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Abstract: As the proportion of distributed photovoltaic (DP) increases, improving the accuracy
of regional distributed photovoltaic power calculation is crucial to making full use of PV and
ensuring the safety of the power system. The calculation of regional power generation is the key
to power prediction, performance evaluation, and fault diagnosis. Distributed photovoltaic plants
(DPP) are characterized by scattered distribution and small installed capacity, lots of DPPs are
not fully monitored, and their real-time output power is difficult to obtain. Therefore, to improve
the observability of DPPs and increase the accuracy of calculation, a new method that combines
with fuzzy c-means (FCM), Max-Relevance and Min-Redundancy (mRMR) and Extreme Learning
Machine(ELM), which can calculate the regional DPP output power without meteorological data is
proposed, and validated using actual operational data of regional DPPs in China. The calculations
results show good robustness in different months. The innovation of this study is the combination of
the benchmark DPP selection method FCM-mRMR and the power calculation method nELM, and
the mean absolute error (MAPE) of the proposed method is 0.198 and the coefficient of determination
(R2) is 0.996.

Keywords: distributed photovoltaic; power calculation; Extreme Learning Machine; Max-Relevance
and Min-Redundancy

1. Introduction

Against the greenhouse effect and the energy crisis, PV power has developed rapidly
as a sustainable, green renewable energy resource (RES). By the end of 2021, worldwide PV
installed capacity increased by 145 TWh to nearly 1000 TWh [1]. DP has the advantage of
local consumption, and DP-based power systems can reduce the cost of electrification in
rural and suburban communities [2,3], making DP one of the main options for developing
RES. China has the largest PV market globally, with 5488 GW of new PV systems in
2021, of which 2927.9 GW is DP [4]. As DP grows, the power system becomes more
complex and uncertain. Since the output power of most DPPs is not monitored, the
operating status is unknown to the power system, so the power calculation of DPPs is
crucial for the safe operation of DPPs. At the same time, regional distributed photovoltaic
power calculation (DPPC) can provide practical information to support online functions
of the distribution network, such as optimal power dispatching and fault diagnosis [5],
improve the observability of the DP, and contribute to the safe operation of the distribution
network [6].

The methods for PV power calculation fall into three main categories: the methods
based on state estimation methods [7–9], physical modeling methods, and data-driven
methods. State estimation methods mainly use AC voltage and node power data in the
measurement points, Shen and Liang [10] present an improved algorithm based on PV
branch current and PV branch power for the unmonitored PV state estimation model.
Fang et al. [11] propose a state estimation algorithm with insufficient data. The physical

Sustainability 2022, 14, 13880. https://doi.org/10.3390/su142113880 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142113880
https://doi.org/10.3390/su142113880
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-9872-9988
https://doi.org/10.3390/su142113880
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142113880?type=check_update&version=2


Sustainability 2022, 14, 13880 2 of 20

modeling methods model the distributed PV output based on the physical mechanism,
Yun et al. [12] model the internal physical characteristics and external environmental
characteristics of the PV system separately. Farzana et al. [13], Wendell et al. [14] use
weather data, netload data, etc., to model the output power for PV arrays. Data-driven
methods analyze the relationship between weather forecast data, PV historical data, and
PV power, using algorithms such as neural networks, support vector machine [15,16], and
random forest [17,18].

The above research mainly focuses on a single PV station or a few PV nodes in the
distribution network. The DPPs in a region are usually massive and widely distributed
in the actual situation. Real-time, high-precision monitoring of PV power generation
requires a higher sampling frequency and additional measurement sites, which raises
the cost of DPPs constructing. Therefore, calculating the PV output power of the region
with a small amount of measurement data is an important research direction [19,20]. Xin
et al. [21] combined the K-means method and linear estimation model to obtain the total
output power of regional distributed PV. Wu et al. [22] applied the K-medoids algorithm
to cluster the distributed PV plants with installed capacity. Shaker et al. [23] proposed a
hybrid method based on K-means clustering and principal component analysis to calculate
the output of unmonitored PV plants using benchmark plants. Most power calculation
method for DPPs require weather information such as wind speed, temperature, and
irradiance, those are often missing in practical situations. Since neighboring regions have
similar meteorological patterns, up-scaling the power data of benchmark stations allows for
calculating PV power for the whole area. In [24,25], the Australian Photovoltaic Institute
(APIV) calculates the regional PV output using measured PV output and regional installed
capacity. Saint-Drenan et al. [26], to increase the accuracy of regional PV power calculation,
develop a method based on satellite and measurement data. However, the previous work
did not investigate the power output characteristics of PV plants in the region, and the
analysis of PV power output characteristics is the foundation for calculating regional PV
power generation.

Based on the above analysis, the paper conducted the study on regional DPPC. For
regional DPPs with large coverage areas and without measured meteorological information,
dividing regions, and selecting benchmark DPPs for different sub-region can effectively
improve the accuracy of power calculation. Due to the fast speed of the Extreme Learning
Machine (ELM), the parallel ELM model optimized by Particle swarm optimization (PSO)is
used for power calculation [27]. Based on existing modeling techniques [28,29], the fuzzy c-
means (FCM)and Max-Relevance and Min-Redundancy (mRMR)algorithms were used for
benchmark power plant selection. The improved algorithm reduces the data dependence
compared to existing studies while improving the computational accuracy. The innovation
of this study mainly lies in selecting benchmark power plants based on the output feature
of PV and employing parallel ELM to increase the accuracy of the calculation. Accordingly,
the paper is organized as follows: In Section 2, data sources and output characteristics of
regional DPPs were studied. In Section 3, the principle of the algorithm and the proposed
method are explained. In Section 4, the validity of the proposed model for region division
and benchmark power plant selection is verified. In Section 5, the calculation results are
shown and compared with other algorithms. Finally, Section 6 concludes the paper and
suggests future work.

2. Data Sources and Regional PV Plant Power Output Characteristics

In this work, 44 DPPs are selected for analysis in a county of China, numbered 1 to 44,
and the locations of the DPPs are shown in Figure 1a. The data are real-time power data
from 44 DPPs with a time resolution of 5 min. The output power curves of 44 DPPs in one
day are shown in Figure 2, which shows that there are similarities and differences among
different DPPs.
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Figure 1. Distribution of power stations in the satellite map. (a) Regional DPPs distribution. (b) sub-
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Figure 1. Distribution of power stations in the satellite map. (a) Regional DPPs distribution.
(b) sub-region clustering results. (c) benchmark plants of different sub-region.
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Figure 2. Output power of DPPs.

The Pearson coefficient between the power of DPPs and the entire region was analyzed.
And ρ is a linear correlation coefficient that measures how closely two variables are related,
it takes values between −1 and 1, which can be calculated as Equations (1)–(3):

ρ = Cov(X, Y)/
√

Var(X)·Var(Y) (1)

Var(X) =
1
n

n

∑
i=1

(xi − x) (2)
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Cov(X, Y) =
1
N

N

∑
i=i

(xi − x)(yi − y) (3)

ρ between different DPPs are shown in Figure 3, where numbers 1–44 refer to DPPs,
and number 45 refers to all DPPs in the region, and ρ have been normalized. In the
correlation matrix diagram, the closer the correlation is to 1, the closer the color is to yellow;
the closer the correlation is to 0, the closer the color is to blue. Parts 1, 2, and 3 represent
three parts in Figure 3, and the correlation coefficients vary significantly among different
parts. The single DPP and the region have the lowest correlation coefficient. Parts 1 and 3
have a higher correlation (0.7, 1), but part 2 has a lower correlation (0.4, 0.7). Therefore, the
sub-region division can precisely separate the DPPs with similar output. DPPs with strong
correlation can be used to calculate the output of others. For the case of large amount DPPs,
the correlation among different power plants is different, and the sub-region division of the
region can effectively improve the accuracy of calculation. Accordingly, this paper proposes
a regional DPPC method, which can calculate the real-time total power of the region based
on the selected benchmark plants in the absence of meteorological information.
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3. Principles of the Algorithm

In the paper, Fuzzy C Means (FCM) clustering algorithm is used to separate DPPs
into different sub-regions. Then benchmark DPPs are selected by the Max-Relevance and
Min-Redundancy (mRMR) method for different sub-regions. Finally, a combined PSO-ELM
approach is used to realize the regional DPPC.

3.1. Improved FCM-mRMR Algorithm

FCM is used for sub-region division, and the aim is to have the samples grouped into
the same cluster as similar as possible [30,31]. The objective function of the FCM is

J(U, c1, c2, . . . cc) =
c

∑
i=1

Ji =
c

∑
i=1

n

∑
j

um
ij d2

ij (4)
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The objective function is minimized by taking derivatives for all variables, resulting in:

ci =

n
∑

j=1
uij

mxj

n
∑

j=1
uij

m
(5)

uij =
1

c
∑

k=1
(

dij
dkj

)
2/(m−1)

(6)

where, uij is the membership degree, which ranges from 0 to 1, reflects the degree to
which each sample belongs to a class; ci is the cluster center of the fuzzy group I and
dij = ‖ci − xj‖ is the Euclidean Distance between ith cluster center and jth data point.
Then, the process of minimizing the objective function automatically divide the samples.

It can be seen that fuzzy C-means clustering is a simple iterative process. The clustering
steps of DPPs in the region are shown as follows.

(1) Initialize the membership matrix U with random numbers, each matrix element is a
random number from 0–1.

(2) Calculate the clustering centers ci, i = 1, . . . , c.
(3) Calculate the objective function according to Equation (4). If it is less than a de-

fined threshold, or if the change from the last value is less than the threshold, the
process stops.

(4) Compute the membership degree matrix using Equation (6). Then return to step (2).

In information theory, entropy can be used to measure how much information is
carried. The entropy of a variable is defined as

H(X) = −
n

∑
i=1

P(xi) log P(xi) (7)

Mutual information (MI) measures the amount of information that one variable con-
tains about another variable. It is commonly used in feature selection. Metrics such as
correlation coefficient and MI reflect the similarity between features and labels, but the
selected features with best correlation in the dataset is not necessarily the optimal subset,
and such strategy may lead to the missing of important information. If the correlation
between features is high, there may be some duplicated information, resulting in increased
redundancy in the selected subset. The mRMR algorithm ensures the minimum redundancy
and the maximum correlation between subset features and labels.

The maximum correlation is defined as max{D, S},

D =
1
|S| ∑

xi∈S
I(xi; c) (8)

Minimum redundancy is defined as minR(S),

R =
1
|S2| ∑

xi ,xj∈S
I(xi; xj) (9)

where S is the feature set;c is the category;I(xi; c) is the mutual information between
feature i and the target category c; I(xi; xj) is the mutual information between feature i and
feature j.

The feature selection criteria for MRMR are:

maxφ(D, R), φ = D− R (10)
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maxφ1(D, R), φ1 = D/R (11)

The proposed sub-regions division and benchmark DPPs selection algorithm base
on FCM and mRMR, divide the DPPs into different sub-regions by FCM clustering, then
the benchmark DPPs within the sub-regions are selected using mRMR. The results of the
FCM-MI and FCM-mRMR are shown in Table 1 and Figure 1c.

Table 1. Results of the FCM-mi and FCM-mRMR.

Sub-Region Number FCM-MI FCM-mRMR

1 13, 22, 34 34, 23, 13

2 4, 33, 35 33, 4, 35

3 29, 40, 42 26, 30, 44

4 26, 28, 44 37, 41, 42

3.2. nELM Algorithm

The Extreme Learning Machine (ELM) [32–34] is a single-layer neural network, with
the advantages of few training parameters, fast learning speed, and strong generalization
ability, it has been widely used in the field of PV power prediction in recent years. The
input layer weights are randomly generated during the training process. The output layer
bias is calculated by a generalized inverse matrix, the structure diagram of ELM is shown
in Figure 4.
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W is the connection weights matrix between the input layer and the hidden layer,

W =


w11 w12 . . . w1D
w21 w22 . . . w2D
. . . . . . . . . . . .
wL1 wL2 . . . wLD


L×D

(12)
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where, wji is the connection weights of the ith neuron in the input layer and the jth neuron
in the hidden layer.

t = [t1 t2 . . . tQ] (13)

tj =


t1j
t2j
. . .
tmj


m×1

=



l
∑

i=1
βi1g(wixj + bi)

l
∑

i=1
βi2g(wixj + bi)

. . .
l

∑
i=1

βimg(wixj + bi)


m×1

(j = 1, 2, . . . Q) (14)

β is the connection weight between the hidden layer and the output layer, b is the
threshold of the neuron in the hidden layer, X is the input set, Y is and the output set. g(x)
is the hidden layer neuron activate function, and t is the network output.

Equations (15) and (16). can be expressed as

Hβ = T′ (15)

where T′ is the transpose of the matrix T and H is the hidden layer output matrix.
The connection weights β are obtained by solving the least-squares solution.

∧
β = H+T′ (16)

where H+ is the Moore-Penrose generalized inverse of the hidden layer output matrix H.
However, as the initial values of the parameters w and b are chosen randomly, ELM

has an unstable performance. Therefore, a parallel framework that combines n ELMs is
proposed to reduce the randomness of the model during training.

3.3. Regional DPPC Method

The following are some of the difficulties with regional DPPC:

1. Due to financial considerations, not all DPPs are equipped with meteorological sta-
tions, resulting in a paucity of meteorological data.

2. The number of DPPs in the region is considerable, making it difficult to extract
useful information.

As a result, the FCM-mRMR method is proposed in this study to divide the sub-regions
and select the benchmark power plants, with the PSO-ELM algorithm estimating the total
power based on the real-time power of the benchmark power plants. The regional DPPC
method proposed in the paper can be described as following steps:

Divide the sub-regions. Assuming there are N DPPs in the region, use the FCM
algorithm to divide the power dataset of DPPs into k sub-region datasets, denoted as
{x1, x2, . . . , xk}.

Select m benchmark PV plants in each sub-region by mRMR, and the power data of
the benchmark plants are used as input.

The regional DPPC is realized using a combined PSO-nELM method. In the nELM
algorithm, the connection weights β and thresholds of the hidden layers b are determined
by Particle Swarm Optimization (PSO).

Figure 5 shows the framework of the proposed method.
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4. Rationality Analysis
4.1. Experimental Scenarios Setting

All DPPs in the region have certain similarity due to the similar geographical location
and certain difference due to the environmental changes. Sub-region division of DPPs
in the region can extract the power plants that are similar to each other and separate the
power plants that are different from each other. Therefore, the comparison scheme was
designed to verify the effectiveness of sub-region division and benchmark power plant
selection. There are 7 experimental scenarios numbered 1–7, which are shown in Table 2.
The sub-region division methods include the FCM clustering method and the geographic
location division method (marked as loc). The benchmark DPPs selection methods include
the mRMR algorithm, MI ranking method, and random selection method (marked as rand).
Where nc indicates no sub-regional division.
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Table 2. Different regional division methods.

Sub-Region Division Benchmark Power Plant Selection

nc FCM loc mRMR mi rd

1 nc-mi
√ √

2 nc-mRMR
√ √

3 loc-mi
√ √

4 loc-mRMR
√ √

5 FCM-mi
√ √

6 FCM-mRMR
√ √

7 FCM-rd
√ √

The estimation results were evaluated by the accuracy evaluation metrics of mean
absolute error (MAE), mean absolute percentage error (MAPE) and coefficient of determi-
nation (R2). Since the PV power is zero at night, all accuracy evaluations in this paper were
the results after removing the nighttime data.

MAE =
1
m

m

∑
1

∣∣∣∣(Yi −
∧
Yi)

∣∣∣∣ (17)

R2 = 1−∑
i
(Yi −

∧
Yi)

2
/∑

i
(Yi −

∧
Yi)

2
(18)

MAPE =
100%

m

m

∑
i=1

∣∣∣∣∣∣Yi −
∧
Yi

Y

∣∣∣∣∣∣ (19)

4.2. Results Analysis

The training set is the DPPs’ power data from 1 to 14 January 2020, while the test set is
from 17 January to 30 April 2020.

Figure 6 depicts the power calculation results of different methods, Figure 7a and
Table 3 provide the quantitative results. The MAPEs of nc-mi and nc-mRMR are larger
than 30%, and the MAEs are greater than 75, according to the data. The MAPEs of loc-
mi and loc-mRMR are less than 30%, while the MAEs are between 60% and 70%. The
MAPEs of FCM-mi, FCM-mRMR, and FCM-rd are all less than 28%, with MAEs ranging
from 50 to 70. The boxplot of the estimation error is shown in Figure 7b, where the error
distribution is on both sides of 0. The upper and lower quartile intervals of nc-mi and
nc-mRMR are the largest, distributed within (−39, 227) and (−37, 106); the upper and lower
quartiles of loc-mi, loc-mRMR, FCM-mi, FCM-mRMR, FCM-rd intervals are (−79, 11),
(−34, 79), (−93, 43), (−17, 118), (−7, 141), respectively, with FCM-mRMR having the fewest
outlier points. Therefore, we can conclude that dividing sub-regions gives more accurate
estimation results than those without division.

Table 3. Comparison of different regional division methods.

nc-mi nc-mRMR loc-mi loc-mRMR FCM-mi FCM-mRMR FCM-rd

MAE 132.204 76.409 64.186 67.845 61.696 50.169 69.831
MAPE 0.331 0.501 0.153 0.300 0.173 0.272 0.128

R2 0.993 0.997 0.997 0.996 0.997 0.998 0.997
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The error distributions of FCM-rd, FCM-mi, and FCM-mRMR are shown in Figure 8,
with the horizontal coordinates being the errors and the vertical coordinates being the
probabilities of the error distributions. The probability distribution curve of FCM-mRMR is
narrower and is mainly concentrated in (−200, 200). The distribution curve of FCM-mi is
concentrated in the interval (−400, 200), and the curve of FCM-rd is mainly concentrated
in the interval (−800, 400). Therefore, the proposed FCM-mRMR method for benchmark
power plants selection reduces the error of power calculation.
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5. Results Comparison

To get the optimal ELM parameter of the proposed method, the results of different
setting of hidden neurons and parallel ELM models were compared. Then two optimiza-
tion algorithms, the self-adaptive difference evolution algorithm (SaDE) and PSO were
compared. Finally, the proposed method was compared with other calculation methods,
including FCM-mRMR-BPANN and FCM-mRMR-PSO-SVM.

5.1. ELM Parameter Optimization

For ELM, the connection weights β and thresholds of the hidden layers b are set ran-
domly, the number of neurons in the hidden layer needs to be optimized. Figure 9. shows
the computational accuracy of different numbers of hidden layer neurons for FCM-mi and
FCM-mRMR. Where, x coordinate is the number of hidden layer neurons, y coordinate
is the number of program executions, and z denotes the MAE. We can conclude that the
optimal number of neurons is L = 2 for FCM-mi and L = 3 for FCM-mRMR, and the accuracy
is higher with the FCM-mRMR selecting method.
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The output results for ELM are unstable, to reduce the model’s randomness during
training, a parallel framework combining n ELMs is presented. The average output of all
ELMs is the final predicted value. Therefore, the determining of the number for parallel
ELM models (N) is vital. Figure 10 shows the results of FCM-mi and FCM-mRMR with
different N. It can be obtained that the operation results tend to be stable when L = 2~7 so
that N = 4, and when L = 10~20 so that N = 10.

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 20 
 

 

 
(b) 

Figure 10. Comparison of ELM parameter. (a) Comparison of FCM-mi with the different number 
of parallel ELMs. (b) Distribution of the calculation errors. 

5.2. Comparison of Different Optimization Algorithms 
PSO and SaDE were used to optimize the parameters of proposed FCM-mRMR-

nELM model. PSO is based on the idea of a massless particle that behaves like a flock of 
birds. Each particle has two properties: velocity and position, and based on its position at 
a certain velocity, it seeks out the optimal solution. Comparing the optimal solutions gen-
erates the global optimal solution. The optimal solution as well as the global optimal so-
lution leads all particles to modify their velocity and position. 

SaDE is a population-based parallel search approach for parameter optimization. 
Two individuals in the population are randomly selected, their difference vector is com-
bined with the third individual to generate variant individuals. Crossover is a process in 
which variable individuals are combined with target individuals to create experimental 
individuals. If the experimental individuals’ fitness is higher than that of the target indi-
viduals, the target individuals will be replaced by experimental individuals in the next 
generation, this process is known as selection. During each generation of an evolutionary 
process, continuously iterative computation retains the good individuals and eliminates 
the bad ones, guiding the search process to approach the global optimal solution. The 
optimization results of PSO and SaDE are shown in Table 4, it indicates that the PSO has 
a better optimization performance. 

  

M
A

E

Figure 10. Cont.



Sustainability 2022, 14, 13880 14 of 20

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 20 
 

 
(b) 

Figure 9. (a) Comparison of FCM-mi with the different number of hidden neurons; (b) Comparison 
of FCM-mRMR with the different number of hidden neurons. 

The output results for ELM are unstable, to reduce the model’s randomness during 
training, a parallel framework combining n ELMs is presented. The average output of all 
ELMs is the final predicted value. Therefore, the determining of the number for parallel 
ELM models (N) is vital. Figure 10 shows the results of FCM-mi and FCM-mRMR with 
different N. It can be obtained that the operation results tend to be stable when L = 2~7 so 
that N = 4, and when L = 10~20 so that N = 10. 

 
(a) 

M
AE

M
A

E

Figure 10. Comparison of ELM parameter. (a) Comparison of FCM-mi with the different number of
parallel ELMs. (b) Distribution of the calculation errors.

5.2. Comparison of Different Optimization Algorithms

PSO and SaDE were used to optimize the parameters of proposed FCM-mRMR-nELM
model. PSO is based on the idea of a massless particle that behaves like a flock of birds.
Each particle has two properties: velocity and position, and based on its position at a certain
velocity, it seeks out the optimal solution. Comparing the optimal solutions generates the
global optimal solution. The optimal solution as well as the global optimal solution leads
all particles to modify their velocity and position.

SaDE is a population-based parallel search approach for parameter optimization. Two
individuals in the population are randomly selected, their difference vector is combined
with the third individual to generate variant individuals. Crossover is a process in which
variable individuals are combined with target individuals to create experimental individ-
uals. If the experimental individuals’ fitness is higher than that of the target individuals,
the target individuals will be replaced by experimental individuals in the next generation,
this process is known as selection. During each generation of an evolutionary process,
continuously iterative computation retains the good individuals and eliminates the bad
ones, guiding the search process to approach the global optimal solution. The optimiza-
tion results of PSO and SaDE are shown in Table 4, it indicates that the PSO has a better
optimization performance.

Table 4. Results of different optimization algorithms.

MAPE MAE R2

PSO-nELM-FCM-mRMR 0.198 63.800 0.996

SaDE-nELM-FCM-mRMR 0.316 132.543 0.991

The proposed FCM-mRMR-PSO-nELM method can obtain the real-time power of the
region based on the benchmark DPPs. Figure 11 displays the results of the sub-region
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calculation and the real power curves, while Figure 12 displays the results of the region
calculation and the actual power curves. The correlation scatters diagram is shown in
Figures 13 and 14. The red dots in represent the calculated values with significant errors.
We can see that fewer points deviate from the actual value using the proposed region
calculation method, and there is less error deviation.
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5.3. Performance Comparison for Different Modeling Algorithms

The calculated model fundamentally affects the calculated results, this paper com-
pared the results of back propagation artificial neural network (BPANN), support vector
machine (SVM) and ELM applied to DPPC. Therefore, the FCM-mRMR-PSO-nELM method
proposed has been compared with FCM-mRMR-BPANN and FCM-mRMR-PSO-SVM meth-
ods, and the results are shown in Table 5. The BPANN computational model is set to a
three-layer structure, with the number of hidden neurons being 15 and 20, the maximum
number of training times being 5000, the training accuracy being 0.05, and the learning rate
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being 0.05. The SVM model has two essential parameters, c and g. The model parameters
of the SVM are optimized by the PSO algorithm with parameters c = 81 and g = 0.7.

Table 5. Value of parameters of each algorithm.

SVM BPANN

Parameter Value Parameter Value

c 81 layer 3
g 0.7 hidden neurons 20

hidden neurons 15
maximum training times 5000

training accuracy 0.05
learning rate 0.05

The train data consists of 15 days of measured data with 5 min temporal resolution.
The results are shown in Figure 15, where the horizontal coordinate is the sub-region
number, and the vertical coordinates are the MAE and MAPE. Table 6 shows the calculation
performance of different methods. The MAE of the FCM-mRMR-BPANN and FCM-mRMR-
PSO-nELM are in (15, 55), while the MAE of the FCM-mRMR-PSO-SVM is in (20, 150).
The MAPE for sub-regions 1 and 4 are more than 1, which indicates that the calculated
results for points at lower power are too large. We conclude that the proposed method for
calculating sub-region power has lower MAE and MAPE. Through the above analysis, the
ELM method has better computational performance.
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Table 6. Comparison of model calculation results.

Model FCM-mRMR-BPANN FCM-mRMR-PSO-SVM FCM-mRMR-PSO-nELM

MAE MAPE MAE MAPE MAE MAPE

January 81.918 0.663 81.186 0.255 61.348 0.224

February 130.153 0.418 185.142 0.219 65.371 0.175

March 148.445 0.371 162.261 10.098 122.070 0.213

6. Conclusions

For real-time DP monitoring and enhancing the secure and stable operation of distri-
bution networks, accurate region power calculation is essential. Lack of meteorological
data and poor calculation accuracy are issues with practical applications. This study’s main
contribution is to improve the Regional DPPC method. First, the region is divided into
sub-region using the FCM clustering algorithm. Next, the sub-region benchmark plant is
obtained using the mRMR algorithm. The power of the benchmark power plant is then
inputted to compute the sub-region’s power using PSO-nELM, and the total power is
obtained by weighting the power of the sub-region. This study compares various methods
for dividing regions, selecting benchmark power plants, and power calculating to simulate
the uncertainty of the regression. The optimization algorithm and model parameters are
also discussed. It was shown through empirical study that the proposed FCM-mRMR-PSO-
nELM approach increases DPPC accuracy. The main innovation of the paper is to present
a new DPPC method FCM-mRMR-PSO-nELM, the calculation results with night data
removed were able to reach an MAPE of 0.198 and a R2 of 0.996, reducing data dependence
and computational complexity. The future research direction is to verify the generalizability
of the method on a larger scale, and to calculate the regional PV power in combination with
numerical weather prediction (NWP).
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Nomenclature

PV Photovoltaics
DP Distributed Photovoltaic
DPP Distributed Photovoltaic Plants
FCM Fuzzy C-Means
mRMR Max-Relevance And Min-Redundancy
ELM Extreme Learning Machine
RES Renewable Energy Resource
TWh Tera Watt Hour
PSO Particle Swarm Optimization
DPPC Distributed Photovoltaic Power Calculation
SaDE Self-Adaptive Difference Evolution Algorithm
MI Mutral Information
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