVM model on EC data because the dataset contains a large number of
records and features, which increases the model computation time, so it is not suitable for
larger datasets.

LR is a conventional ML model that distinguishes between normal and malignant
samples using a sigmoid function. It achieves 0.86 and 0.88 for PR-AUC and ROC-AUC,
respectively, which is better than SVM, but has lower performance than other models. It
has a large number of applications in various fields because it is easy to implement and
is suitable for linearly separable datasets, but in the SGCC dataset, malicious and normal
samples are not linearly separable. Therefore, LR gives lower performance compared to
other models [30].

RF gets 0.76 PR-AUC and 0.75 ROC-AUC, while DT gets 0.80 ROC-AUC and 0.85 PR-AUC
on the EC dataset. DT gives better results than RF. DT provides good performance on
smaller datasets but has overfitting on larger datasets, and small changes in the data
reduce its generalization ability. RF is an ensemble method designed to overcome the
overfitting/low generalization of DT. It controls overfitting but has low PR-AUC and ROC-
AUC, as seen in Figures 4 and 5, because RF takes the average of all DT prediction results.

In addition, NB is a conventional classifier that classifies between normal and ma-
lignant samples using Bayes theorem. It obtains 0.71 and 0.65 PR-AUC and ROC-AUC
values, respectively. Unlike other conventional ML and ensemble models, it gives poor
results. It assumes that there is an independent relationship between the attributes and the
target features.

Moreover, CNN gains 0.96 ROC-AUC and 0.94 PR-AUC values, while GRU gains
0.96 and 0.96 ROC-AUC and PR-AUC values on the EC dataset, which are higher than the
PR-AUC and ROC-AUC values of conventional ML models. Technically, a CNN consists of
a number of convolution layers with filters (kernels) and pooling layers, followed by one
or more fully connected (FC) layers. In addition, the convolutional layer is used to remove
redundant, overlapping, and noisy values from the EC data. GRU also gives good results
that are in the acceptable range, as it has update and reset gates to help remember periodic
patterns. In [5], the authors combine the merits of the ANN and CNN models to develop a
hybrid model. Their proposed model achieves a value of 0.96 PR-AUC and 0.97 ROC-AUC.
In the literature, the authors demonstrate that the hybrid model performs better than the
DL models and the standalone ML model. Therefore, in this research, the Keras API is used
to develop a hybrid model. It integrates the advantages of both GRU and CNN models. The
former learns the temporal patterns, while the latter derives global and abstract patterns
from EC data. The extracted features of both models are merged and passed to a fully linked
layer for the classification of theft and normal patterns. The proposed model achieves
better results than the standalone DL and the previously proposed hybrid DL models for
the above reasons. It achieves 0.987 ROC-AUC values and 0.985 PR-AUC values on EC
data, as observed in Tables 5 and 6.

Tables 5 and 6 show the performance analysis of the ML and DL models at 70% and
60% training ratios, respectively. It can be seen that the proposed model maintains its
superiority and gives better results at both training ratios. For the DL models, performance
increases as the size of the training data increases because DL models are inherently
sensitive to the size of the training data. On the other side, the increased or decreased
performance of conventional ML models follow the power law [37]. This law states that
beyond a certain point, the performance of ML models increases with the increase of
the amount of data. After this point, the models face the problem of overfitting, which
affects their generalizability. In this work, RF and NB give poor results compared to other
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conventional ML models. Although both models perform well on balanced datasets, they
show poor performance due to the following limitations.
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Figure 4. ROC curves of proposed and benchmark models.
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Figure 5. PR curves of proposed and benchmark models.

Table 5. Performance analysis of DL and ML using 70% training data.

ML/DL
Models Accuracy F1-Score Recall Score PRAUC ROCAUC

LR 0.8040 0.8068 0.714 0.868 0.885

SVM 0.8165 0.8200 0.800 0.854 0.880

RF 0.6912 0.696 0.6128 0.756 0.748

DT 0.8056 0.8118 0.7826 0.850 0.803

NB 0.6261 0.649 0.608 0.719 0.658

CNN 0.914 0.918 0.877 0.946 0.962

GRU 0.9074 0.9080 0.919 0.964 0.968

WDCNN 0.9397 0.9408 0.919 0.971 0.977

HGC 0.9438 0.9452 0.91709 0.985 0.987
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Table 6. Performance analysis of DL and ML using 60% training data.

ML/DL
Models Accuracy F1-Score Recall Score PRAUC ROCAUC

LR 0.804 0.807 0.796 0.868 0.883

SVM 0.811 0.815 0.797 0.855 0.877

RF 0.677 0.680 0.672 0.756 0.748

DT 0.801 0.808 0.781 0.848 0.799

NB 0.619 0.645 0.604 0.715 0.650

CNN 0.916 0.916 0.916 0.955 0.966

GRU 0.925 0.926 0.910 0.968 0.973

WDCNN 0.936 0.938 0.906 0.971 0.779

HGC 0.947 0.948 0.921 0.985 0.987

NB accounts for the independent relationship between features and target variables
that does not exist in real EC data, while RF controls for overfitting by the average perfor-
mance of all DTs. The literature shows that the performance of DL models depends on
the size of the training data. Large datasets yield high values for performance measures.
ROC analysis of different hybrid models is given in Table 7. In [38], CNN-LSTM and LSTM
RUSBoost achieve 0.817 and 0.879 ROC values, respectively, while in [30], MLP–LSTM
achieves 0.92 ROC, and HG2 achieves 0.93 ROC. In our case, our proposed model maintains
its superiority and performs better than the above-mentioned hybrid models by achieving
0.98 ROC.

The computation time of the ML and DL models is given in Table 8. NB and LR
have a lower computation time in contrast to other ML models because the former only
computes the probability distribution of all features and provides the final results, whereas
LR is a single-layer neural network that multiplies the inputs with weights and distin-
guishes between malignant and normal samples. For the above reasons, they require little
computational time compared to other ML models.

In ETD, SVM is a well-known classifier. RF requires more training time than DT
because it trains multiple DTs on the SGCC dataset and computes the average of multiple
estimators. Moreover, the training time of DL models depends on the number of hidden
layers, the size of the dataset, the stack size, and the number of neurons in each layer. GRU
and CNN are DL models that take 2364 and 202 seconds to train, respectively. GRU requires
more training time because it has update and reset gates that extract temporal patterns
from SGCC data and save the important information in memory networks, while CNN
only retrieves abstract/latent patterns by using convolution functions and max-pooling
layers, which is why they have low computation time. Moreover, HGC takes 1704 seconds
to train with the SGCC dataset. It has a lower computation time than GRU because it
converges in 5 epochs, whereas GRU converges in 15 epochs. In addition, HGC requires
more training time than the CNN model because it integrates the benefits of both models.
Moreover, at the present time, meta-heuristic techniques are receiving attention from the
research community for feature selection and hyperparameter optimization in ML and
DL models. Therefore, in this study, BHA, a meta-heuristic technique, is used for feature
selection. The literature demonstrates that these techniques have high computational
complexity. For this reason, a small portion of the dataset is used to evaluate the ability
of BHA for feature selection. The selected data consist of 10,000 records and 30 days of
EC values from 42,372 records. BHA takes 3000 seconds to select the optimal combination
of features/attributes from the selected EC data, which is more than the time required
by all DL models: GRU, CNN, WDCNN, and HGC. The above results show that the
computational time of BHA increases as the amount of data increases. Therefore, these
types of real-time applications are not suitable for the smart grid. Moreover, the increased
dataset size enhances the performance of DL models. Hence, the performance of these
models depend on the size of training dataset. In canse of convolution ML models, the
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performance is enhanced by following the power law. Their performance stop improving
after certain point of training [37].

From the literature, hybrid models work well because they combine training and test-
ing of both DL models and have better generalization capabilities than many other machine
and deep learning models. However, HGC maintains dominance over the state-of-the-art
DL models and shows better performance on varieties of training ratios over SGCC dataset.
Nexus to the above, there is no free lunch. The cost benefit analysis is a trade-off between
computational time and accuracy. The proposed algorithm is computationally expensive,
but on the other hand, it provides higher accuracy than the other algorithms used for com-
parison. With more and more computational resources available these days, researchers are
focusing on algorithms that provide better efficiency in the face of widespread data.

Table 7. ROC performance analysis of hybrid models.

Hybrid
Models CNN-LSTM LSTM-

RUSBoost MLP-LSTM HG2 Proposed
Model

ROC 0.817 0.879 0.92 0.93 0.98

Table 8. Computation time of ML and DL models.

ML/DL Models SVM LR DT RF NB SVM + BHA CNN GRU WDCNN HGC

Time (s) 1618 4 52 281 1 3000 202 2364 304 1704

Epoch - - - - - - 15 15 15 5

8. Conclusions and Future Work

Electricity theft is an unavoidable issue that causes power losses in both; developed
and developing countries. As a result, power utility companies have major disruptions in
their operations, leading to loss of revenue. Moreover, electricity loss also causes issues
with economic growth and power infrastructure stability. In this study, a combined DL
model for NTL detection is presented that incorporates a GRU and a CNN. To remove null
and undefined values, EC data are pre-processed by normalization. In addition, uneven
distribution of class samples is another problem in ETD that affects the effectiveness of the
ML and DL models. In this paper, a hybrid approach is used to address these problems.
The performance of the proposed model is evaluated on the SGCC dataset in real-time
using various performance metrics and compared with SVM, LR, CNN, GRU, RF, DT, NB,
and WDCNN. The model achieves 0.987, 0.985, 0.94, 0.94, and 0.91 ROC-AUC, PR-AUC,
accuracy, F1-score, and recall score on the SGCC dataset, respectively. The obtained results
are better than those of other ML and DL models. However, despite the proposed model
outperforming substitute techniques, it is too sensitive to changes in input data. The
presented model will help many industrial applications to identify normal and abnormal
samples or records. To improve the model’s performance and avoid overfitting, meta-
heuristic algorithms help select the optimal parameters for deep and machine learning. It
is very complex and time consuming to select these parameters manually.

In the future, meta-heuristic techniques will be used to achieve optimal hyperparame-
ter tuning in DL models.
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Nomenclature

ANN Artificial Neural Network (NN) zi EC of consumer i at current day
ADASYN Adaptive Synthetic zi−1 EC of consumer i at previous day
AUC Area Under the Curve zi+1 EC of consumer i at next day
BHA Black Hole Algorithm
CNN Convolutional Neural Network µ(zi) Represents average E
DT-SVM Decision Tree-SVM min(Zi) Minimum EC
DL Deep Learning max(Zi) Maximum EC
DE Differential Evolution mmin Total number of minority class
DT Decision Tree mmax Total number of majority class
DNN Deep Neural Network G Total number of minority data to be generated
EC Electricity Consumption ETD Electricity Theft Detection
FP False Positive FN False Negative
FPR False Positive Rate GRU Gated Recurrent Unit
HGC Hybrid GRU–CNN LSTM Long Short-Term Memory
KNN K-Nearest Neighbor β Ratio of minority: majority data desired after ADASYN
LR Linear Regression MLP Multi-Layer Perceptron
NTL Non-Technical Loss RNN Recurrent Neural Network
PR-AUC Precision–Recall Area Under Curve ROC-AUC Receiver Operating Characteristic Area Under Curve
RBF Radial Basis Function RF Random Forest
SGCC State Grid Corporation of China SVM Support Vector Machine
TP True Positive TN True Negative
TL Technical Loss TSR Three Sigma Rule
WADCNN Wide And Deep Convolution NN λ Number between 0–1
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