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Abstract: Microgrid optimization is one of the most promising solutions to power system issues and
new city electrification. This paper presents a strategy for optimal power scheduling of a residential
microgrid depending on renewable generating sources and hydrogen power. Five scenarios of the
microgrid are introduced to show the effect of using biomass energy and a seawater electrolyzer
on microgrid cost and CO2 emissions. Time of use demand response is applied to reshape the
electric load demand and decrease the dependence on grid power. The obtained results from the
multi-objective optimization verify that biomass has a significant role in minimizing the cost and
CO2 emissions; the cost is decreased by 37.9% when comparing scenarios with and without biomass.
Besides, the FC integration with seawater electrolyzer and tanks reduces the microgrid emissions by
around 40%.

Keywords: microgrid sizing; time of use; demand response; seawater electrolyzer; biomass; fuel cell

1. Introduction
1.1. Greenhouse Gas Emissions

The growth of devastating greenhouse gas emissions acts as one of the main challenges
to the human race [1]. Global carbon emissions in 2014 exceeded 1.6 times their levels in
the 1990s [2]. GHGs aided in the significant rise in global temperature, posing a threat to
human health and many economies [3]. Following the Kyoto Protocol, several countries
have taken measures to cut GHG emissions, especially CO2 emissions. GHGs half reduction
by 2050 is a global target to face temperature increase [4]. In the power system sector,
transferring to renewable sources is the best solution to achieve a significant reduction in
GHG emissions [5].

1.2. Renewable Energy

Renewable power is generated from continuously rejuvenated energy flows such as
wind, solar, geothermal heat, tidal, etc. [6]. Renewable energy sources are anticipated
to provide 80% of global energy needs [7]. Globally, renewable energy capacity today
stands at 2195 GW. The RES sector offered around 10.3 million jobs (directly and indirectly),
with investments of over USD 280 billion [8]. A total of 145 countries have implemented
programs to promote sustainable energy technologies during the last few decades. Biomass
is a sustainable resource that may supplement other renewable energy sources. When
combined with carbon capture, it creates no emissions [9]. Gasification is a reasonable
method of generating electricity from biomass [10]. The growing popularity of renewable
energy sources is helping to develop new microgrids.

Sustainability 2022, 14, 13709. https://doi.org/10.3390/su142113709 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142113709
https://doi.org/10.3390/su142113709
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-2292-623X
https://orcid.org/0000-0003-0585-661X
https://orcid.org/0000-0003-4494-6773
https://orcid.org/0000-0002-1418-1215
https://orcid.org/0000-0002-1042-5796
https://doi.org/10.3390/su142113709
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142113709?type=check_update&version=2


Sustainability 2022, 14, 13709 2 of 20

1.3. Microgrid

Microgrids might be a viable solution to the current energy problems. A microgrid
is made up of a group of dispersed electric sources and interconnected loads. Their
operational modes are classified as isolated or grid-connected modes. Isolated microgrids
are small power networks that produce and manage their own electricity needs. Grid
connectivity improves system dependability and allows electricity trading with other
grids [11,12]. Hydrogen technology is currently preferred in microgrids to store electric
power. Electrolyzers normally produce hydrogen while power is available, while fuel
cells generate energy from hydrogen during periods of low power [13]. The seawater
electrolysis process produces chemical substances with hydrogen such as NaClO. It can be
sold and manufactured to create revenue for the system. NaClO is used in drinking water
disinfection, bleaching, and removing stains from clothing [14].

1.4. Motivations

The appropriate microgrid’s sizing has a major role in minimizing overall system
costs, lowering CO2 emissions, and promoting community development. Investment in
the power system sector is an essential target to reduce the burden on the economy and
encourage business in the energy sector. Microgrid productivity can be boosted through
power trading and hydrogen technology. CO2 emissions from power generation cannot
be reduced without a reliance on renewable energy. Energy management technologies
are strongly encouraged as a means of improving microgrid dependability and lowering
microgrid costs [15].

1.5. Demand Response

Demand response programs support power system operators with cost-effective and
energy-saving alternatives [16]. They represent customers’ adjustments to their energy
consumption in response to changes in energy prices or incentive payments intended to
limit power use at periods when the system’s stability is endangered [17]; they also help in
reshaping load patterns. DR techniques are divided into price-based and incentive-based
programs. In the price-based type, prices control electricity consumption by increasing
peak-load hour tariffs while lowering them during off-peak hours. Consumers are rewarded
for lowering their load during significant times via incentive-based demand response (DR)
programs [18].

1.6. Related Literature

Many researchers have discussed the optimal design and operation of hybrid micro-
grids, considering renewable sources and demand response techniques. The appropriate
power scheduling is greatly influenced by the desired sizing objectives. Cagnano et al. [19]
outlined various control mechanisms required to achieve cost-effective, efficient, and secure
operation of microgrids and reviewed the present primary design behaviors. A compre-
hensive literature assessment of existing microgrid-sizing methodologies was discussed in
reference [20]. Cost-based and non-cost-based strategies are the two main sizing method-
ologies. For optimum energy cost and power supply probability, the Grasshopper Opti-
mization Algorithm (GOA) was utilized for optimal microgrid sizing in [21]. In selecting
the best size of microgrid, the net cost, renewable portion, energy cost, grid pricing rates,
and greenhouse gas emissions were considered in [22]. Ref. [23] employed an evolutionary
technique for optimum sizing of distributed energy sources to reduce the capital and yearly
operating expenses. In ref. [24], HRES cost and different load values were considered
for optimal microgrid sizing using the improved hybrid optimization genetic algorithm.
Microgrid reliability was improved by connecting microgrids to the electric grid. Ref. [25]
introduced a strategy for designing grid-connected microgrids that enhances their depend-
ability while also serving the load at a low cost. For effective energy management of a
grid-connected microgrid that depends on renewable energy, ref. [26] utilized the modified
bat algorithm (MBA). MFABC+, MFABC, particle swarm algorithms, and HOMER software
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were utilized for optimal microgrid sizing in [27]. Ref. [28] used a multi-objective feasibility
enhanced particle swarm optimization algorithm to reduce the microgrids’ operational
costs and increase the renewable power use. Ref. [29] proposed optimal microgrid allo-
cation based on renewable energy sources, demand response schemes, storage systems,
and EV charging stations. Ref. [30] introduced optimal energy scheduling of grid-connected
microgrids considering renewable sources uncertainty. Authors in [31] introduced two-step
scheduling for microgrids using Monte Carlo and particle swarm optimization, consider-
ing sources’ uncertainty by grouping sources into basic load and frequency-modulated
sources. Ref. [32] proposed an optimal energy management system for DC-microgrid
composed of four nanogrids with a single energy storage system (ESS). Ref. [33] used
genetic optimization to develop a novel multi-control scheme that maximized the power
from renewable sources while minimizing total harmonic distortion. The results were
compared with other optimization techniques. Power trading can enhance the system’s
profit while lowering the total system cost via system sizing and optimization [34]. Ref. [35]
demonstrated the impact of renewable sources on CO2 level reduction. Biomass energy
has proven itself as a suitable alternative energy source in electric power production. It
is now considered a renewable energy source [36]. It has zero emissions when the CO2
capture technique is employed [9]. Biomass gasification is a cheap solution for off-grid rural
communities to produce electricity [10]. Ref. [37] researched biomass energy challenges as
well as its large-scale employment. Ref. [38] studied the energy productivity of rice straw
as a biomass fuel; it explored the burning of rice straw for energy and the issues associated
with it. Ref. [39] discussed the latest microgrid control and power management studies.
Ref. [40] presented different strategies for managing extra microgrid power with cost and
emissions reduction as goals through selling surplus power to the grid, energy storage
systems, and extra electricity conversion to hydrogen. The production of electricity from
fuel cells via hydrogen production from seawater is regarded as the most abundant energy
resource [41]. Hydrogen created from seawater in the morning can be used in fuel cells
at night in microgrids that rely on PV [42]. Ref. [43] highlighted the need to reduce peak
electricity demand.

Grid-purchased electricity and fuel costs can be reduced by employing DR schemes [44].
Ref. [45] studied the demand response objectives and classifications for facing electric power
sector challenges. Demand response programs provide a cheap alternative to infrastructure
upgrades in residential microgrids [46]. The restrictions and aims of demand response for
diverse systems are described in [47]. Three types of demand response were compared
in [48]; time-of-use demand response presents an effective and feasible technique to deal
with peak load period problems. The barriers of participation in demand response were
discussed in [49]. Ref. [50] used single- and multi-period load models to estimate emer-
gency and time-of-use demand response programs based on load elasticity principles. The
elasticity principal was used in ref 5 to address demand response [51]. With the help of ther-
mostatically controlled and price-responsive loads, ref. [52] employed deep reinforcement
learning algorithms to manage the energy of a grid-connected microgrid.

1.7. Paper Contribution

Regarding the previous literature, this paper’s contributions are outlined as follows:

• Multi-objective optimal power scheduling of a residential microgrid considering
revenues and productivity maximization of the microgrid using seawater electrolyzer
and biomass generation.

• The effects of load shifting techniques on reducing maximum demand and the grid’s
power consumption, microgrid configuration, and emissions.

• Introducing a comparison between different configurations for system design to
demonstrate the feasibility and productivity of the used technologies.
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1.8. Paper Construction

The remainder of the paper is organized as follows: Section 2 describes the system,
and Section 3 clarifies demand response techniques. Objective functions are explained
in Section 4, and constraints are discussed in Section 5. The optimization technique is
discussed in Section 6. Simulation results and discussion are introduced in Section 7.
Section 8 contains the conclusion and future work.

2. Microgrid Modeling

Optimal power scheduling is essential in the establishment process of microgrids
to reduce the cost, emissions, loss of power supply, and the number of required system
components. The system being studied is a residential microgrid in the northern part of
Egypt. The proposed microgrid aims to meet all of its energy requirements with minimum
cost and the least possible CO2 emissions. Five case studies are discussed in this research
to show the feasible system configuration. Figure 1 shows the available power generation
units for all studied systems. The operation of each case study is demonstrated in Figure 2.
Multi-objective genetic algorithm is utilized for the microgrid optimization with the help
of MATLAB software.

Figure 1. The schematic diagram of all the studied microgrid configurations.



Sustainability 2022, 14, 13709 5 of 20

Figure 2. The operational flowchart of all the studied cases.

2.1. Photovoltaic (PV) Modeling

PV transforms solar energy into electricity [53]. PV power is determined by solar
radiation. Equation (1) describes the PV output power. This research uses Egyptian solar
radiation data for the simulation; Egypt is considered one of the countries that has a wealth
of solar power with a sunlight period of around 3500 to 4500 h/year [54].

Ppv(t) = ηpv × Spv ×
G(t)
GStc

(1)

where ηpv, Spv, Id(t), and Id,Stc are the PV’s efficiency, the rated capacity, the incident solar
radiation, and solar radiation at the stc, respectively [55].

2.2. Fuel Cell (FC) Modeling

Fuel cell (FC) uses hydrogen to generate DC power. It normally consists of an elec-
trolyte and two terminals (anode and cathode). The chemical processes inside FC are
described in the equations below [56].

H2 −→ 2H+ + 2e− (2)

0.5O2 + 2e− −→ O2− (3)

2H+ +
1
2

O2−
2 −→ H2O + heat (4)

The capital cost and operating and maintenance costs of the fuel cell are described in
the following equations:

CapFC = αFC × SFC (5)
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OMFC = βFC × SFC ×
N

∑
j=1

(
1 + µFC
1 + ir

)j
(6)

where CapFC, αFC, SFC, OMFC, βFC, µFC, ir, and N are the capital cost of FC, the invest-
ment cost of FC, FC capacity, operating and maintenance cost, the annual operating and
maintenance cost, the escalation rate, interest rate, and project lifetime, respectively.

2.3. Sea Water Electrolyzer Modeling

Water covers approximately 75% of the earth’s surface. This water is mostly salty.
Electrolysis of seawater can be utilized to create hydrogen as well as useful chemical sub-
stances [57]. The chemical reactions inside the electrolyzer are described by the following
equations [58,59]:

NaCl + H2O −→ NaClO + H2 (7)

2Na+ + 2H2O + 2e− −→ 2NaOH + H2 (8)

2NaOH + Cl2 −→ 2NaClO + H2 (9)

The overall equation during the electrolysis process is

NaCl + H2O −→ NaClO + H2 (10)

The most appropriate method of hydrogen storage is pressurized gas storage. This
requires a compressor and a storage tank [60].

2.4. Electric Utility

The utility grid serves as a backup when the generated power is not enough to
supply the microgrid’s load. It also adds selling power availability to the grid in case of
excess generation.

The exported and imported powers at a given time can be described using the equations
below:

Pgrp : Pgrid(t) > 0 in case o f importing power (11)

Pgrs : Pgrid(t) < 0 in case o f exporting power (12)

The net grid cost is
Cgrid = Cp | Pgrp | −CS | Pgrs | (13)

where Cgrid, Cp, Pgrp, CS, and Pgrs are the grid cost, unit power purchasing price, purchased
power, unit power selling price, and the sold power, respectively [61,62].

2.5. Biomass Modeling

Biomass gasification is the process of converting solid biowaste into a combustible gas
mixture. It can be used as a source of heat or as a fuel in internal combustion engines to
produce mechanical or electric power. The calorific value of biomass and the amount of
biomass determine its power [63]:

Pbio =
Total biomass available (Ton/yr)× 1000× CVbm × ηbm

365× 860×Operating h/day
(14)

The operating and maintaining cost of a biogas system is divided into two components
(fixed and variable costs), which vary based on the anticipated power and the amount of
fuel used:

OMbg,npv = θ1bg × Pbio

N

∑
j=1

(1 + µbg

1 + ir

)j

+ θ2bg × PWyr
bg ×

N

∑
j=1

(1 + µbg

1 + ir

)j

(15)
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Equation (16) shows the amount of biogas fuel cost:

Fbg,npv = θ3bg × BFyr
r ×

N

∑
j=1

(1 + µbg

1 + ir

)j

(16)

Equations (17) and (18) explain the capital and salvage cost values of the biomass unit:

Cbg = γbg × Pbio (17)

SVbg,npv = λbg × Pbio ×
(

1 + δ

1 + ir

)N
(18)

where CVbm, ηbm, θ1bg, Pbio, and ir are the biomass calorific valve, the overall conversion
efficiency, the annual fixed operation and maintenance cost (USD/kW/year), the power
produced by biogas generator, and the interest rate, respectively. µbg, θ2bg, PWyr

bg , and θ3bg

are the escalation rate, the variable operation and maintenance cost (USD/kWh), the annual
working power of biogas generator (kWh/year), and the biomass fuel cost (USD/ton),
respectively. BFyr

r , γbg, λbg, and δ are the annual required biomass fuel (ton/year), the initial
cost of biogas system (USD/kW), the resale price of the system (USD/kW), and the inflation
rate, respectively [64].

3. Demand Response

Demand response is an energy management approach that shifts energy usage from
peak hours to other periods. This research studied time-of-use demand response as a
time-based type.

3.1. Time-of-Use (ToU) Demand Response

In time-of-use demand response, peak load periods have higher prices, whereas off-
peak hours have reduced prices according to predefined prices. In this work, price elasticity
models are employed to structure the TOU demand response.

Elasticity Model

The change in load demand as a result of price swings is the price elasticity of electrical
demand El [65].

El =
ρo

do
× ∂d

∂ρ
(19)

where ρ, do, ρo, and d are the electricity price, the initial load demand, the nominal price,
and the load demand, respectively.

The cross elasticity El(i, j) illustrates how demand varies over time as a result of price
changes at different time periods [66].

El(i, j) =
ρo(j)
do(i)

× ∂d(i)
∂ρ(j)

(20)

The customer benefits are depicted as [67]

S = B(d(i))− d(i)× ρ(i) (21)

where B(d(i)) denotes the revenue earned by the usage of electrical energy as follows [68]:

B(d(i)) = Bo(i) + ρo(i)[d(i)− do(i)]{1 +
d(i)− do(i)

2El(i)× do(i)
} (22)
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Demand response advantages are boosted by setting ∂S
∂d(i) to zero. As a result, the fol-

lowing is the consumer usage:

d(i) = do(i){1 + El(i)× ρ(i)− ρo(i)
ρo(i)

} (23)

when the cross elasticity is taken into consideration, the load demand is expressed as follows:

d(i) = do(i) +
24

∑
i=1,i 6=j

El(i, j)× do(i)
ρo(j)

× [ρ(j)− ρo(j)] (24)

The final load demand that fulfills the maximum gains of the customer’s usage during
a 24 h period is demonstrated in the following equation [68]:

d(i) = do(i){1 + El(i)× [ρ(i)− ρo(i)]
ρo(i)

+

24

∑
i=1,i 6=j

El(i, j)× [ρ(j)− ρo(j)]
ρo(j)

} (25)

The self and cross elasticities are set on the basis of prices and demand to represent
the flexibility to change the load patterns by shifting a portion of load from one period to
another. The values of self and cross elasticities are mentioned in Table 1 [50].

Table 1. Self and cross elasticity values.

Peak Off-Peak Low

Peak −0.1 0.016 0.012
Off-Peak 0.008 −0.1 0.01

Low 0.006 0.008 −0.1

4. Objective Function

This study introduces technical, economic, and environmental objectives for power
scheduling of a residential microgrid, including PV, WG, and plug-in-electric vehicles. The
first objective is the minimization of load-generation mismatch. The second objective is
the minimization of total system cost. The third objective is CO2 emissions minimization.
The following equations show the proposed objective functions.

F1 = min : (LoPS) = min :| Pl(t)−∑ Pgn(t) | (26)

F2 = min : (cost) = min :
(
∑ Cpv + CFC + Celectrolyzer + Cgrid + CBio − CRevenues

)
(27)

F3 = min : ((CO2)emissions) (28)

where Pgn, Cpv, CFC, Celectrolyzer, Cgrid, CBio, and CRevenues are the total generated power, PV
cost, fuel cell cost, electrolyzer cost, grid cost, total biomass cost, and system’s revenue,
respectively.

5. Constraints

Power balance constraints:

Ppv(t) + PFC(t) + Pbio + Pgrid_buy(t)− Pgrid_sell(t)− Pelectrolyzer = Pl(t) (29)

Limits constraints:
0 < Ppv < Ppv,max (30)

0 < PFC < PFC,max (31)
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Pgrs,max < Pgrid < Pgrp,max (32)

Pbiomin
< Pbio < Pbiomax (33)

H2tankmin
≤ H2tank ≤ H2tankmax

(34)

6. Multi-Objective Genetic Algorithm (MOGA)

The multi-objective genetic algorithm is a meta-heuristic mechanism motivated by the
natural selection technique, which is a part of larger classes of evolutionary algorithms.
Genetic algorithms are widely used and biologically inspired by developers to produce
high-quality optimization and search prospects, such as mutation, crossover, and selection.

MOGA utilizes a weighted sum of various objective functions in the selection stage
and merges them into a scalar fitness function. The design characteristics of the various
objective functions weights are not specified and are randomly changed through each
selection. Thus, the search orientation in this algorithm is not fixed.

At each generation over the process of MOGA, an empirical series of Pareto optimal
solutions are stored and updated. Furthermore, a certain number of solutions are picked
at random from the series. Those solutions are considered elite individuals. The elite
mechanism has the benefit of preserving the diversity of each population [69].

The block diagram of the proposed MOGA algorithm is shown in Figure 3 and de-
scribed below:

• Stage 1 (Initialization): generate an initial population.
• Stage 2 (Evaluation): calculate the values of the objective functions for the created population.
• Stage 3 (Selection): use random weights to determine each population’s fitness value;

then, pick a pair of strings from the existing population.
• Stage 4 (Crossover and Mutation): a crossover strategy is implemented for each chosen

pair to produce a new population via the crossover process; after that, the mutation
process is carried out.

• Stage 5 (Elitist): delete some strings of created strings haphazardly and substitute
them with elite strings picked at random from temporary Pareto optimal solutions.

• Stage 6 (Termination): if the stopping requirement is not satisfied, go to Stage 2.
• Stage 7 (Optimal Solution): the MOGA suggests the preferable options.

Figure 3. MOGA operation flow chart.
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7. Results and Discussion

Microgrid sizing and optimization are important issues for power system developers.
The system configuration could differ depending on the available technology and the
design objectives or targets. In this study, five case studies are introduced. In all scenarios,
solar power has the first priority to produce the required electrical energy. The first scenario
consists of PV, FC, seawater electrolyzer, tank, and public grid. The second scenario
introduces biomass power to the first scenario but without the dependence on public
grid. The third scenario has the availability of biomass and grid-connection with FC and
seawater electrolyzer to guarantee full system reliability. Scenario 4 is like the system of the
first scenario but without sea water electrolyzer. Scenario 5 is the simplest one, with PV
and the public grid as the only power sources. The simulation parameters are shown in
Appendix A. The load and generation of each power unit for all studied case studies are
displayed in Figures 4–8.
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Figure 4. Load-generation mismatch of case 1.
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Figure 5. Load-generation mismatch of case 2.
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Figure 6. Load-generation mismatch of case 3.
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Figure 7. Load-generation mismatch of case 4.
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The simulation results for the five scenarios confirm the following features:

• By taking scenario 5 as a reference case study because it is the simplest system config-
uration with the minimum number of generating units, the FC integration with sea
water electrolyzer and tanks reduces the system emissions by around 40% and slightly
increases the cost by USD 0.093 million.

• If the microgrid that uses FC does not produce its own H2, its cost is increased due
to the cost of purchasing H2. As seen from scenario 4’s results, its cost is greater
than scenario 1’s cost by USD 0.246 million; the CO2 emissions are also higher by
150.6 kg/day.

• Relying on biomass has a great impact on cost and emissions. If biomass energy
is used instead of depending on public grid power, the cost is decreased by 37.9%,
as noticed by comparing scenarios 1 and 2. If both biomass power and electric utility
are utilized in a hybrid microgrid as in scenario 3, the system has the lowest total cost
of USD 1.186 million due to selling power back to the grid. Systems with biomass
have zero emissions as they replace grid power use.

• The grid power share is decreased by using biomass energy and FC; it reached zero
by integrating biomass energy units. It decreased by 6% and 10% when comparing
scenario 5 with scenarios 4 and 1.

• Scenario 5 is the worst system configuration; it emits the highest emissions of 954.095 kg
of CO2 per day. Scenario 4 has the highest system cost and a great amount of CO2
emissions, with roughly about 722.356 kg/day.

• By comparing the systems that have storage tanks (1, 2, and 3), scenario 1 has the
largest storage tank capacity as it has the largest fuel cell capacity of 184 kW with a
power share percentage of more than 10%, as clarified in Figure 9. Scenario 2 has the
largest EL capacity of 701 kW as it produces more chemical substances and hydrogen
to increase revenue and decrease the system cost, as there is no revenue from the grid
in this scenario.

Figure 9 demonstrates the contribution of the kWh energy production share of each
generating unit.

Figure 9. kWh energy share.

• In all the studied scenarios, the PV capacity ranges from 830 kW to 1000 kW. It provides
more than 70% of the required power; the remaining percentage comes from the public
grid, biomass, or stored energy in FC.

• The incorporation of biomass power decreases the dependence of FC; it reduces the
FC energy share by around 50% by comparing scenario 1 and scenario 2.
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• In scenario 3, the grid-connectivity is considered as a revenue tool to sell extra power
back to the grid. It is regarded as a semi-grid-connected microgrid. Using seawater
electrolyzers ensures the generation of the system’s required H2.

• In scenario 3, the integration of biomass with EL and tank reduces the dependence on
fuel cell; the capacity of the fuel cell is reduced to 30 kW.

• Systems with seawater electrolyzers have the lowest CO2 emissions. They reach
571.752 kg/day for systems without biomass energy.

• The electrolyzing process is regarded not only as a means of producing hydrogen
but also as a means of increasing system income. System productivity can be increased
by selling extra power back to the public grid and selling NACLO and extra H2
produced from the electrolyzing process.

• Scenario 1 has a total system cost of USD 3.672 million with 571.752 kg of CO2
emissions per day. By introducing biomass, both the emissions and the cost are
enhanced. The cost is reduced by USD 1.394 million in scenario 2 and by USD
2.486 million in scenario 3 when compared with scenario 1.

Table 2 demonstrates the obtained results for all the studied scenario without DR programs.

Table 2. Results for systems without DR.

Case 1 Case 2 Case 3 Case 4 Case 5

Cost (million USD) 3.672 2.278 1.186 3.918 3.579
CO2 emissions (kg/day) 571.752 0 0 722.356 954.095

PV capacity (kW) 986.553 830.866 901.435 995.850 1000
FC capacity (kW) 184 66 30 97 0
EL capacity (kW) 294 701 336 0 0
Tank capacity (kg) 147.5 22 10 0 0

Maximum grid power (kW) 229.810 0 0 273.310 321.810
Biomass capacity (kW) 0 288.972 306.861 0 0

• All systems create revenues of more than USD 4 million. Scenarios 1 and 2 have the
highest revenues of USD 4.47 million and USD 4.34 million, respectively.

• The revenues from selling extra power back to the grid are decreased by introducing
biomass to the system, in addition to the increase in selling chemical products and
hydrogen produced from the seawater electrolyzer, as in scenario 3.

• Without seawater electrolyzers, the revenues are only from selling power back to the
public grid or nearby microgrids.

Table 3 shows the systems’ revenue for each scenario. Figure 10 displays the amount
of revenue from selling power back to the grid and revenues from selling chemical products
and hydrogen that are produced through the electrolysis process.

Figure 10. Systems’ revenues.
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Table 3. Revenues.

Case 1 Case 2 Case 3 Case 4 Case 5

Grid revenue 2.104 0 1.469 4.232 4.253
Electrolyzing process revenue 2.366 4.182 2.875 0 0

• Demand response programs reshape the load patterns by shifting a portion of off-peak
load, which is usually at night, to other periods. Biomass unit capacity is reduced by
applying demand response as it is always used at night; it is reduced by 12.5% and
12.9% for scenarios 2 and 3.

• By applying demand response schemes, the load curve is modified; the peak load is
reduced by 10.88%, as seen in Figure 11.
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Figure 11. Load demand with and without demand response.

• The microgrids’ overall cost and CO2 emissions are decreased with time-of-use de-
mand response.

• In most studied cases, the total system cost is reduced by TOU-DR with different values
within USD 0.356 million, as in scenario 5, and USD 0.277 million, as in scenario 2.

• The CO2 emissions are reduced by 63.658, 20.763, and 71.819 kg/day for scenarios 1,
4, and 5, respectively. The maximum value of the grid’s purchased power is decreased
by 13.71%, 8.6%, and 10.88% for scenarios 1, 4, and 5, respectively.

• For scenarios without biomass, the FC capacity is decreased by applying DR schemes,
while it is slightly increased for scenarios with biomass units to manage the decrease
in biomass capacity.

Table 4 shows the scenarios’ configuration, cost, and emissions with their participation
in ToU-DR schemes.

Table 4. Results of systems with DR.

Case 1 Case 2 Case3 Case4 Case5

Cost (million USD) 3.331 2.001 1.388 3.562 3.247
CO2 emissions (kg/day) 508.094 0 0 701.593 882.276

PV capacity (kW) 980.965 932.368 874.959 963.199 993.292
FC capacity (kW) 177 68 39 74 0
EL capacity (kW) 285 783 168 0 0
Tank capacity (kg) 147 23 83 0 0

Maximum grid power (kW) 198.297 0 0 249.797 286.797
Biomass capacity (kW) 0 252.934 267.413 0 0
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8. Conclusions

Microgrid size optimization plays a critical role in lowering total system costs by avoid-
ing needless investment in unused generation. This study introduces a power scheduling
methodology for a grid-connected microgrid considering PV, biomass power, fuel cell,
and seawater electrolyzer. CO2 emissions reduction, cost, and avoiding power outages
are the main targets in the multi-objective scheduling process. The seawater electrolysis
process is not only beneficial for producing hydrogen; it also serves as an income source for
the system by selling the produced chemical compounds throughout the process. Time-of-
use demand response is employed in this study to modify the load demand distribution
and maximize the utilization of renewable energy sources. The research findings confirm
that ToU-DR reduces the maximum load demand by 10.88%. They also confirm that CO2
emissions can be reduced to zero by introducing biomass and also reduced by 40% by
integrating FC and seawater electrolyzers. Biomass has the ability to decrease the microgrid
cost by USD 1.39 million, if it replaces the grid power. Moreover, the hybrid microgrid of
biomass, grid, PV, FC with seawater electrolyzer, and hydrogen tank is the most economi-
cal configuration. Furthermore, microgrid productivity is increased by selling both extra
power and produced chemical products; it reaches over USD 4.1 million in most studied
scenarios. Studying the integration of other renewable sources such as wind generators and
integrating electric vehicles into the studied system through vehicles-to-grid schemes with
a deep analysis of the sensitivity to parameter fluctuations is the proposed future work to
increase microgrid productivity and reduce GHG emissions.
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Nomenclature

GHGS Greenhouse gas emissions
ESS Energy storage system
HRES Hybrid renewable energy systems
MBA Modified bat algorithm
GOA Grasshopper optimization
DR Demand response
PV Photovoltaic
ηpv The PV’s efficiency
Spv The PV’s rated capacity
G(t) The incident solar radiation
GStc Solar radiation at the stc
CapFC The capital cost of FC
αFC The investment cost of FC
SFC FC capacity
OMFC Operating and maintenance cost of FC
βFC The annual operating and maintenance cost
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µFC The escalation rate
ir Interest rate
N The project lifetime
Cgrid The grid cost
Cp Unit power purchasing price
Pgrp Purchased power
CS Unit power selling price
Pgrs The sold power
CVbm The biomass calorific valve
ηbm The biogas overall conversion efficiency
θ1bg The annual fixed operation and maintenance cost of biogas generator (USD/kW/year)
Pbio The power produced by biogas generator
ir The interest rate
µbg The escalation rate
θ2bg The variable operation and maintenance cost of biogas generator (USD/kWh)
PWyr

bg The annual working power of biogas generator (kWh/year)
θ3bg The biomass fuel cost (USD/ton)
BFyr

r The annual required biomass fuel (ton/year)
γbg The initial cost of biogas system (USD/kW)
λbg The resale price of the system (USD/kW)
δ The inflation rate
FC Fuel cell
ToU Time of use
El Price elasticity of electrical demand
ρ The electricity price
do The initial load demand
ρo The nominal price
d The load demand
El(i, j) The cross elasticity
B(d(i)) The customer benefits
Pgn The total generated power
Cpv PV cost
CFC Fuel cell cost
Celectrolyzer Electrolyzer cost
Cgrid Grid cost
CBio Total biomass cost
CRevenues System’s revenue
LoPS Loss of power supply probability
Pl(t) Load power
Ppv(t) PV power
PFC(t) FC power
Pbio Biomass power
Pgrid_buy(t) Grid’s purchased power
Pgrid_sell(t) Grid’s sold power
Pelectrolyzer Electrolyzer power
Pgrid(t) Grid power
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Appendix A

Table A1. Simulation Parameters.

Component and Economic Specification

Discount rate (r) 5%
Escalation rate 7%

PV Module

Investment cost 1690 USD/kW
Maintenance 26 USD/kW/yr

(PV) reduction factor 84%
lifetime 25 years

Biomass generator

Capital cost 4500 USD/kW
Operating and Maintenance 0.03 USD/kWh

Feedstock cost 0.02 USD/kWh
Calorific value 14.5 MJ·kg−1

Electrical conversion efficiency (ηbm) 0.3

Fuel cell

Capital cost 2000 USD/kW
Operating and Maintenance 100 USD/kW/yr

Replacement cost 1500 USD/kW
Efficiency 0.5
H2 to kW 0.6 kWh/Nm3

Electrolyzer

Capital cost 1500 USD/kW
Operating and Maintenance 15 USD/kW/yr

Replacement cost 1500 USD/kW
Efficiency 0.9
kW to H2 0.09 Nm3/kWh

Final hydrogen pressure 20 MPa

Tank

Capital cost 500 USD/kg
Operating and Maintenance 5 USD/kg/yr
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