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Abstract: This paper deals with experimental investigations of flow boiling in tubular ducts of
selected refrigerants—R134a, R507A, and R600a—under near-critical pressures. Near-critical boiling is
characterised by low specific enthalpy of evaporation. The positive effect of this feature is the fact that
only a small amount of heat consumed by Organic Rankine Cycles is at a constant temperature. This
allows a lower terminal temperature of the heating fluid and more effective utilisation of heat sources,
especially of low-grade heat sources. The experimental investigations covered a heat flux density of
0.4 to 10 kW/m2 and a mass velocity of 60 to 200 kg/(m2·s). The results of the experimental data
were compared to the modified heat transfer correlation of Gungor and Winterton, which provices
the best fit for the obtained experimental data. The maximum heat transfer coefficient occurred at the
two-phase quality—approximately 0.4 for all the tested fluids under high pressure conditions—which
may be thought of as a characteristic feature of the boiling process under near-critical conditions. A
modified Gungor–Winterton correlation improves prediction accuracy, especially under the lowest
(up to 3 kW/m2) and highest (over 7 kW/m2) heat flux densities for all the tested fluids.

Keywords: mini-channel heat exchangers; condensers; evaporators; heat transfer; pressure drop;
propane

1. Introduction

Organic Rankine Cycles (ORC) enable cost-efficient power generation from low-grade
heat sources by replacing water with organic working fluids, such as various synthetic
refrigerants or natural fluids, e.g., hydrocarbons. ORC systems use low-grade heat from
various sources such as biomass, geothermal water, and solar and waste heat of industrial
processes. ORC is also regarded as a very suitable method to recover the waste heat
of internal combustion engines [1–3]. The main differences between the ORC and the
conventional Rankine cycle are the working fluid and operating pressures and temperatures.
Therefore, the operating performance of an ORC system depends mostly on the properties
of the working fluid. However, design and operating characteristics of the cycle are
also important. A suitable fluid for an ORC system should have favourable physical,
environmental, safety, and economic properties. It is also desirable that working fluid
circulating in the ORC system should consume as much heat as possible, which requires
a large temperature drop. This can be accomplished by means of a configuration of the
system whereby the working fluid is heated using a minimum ratio of latent heat during
the evaporation process, i.e., the latent heat should be minimised as much as possible.
These conditions are possible in the vicinity of the critical point, as shown in Figure 1.

Numerous works have addressed the selection of ORC fluids based on fluid- and
process-related properties by testing various available fluids in ORC simulation mod-
els [4–6]. Mikielewicz [7] proposed a simplified thermodynamic criterion for selection of
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working fluids and theoretically compared the performances of a few fluids applied in
ORC systems for recovering waste heat generated by internal combustion engines. The
thermodynamic and thermokinetic properties of the working fluid are among the most
important issues in the selection of ORC system working fluid.
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thermal capacity (n1—outlet of the vapour generator; n2—turbine outlet; n3, n4—outlet of the
condenser and approximate inlet to the vapour generator; n5—boiling process inception).

In most cases, these working fluids are also commonly applied in refrigeration, air-
conditioning, and heat-pump technologies. However, thermodynamic properties, and
especially thermokinetic properties, change substantially, even with insignificant changes
of pressure or temperature at the near-critical point. The latent heat of evaporation and
liquid density at the near-critical point decrease more quickly than in lower-pressure
areas, resulting in unique boiling heat transfer behaviour. The surface tension and density
difference between saturated liquid and the vapour phase gradually decrease with an
increase in saturation pressure, and the bubbles’ diameters become smaller under high
pressure conditions as a result. The generated bubbles are reduced and easily fractured.
Meanwhile, the vapour density becomes heavier, potentially leading to assembled vapour
blocks [8].

The phenomenon of a boiling crisis and a change of the mode of the boiling process
can therefore occur even at near-critical pressure. The boiling process ceases when the
pressure is higher than the critical pressure. Observations of the flow under supercritical
conditions showed that the heat transfer process is influenced by analogue mechanisms
to those occurring in the boiling process (under sub-critical pressure) [9–12]. Numerous
studies have been conducted on boiling heat transfer for carbon dioxide during flow in
channels and mini-channels [13–15]. However, it should be taken into account that the
thermodynamic and thermokinetic properties of carbon dioxide differ significantly from
those of many typical synthetic working fluids (belonging to the HFC group), as well as
natural fluids (such as hydrocarbons). Let et al. [8] defined the near-critical region as a
lower limit pressure equal to 0.85 pcr up to the critical point. Experimental investigations
on heat transfer characteristics at supercritical and near-critical pressures are presented
by Xu et al. [16]. They applied hexamethyldisiloxane (MM) as a working fluid because
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of its low critical parameters, which make it suitable for the medium/high temperature
supercritical ORC systems. They have emphasised that under near-critical temperature, the
heat exchanger design is one of the most challenging aspects related to the ORC modelling.

Due to changes in fluid properties at the near-critical point, the heat transfer coefficient
during evaporation can be overestimated or underestimated [10,17], which is motivation
for further studies on boiling heat transfer under high pressure conditions. Modelling
of heat transfer in a direct contact evaporator applied to low-grade heat recovery for the
ORC system has been investigated by Huang et al. [18]. For heat transfer prediction in the
direct contact evaporator, the authors have proposed a method which combines multi-input
radial basis function, neural network, and empirical mode decomposition. Direct contact
evaporation in micro-scale ORC was also investigated by Pereira et al. [19]. These authors
have studied the potential risk of the thermal degradation of the organic fluid, which results
from the fact that the combustion gas temperature is well above that of the organic fluid
thermal degradation-limiting temperature. Results of near-critical point heat transfer in
microchannels while using CO2 as a working fluid have been presented by Jajja et al. [20].
Infrared thermography has been applied to obtain local heat transfer data. These authors
have pointed out that existing supercritical heat transfer correlations developed for uniform
wall heating conditions cannot accurately predict heat transfer for single wall heating
boundary conditions. Correlations for nucleate pool boiling heat transfer for synthetic
refrigerants R245fa and R1233zd (E) applied to the ORC cycle have been proposed by
Welzl et al. [21]. Their experimental results have revealed that the heat transfer correlation
developed by Cooper as well as the correlation proposed by Gorenflo et al. [22] may be the
most accurate with mean absolute deviations between 4.75% and 15.65% for both tested
working fluids. Dalkilic et al. [23] proposed empirical correlations for the convective heat
transfer in the evaporators for refrigerant R134a. Recently, Belyaev et al. [24] conducted
experiments for refrigerants R113 and RC318 in the temperature range from 30 to 180 ◦C
in channels with a diameter of 1.36 mm to 0.95 mm. They noticed that for such high
pressures, despite the very small diameter of the channel, the obtained trends resembled
those that are characteristic of conventional channels. Extensive research for high pressure
conditions was carried out recently by Jakubowska and Mikielewicz [25] on the basis of
the previously developed heat transfer correlation of Mikielewicz [26]. They confirmed
reasonably good predictivity of the proposed heat transfer correlation for tested fluids.
Guo et al. [27] indicated on the basis of systematic experimental research that for R134a
in the pressure to critical pressure ratio range from 0.1 to 0.88, convection boiling was the
main heat transfer mechanism.

It should also be taken into account that numerous flow boiling heat transfer correla-
tions have been proposed for low and medium saturation pressures, which may be used as
a basis for the prediction of heat transfer for high saturation pressure conditions [28,29].
However, there is still a clear need to analyse the applicability of these heat transfer cor-
relations under near-critical conditions, especially for natural working fluids as the most
perspective working substances. The above motivates the present experimental investiga-
tions of flow boiling in a tubular channel under near-critical pressure. The heat transfer
coefficient measurement methodology based on the application of the indirect technique is
presented. The primary motivation of the present research is to provide experimental data
for isobutane (R 600a) as a natural working substance. Experimental results for near-critical
pressures for isobutane in the context of applicability of existing well-known boiling heat
transfer correlations may be the main contribution to the state of the art. In order to identify
the applicability of heat transfer correlations under near-critical conditions and for other
fluids, two synthetic refrigerants, R-134a and R-507A, have been selected as working fluids
for the investigations. Therefore, the proposed modification of the boiling heat transfer
correlation is based on enlarged experimental data.
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2. Apparatus and Methodology
2.1. Experimental Apparatus

The test facilities were designed and built specially for the purpose of these investi-
gations. The testing loop was modified and instrumented for the refrigerants used as test
fluids in order to perform experiments under conditions of high operating pressures. The
schematics of the experimental apparatus with the tested heat exchanger applied are shown
in Figure 2, and the main components of the stand are listed in the figure description.

The system consists of three loops: refrigerant loop, liquid cooling loop, and liquid
heating loop. The test heat transfer section consisted of six tube-in-tube type exchangers,
length 528 mm, connected in a series as shown in Figure 2. Detailed geometry of the test
section is presented in Figure 3. A photo of the entire test section is presented in Figure 4.

Each of the tube-in-tube heat exchangers was equipped with pressure and temperature
sensors. The test section was made of copper. The liquid refrigerant undergoes a boiling
process in the inner tube while the heated thermal oil (propylene glycol) flows through
the annulus. The diameter of the inner tube is 12.0 mm, the diameter of the outside tube
is 22.0 mm, and the thickness of both the inner and outer tube walls is 1.0 mm. In the
heating liquid loop, electric heaters of 20 kW and 40 kW were used. The condenser cooling
system was equipped with an automatically controlled fan cooler. In both loops, propylene
glycol was used as the working fluid. Additionally, both loops are equipped with liquid
pumps supplied with frequency converters. This allows the adjustment of the refrigerant
flow rates, as well as for varying of thermal parameters in a wide range. Both systems
are fully instrumented with transducers for measurement of temperatures, pressures, and
flow rates. The design of the entire testing rig allows the precise maintenance of all test
parameters within a specific range. The test-stand was equipped with temperature sensors
and pressure transducers installed in the critical locations and other locations of interest.
Additionally, sight-glasses were installed at various locations to observe the flow pattern.
For all data acquisition, a modular system with low-noise chassis and dedicated amplifiers
connected to a high-speed multifunction data acquisition module installed in the PC was
used. The computer uses dedicated data acquisition and data processing software that can
receive on-line data from the NIST database [30].

The testing stand was equipped with a high-class calibration system for measurement
paths, pressure and temperature transducers, and flow meters. All sensors and transducers
have been calibrated in accordance with ISO 9000. The calibration of thermocouples used
on the tested exchanger is made before each measurement series with an accuracy of
±0.15 K within the range provided for in the tests. Mutual deviations of thermocouples
are not greater than ±0.1 K. For the measurements of mass flow rate of glycol and boiling
fluid, Endress-Hauser Promass 83 mass flow meters with measurement accuracy of 0.1%
for the liquid phase were used. Two kinds of pressure transducers were applied in the
testing stand, i.e., Endress + Hauser Cerabar S PMC71 (maximum pressure 40 bar located
at the outlet of the liquid pump (see point 2, Figure 2), and the rest were Druck pressure
transducers (maximum pressure 40 bar). The DPI-145 calibrator was used to calibrate the
pressure measurement path. Taking into account the measurement ranges of the pressure
sensors, the calibration was carried out in the pressure range of 3 ÷ 20 bar. During the
pressure transducer calibration procedure, after checking the tightness of the system, it was
pressurized with nitrogen to an absolute pressure of about 20 bar. The readings of the DPI-
145 calibrator were considered as the basis for the calibration procedure. The measurement
system recorded the indications of individual transducers. During the measurements, at
least 100 samples were taken for each recorded pressure, from which the average value was
determined. Reference pressure indications were recorded manually. In the proper tests,
the pressure measurement paths will be recalibrated for the values provided in the boiling
tests in the near-critical range for the selected working medium. The average accuracy
of pressure measurement was ±0.3% of the transducer readings for the entire pressure
measurement path. On the basis of the above presented measurement uncertainties, the
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average measurement error of the heat flux calculated by the total differential method for
the test sections for the entire measurement range was approx. 12%.
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2.2. Methodology of Measurement of Heat Transfer Coefficient

The surface heat transfer coefficient for flow boiling inside tubes in the heat exchanger
section was determined by means of separation of the heat transfer resistances. The
boiling surface heat transfer coefficient was determinate on the basis of the overall heat
transfer coefficient k measurement and measurement of the convective surface heat transfer
coefficient for the heating fluid (glycol) side. The overall thermal resistance is:

1
k
=

1
αi

+ Rt +
1
αo

, (1)

where k is the overall heat transfer coefficient, αi, αo are the surface heat transfer coefficients
for boiling liquid inside the tube and heating fluid (glycol) in the annulus, respectively, and
Rt is the thermal conductivity resistance of the tube material. Heat flux transferred from
the heating glycol to the boiling fluid was calculated as follows:

.
Qg =

.
mgcg(tgo − tgi), (2)

where
.

mg is the mass flow rate of glycol, cg is the average specific heat of glycol, and tgi,tgo
are the glycol temperatures at the heat exchanger inlet and outlet, respectively. All these
quantities were measured directly. The overall heat transfer coefficient k was calculated
from the following formula:

k =

.
Qg

Aw · ∆Tm
, (3)

where ∆Tm is the logarithmic difference of temperatures between boiling fluid and heating
glycol at the heat exchanger inlets and outlets, and Aw is the heat transfer surface area. The
average temperature of the boiling liquid was calculated as the saturation temperature cor-
responding to the measured average static pressure inside the test heat exchanger section.
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Since the surface heat transfer coefficients for both sides of the tube wall are not known,
it is necessary to apply the method based on the thermal resistance separation. In order
to determine the surface heat transfer coefficient for the boiling fluid, it is necessary to
apply the measurement approach for the surface heat transfer coefficient for the heating
fluid side.

The indirect measurement method based on the Wilson plot technique for surface
heat transfer coefficient αo for heating fluid (glycol) was applied. In this method, no direct
measurement of the tube wall temperature (inside or outside of the tube) is required. The
wall temperature should be determined on the basis of simultaneous determination of the
heat transfer coefficient. The average wall temperature on the glycol side was estimated
as follows:

two = tgm −
.

Qg

0.023AwoΨgo
, (4)

where tgm is the logarithmic average glycol temperature in the test heat exchanger section,
and for the turbulent and transient flow the coefficient Ψgo is defined with the use of the
Sieder and Tate [31] heat transfer correlation as follows:

Ψgo =
λg

Dgc
· Reg

0.80 · Prg
0.40, (5)

where Dgc denotes the hydraulic diameter of the annulus for glycol flow. The heat transfer
coefficient for glycol αo was therefore determined using the following formula:

αo = Co ·Ψo, (6)

Additionally,

Ψo = Ψgo

(
µg(tgm)

µg(two)

)0.14

(7)

The coefficient Co is the first unknown constant parameter that should be obtained
on the basis of the experimental data. Analogically, the average wall temperature at the
evaporating liquid side inside the tube was estimated from the following equation:

twi = trm +

.
Qg

0.023AwiΨri
, (8)

where trm is the logarithmic average refrigerant temperature in the test heat exchanger
section (assumed as average saturation temperature on the basis of the measurement of
static pressure at the inlet and outlet of the test section). The coefficient Ψri,t is defined
assuming the turbulent and transient flow of one-phase fluid with the application of the
Sieder and Tate heat transfer correlation [8]:

Ψri,t =
λrl
Di

Rer
0.80Prr

0.40 (9)

In the case of laminar flow inside the test tube section, the well-known heat transfer
correlation for laminar flow proposed by Sieder and Tate [31] was applied:

Nui =
αiDi
λr

= 0.015
(

RerPrr
Di
L

)0.33
(10)

Therefore, for laminar flow, the following coefficient was applied:

Ψri,l =
λr

Di

(
RerPrr

Di
L

)0.33
(11)
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The surface heat transfer coefficient for inside the tube wall αi is:

αi = CiΨi, (12)

Furthermore:

Ψi = Ψri

(
µr(trm)

µr(twi)

)0.14

, (13)

where Ψri = Ψri,t for turbulent flow, and Ψri = Ψri,l for laminar flow.
Note that in this case it is necessary to carry out the dedicated measurements with a

single-phase flow of refrigerant inside the tube. This part of the experimental investigations
may be viewed as a calibration test due to the way that the heat transfer coefficient for the
heating fluid side (glycol) should be identified. The discussed calibration measurements
were carried out using liquid subcooled refrigerant R134a.

Based on the above considerations, Equation (1) can be transformed into the follow-
ing form: (

1
k
− Rt

)
·Ψo ·

Awo

Awi
= Ci

−1 · Ψo

Ψi
· Awo

Awi
+ Co

−1 (14)

The thermal resistance of the tube was calculated as:

Rt =
δt

λt

Di
Dm

(15)

Using linear regression, the parameters Ci and Co can be calculated. Assuming the
following notation:

Y =

(
1
ki
− Rt

)
Ψo

Awo

Awi
, (16)

and
X =

Ψo

Ψi
· Awo

Awi
, (17)

The following linear relationship is obtained:

Y = Co
−1 + Ci

−1X (18)

The constants Co and Ci were determined on the basis of the reference measurements
with a single-phase flow of subcooled liquid refrigerant R-134a inside the tube, and heated
glycol flow in the annulus. These constants were determined by means of linear regression.
In these experiments, the obtained coefficient Co was applied for calculations of the surface
heat transfer coefficient for the glycol side.

The main parts of the experimental investigations were carried out for the conditions
of the boiling process inside the tube. Having the coefficient Co for glycol flowing in the
annulus, it is possible to apply Equations (6) and (7) for calculation of the surface heat
transfer coefficient αo for glycol. The surface heat transfer coefficient for boiling refrigerant
inside the tube was calculated from Equation (1).

2.3. Calibration Results of Heat Transfer for Heating Fluid Side

Since the modified Wilson plot technique was used in calculation, the results of the
linear regression are shown in Figure 5, in which coordinates Y and X were calculated
using Equations (15) and (16), respectively.
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In Table 1, the coefficients Co and Ci obtained from experimental data are shown. Note
that in the original heat transfer correlation for turbulent flow [8] the constant is 0.023, and
for the case of laminar flow the constant is 0.015. However, these original constants may be
applied for hydraulically and thermally developed flow. The obtained results indicate that
such conditions did not occur in the testing stand, which was motivation for the testing
stand calibration that ensures improved accuracy of the obtained experimental data. The
constant coefficient Co is the basis for calculation of the glycol side surface heat transfer
coefficient αo.

Table 1. The coefficients Co and Ci obtained from the reference measurements.

Heating Glycol Flow Coefficient Value

laminar Co/0.015 0.93133
turbulent Co/0.023 1.16479

3. Experimental Results

The experimental investigations covered the measurement of the average heat transfer
coefficient for isobutane (R600a) and two synthetic fluids, R-134a and R-507A, under
conditions of various levels of pressure at the inlet to the tested heat transfer sections. The
experiment ran heat flux density 0.6 to 10 kW/m2 and mass velocity 60 to 200 kg/(m2·s).
The measurement approach presented in Section 2.2 was applied for each tube-in-tube heat
transfer section. Therefore, the obtained results may be thought as a kind of local surface
heat transfer coefficient. Local two-phase quality of the two-phase flow was determined
on the basis of the energy balance of each tested heat transfer section of the tubular heat
exchanger. The test conditions are presented in Table 2. The selected results of the single
series for each type of investigated refrigerant are presented in Figures 6–8.

Table 2. Parameters of the experimental investigations of boiling heat transfer.

Working Fluid p/pcr q [kW/m2] G [kg/(m2·s)]

R600a 0.501–0.893 0.39–10.42 28.01–67.68
R134a 0.700–0.856 0.43–9.94 54.43–190.0
R507A 0.503–0.985 0.34–5.35 56.09–126.3

The maximum heat transfer coefficient was obtained for the investigated cases at
the two-phase quality—approximately 0.4—while for significantly lower pressure the
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maximum heat transfer coefficient for flow boiling is observed at the local quality of
app. 0.7–0.8. The heat transfer coefficient for the quality of two-phase flows higher than
0.4 scarcely depends on the quality. The observed effect of a shift of quality at which there
is observed maximum heat transfer to a significantly lower level may be explained as a
result of the change in the thermokinetic properties under near-critical conditions. The
surface tension and density difference between saturated liquid and vapour decreases with
an increase in saturation pressure. Therefore, the bubble diameters become smaller under
high pressure conditions, which is the reason for the shifting of the mist-annular two-phase
pattern flow to a lower level of two-phase quality.
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The authors tested several boiling heat transfer correlations provided in the litera-
ture [31–33] including correlations proposed by Chen, Steiner and Taborek, both given
in [31], Gungor and Winterton [32], and Shah given in [33]. On the basis of these inves-
tigations, it may be concluded that the correlation of Gungor–Winterton gives the best
fit values of the heat transfer coefficient. Gungor and Winterton proposed the following
relationship [32]:

αGW = αconvE + αpbS (19)

The quantities applied in Equation (19) are as follows—convective heat transfer coeffi-
cient for turbulent flow:

αconv = 0.023
λ

D i
Rel

0.80Pr0.40, (20)

The pool boiling heat transfer coefficient according to the heat transfer correlation
proposed by Cooper [34] is:

αpb = 55pR
0.12(− log pR)

−0.55M−0.50q0.67, (21)

where pR is reduced pressure p/pcr, M–molar mass, and q–heat flux density. The two-phase
convection multiplayer E is equal to:

E = 1 + 24000Bo1.16 + 1.37χ−0.86, (22)

where the Lockhart–Martinelli parameter is defined as follows:

χ =

(
ρ′′

ρ′

)0.5( µ′

µ′′

)0.1(1− x
x

)0.9
, (23)

The boiling suppression factor S is given as follows:

S =
[
1 + 1.15 · 10−6E2Re1.17

ri

]−1
. (24)
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The Boiling number Bo is defined as follows:

Bo =
q

h f gG(1− x)
. (25)

The ratio of the heat transfer coefficient obtained from the above Gungor–Winterton
correlation to the experimental values, αG−W/αexp, is presented in Figure 9.

The original heat transfer correlation proposed by Gungor–Winterton overpredicts
the surface heat transfer coefficient for low heat fluxes and underpredicts the heat transfer
coefficient in comparison with the experimental data for high heat fluxes (see Figure 9).
Therefore, the authors propose the following modification of this correlation elaborated for
all tested refrigerants:

αcor = αGW exp
[
−45.8(1− Bom

−0.016)
]
, (26)

where the modified boiling number is defined as follows:

Bom =
qlk

h f gµ′
ρ′

ρ′′
, (27)

The capillary constant is defined as follows:

lk =
√

σ

g(ρ′ − ρ′′ )
. (28)
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phase flow.

A comparison of the proposed modified heat transfer correlation, Equation (26),
with predictions based on the original Gungor–Winterton correlation, Equation (19), and
experimental data is presented in Figure 10. The coefficient of determination for the entire
experimental data for the proposed heat transfer correlation is R2 = 0.51. The proposed
correction significantly improves the prediction of the heat transfer coefficient for the lowest
and highest heat flux densities.
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4. Conclusions

The measurement procedure for the local heat transfer coefficient for flow boiling
of selected working fluids dedicated to the ORC cycle was presented. Heat transfer
coefficients were determined by means of separation of the thermal resistances. The
calibration procedure of the tested heat exchanger with the measurement sections by means
of the modified Wilson plot technique was applied. The selected experimental results of the
surface heat transfer coefficient are presented for three tested fluids, i.e., isobutane (R600a)
as a natural working fluid and two synthetic fluids, R-134a and R-507A. The experimental
investigations covered a heat flux density of 0.6 to 12 kW/m2 and a mass velocity of 60 to
200 kg/(m2·s). The following conclusions may be drawn on the basis of the obtained
experimental results:

• The maximum heat transfer coefficient occurred for the two-phase quality of approx-
imately 0.4 for all the tested fluids under high pressure conditions. Note that the
two-phase quality at which there is a maximum heat transfer coefficient under low
and moderate pressures is app. 0.7–0.8. A shift of quality of the maximum heat
transfer coefficient may be viewed as a result of thermokinetic property changes under
near-critical pressure conditions. The above may be thought of as a characteristic
feature of the boiling process under near-critical conditions.

• The Gungor–Winterton boiling heat transfer correlation may be recommended for
application to tested fluids. However, this heat transfer correlation overpredicts surface
heat transfer coefficients for lowest (up to 3 kW/m2) and highest (over 7 kW/m2) heat
flux densities for all tested fluids.

• In order to improve the accuracy of the Gungor–Winterton heat transfer correlation,
its modification was proposed based on a multiplier with a modified Boiling number.
The coefficient of determination for the entire experimental data for the proposed
modified heat transfer correlation is R2 = 0.51.

There is still a clear need to continue this research on boiling heat transfer, especially in
the close vicinity of the critical point, and especially for natural substances as a prospective
working fluid for power engineering systems.
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Nomenclature

A surface area, m2

Bo boiling number, Equation (27)
C constant of Wilson plot technique
c specific heat at constant pressure, J/(kg·K)
D diameter, m
E convection multiplayer, Equation (22)
G mass velocity, kg/(m2·s)
g gravitational acceleration, m/s2

h specific enthalpy, J/kg
k overall heat transfer coefficient, W/(m2·K)
L length, m
l constant, Equation (27)
M molar mass, kg/kmol
·

m mass flow rate, kg/s
Nu Nusselt number, Nu = α D/λ
Pr Prandtl number, Pr = µ c/λ
·

Q heat flux, W
q heat flux density, W/m2

R thermal resistance, m2·K/W
Re Reynolds number, Re = GD/µ
S boiling suppression factor, Equation (23)
t temperature, ◦C
X reduced Wilson plot technique coordinate
x quality of two-phase flow
Y surface tension, N/m
Greek symbols
α surface heat transfer coefficient, W/(m2·K)
χ Lockhart-Martinelli parameter, Equation (23)
λ thermal conductivity, W/(m·K)
µ dynamic viscosity, Pa·s
ρ density, kg/m3

σ surface tension, N/m
Subscripts
bc pool boiling
cr critical
conv convection
fg vaporisation
g glycol (heating fluid)
i inside; inlet
k capillary
l laminar flow; liquid phase
m mean; modified
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r refrigerant (boiling fluid)
o outlet; outside
t tube; turbulent flow
v vapour phase
w tube wall
′ saturated liquid
” saturated vapour
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