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Abstract: As the largest and most important natural terrestrial ecosystem, forest plays a crucial role
in reducing the concentrations of greenhouse gases in the atmosphere, mitigating global warming,
maintaining the global ecological balance, and promoting global biological evolution and community
succession. The accurate and rapid assessment of forest biomass is highly significant for estimating
the regional carbon budget and monitoring forest change. In this study, Landsat images and China’s
National Forest Continuous Inventory data of 1999, 2004, 2009, and 2014 were used to establish
extreme gradient boosting (XGBoost) models for forest aboveground biomass (AGB) estimation based
on forest type in the Xiangjiang River Basin, Hunan Province, China. Kriging interpolation of the
AGB residuals was used to correct the error of AGB estimation. Then, a new XGBoost model was
established using the final corrected AGB maps and climate data to estimate the AGB under different
climate scenarios during the 2050s and 2070s. The results indicated that AGB estimation using the
XGBoost model with correction via Kriging interpolation of the AGB residuals can significantly
improve the accuracy of AGB estimation. The total AGB of the study area increased over time from
1999 to 2014, indicating that the forest quality improved in the study area. Under the different climate
scenarios, the total AGB during the 2050s and 2070s was predicted to decline continuously with
increasing of greenhouse gas emissions, indicating that greenhouse gas emissions have a negative
impact on forest growth. The results of this study can provide data support for evaluating the
ecological function and value of forest ecosystems, and for formulating reasonable forest management
measures to mitigate the effects of climate change.

Keywords: forest aboveground biomass; remote sensing; climate change; XGBoost; Xiangjiang
River Basin

1. Introduction

The Fifth Assessment Report (AR) of the Intergovernmental Panel on Climate Change
(IPCC) confirms that the global climate has experienced significant changes characterized
by global warming over the past century [1]. The sixth AR of the IPCC provides stronger
evidence to further confirm the objective facts of global warming in the last 100 years and
a clearer signal of the impact of human activities on climate warming [2]. Global climate
change has a significant impact on natural ecosystems and the social economy, which
will threaten human survival and pose long-term and severe challenges to the sustainable
development of human societies; thus, global climate change has evolved from a scientific
issue to a political, economic, and environmental issue of global concern [3–5]. As an
important part of terrestrial ecosystems, the forest ecosystem has an important impact on
the terrestrial biosphere and other surface processes, and plays a crucial role in promoting
global biological evolution and community succession and maintaining global ecological
balance [6–9].

Forest biomass, which is the most basic quantitative feature of the forest ecosystem and
an important indicator of its carbon sources and sinks, can reflect the complex relationship
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between forest material cycles and energy flows with the environment [10–13]. Changes of
forest aboveground biomass (AGB) can reflect the quality and status of the forest ecosystem,
as well as the effects of natural disturbances, human activities, and climate change [14–16].
Therefore, regional and global estimates of AGB under a changing climate not only provide
a theoretical basis for studies of the terrestrial ecosystem carbon cycle and global climate
change, which play an important role in understanding and monitoring the response of
forest ecosystems to greenhouse gas emissions, but also provide strategic guidelines for
sustainable forest management, which is crucial for the rational use of forest resources and
improving the forest ecological environment [17–20].

A rapid and accurate estimation of AGB on a regional scale has always been a key issue
in forest research. The main approaches used for AGB estimation in previous studies can be
classified into (1) field measurement and (2) combined use of remote sensing data and field
measured plot data [21,22]. The field measurement method is suitable for a small forest
stand or forest sample plot; it cannot be used to study the distribution and variation of AGB
at the regional scale because it is too costly, time consuming, labor intensive, and damaging
to the forest [23,24]. It should be emphasized that the field measurement plot data is
essential for AGB estimation in combination with remote sensing data. Remote sensing,
as an emerging Earth observation technology, not only provides multi-scale data covering
a large area for the rapid and quantitative evaluation of regional AGB but also enables
real-time monitoring of surface parameters for analyzing and evaluating the spatiotemporal
patterns and changes in trends of AGB [25–27]. Numerous studies showed that remote
sensing data was highly correlated with AGB, effectively predicting and monitoring AGB
at a regional scale [28–31]. Therefore, regional AGB estimation can be predominantly
conducted using remote sensing data. The AGB estimation based on remote sensing
data mainly involves two aspects: remote sensing data source and estimation model.
Various remote sensing data (mainly including optical remote sensing, microwave radar,
and LiDAR) have been used to estimate the regional forest AGB [32–34]. Among all
the available satellites, Landsat has certain advantages: it provides cross-calibrated data
spanning more than 40 years, has high spectral characteristics and spatial fidelity for global
coverage, and provides free and open access to details [34–36]. The estimation model
includes an empirical model, a physical model, a mechanism model (also called a process
model), and a comprehensive model [8,37–39]. The empirical model, which establishes
the relationship between the measured plot AGB and the remote sensing variables based
on statistical analysis, is the most commonly used method for AGB estimation based on
remote sensing data [21,40].

Xiangjiang River, which is an important tributary of the Yangtze River, is regarded
as the mother river in Hunan Province, China, with the Xiangjiang River Basin forming
the core economic region and development zone in the Hunan Province. Therefore, rapid
and accurate estimates of the status and dynamic changes of AGB in the Xiangjiang River
Basin are required to evaluate the forest ecological service function of the basin and help
formulate scientific policies and development models for coping with climate change,
protecting ecological security, and promoting sustainable forest development in the basin.
In this study, we use National Forest Continuous Inventory (NFCI) data and Landsat data
in combination with the extreme gradient boosting (XGBoost) model to establish an AGB
estimation model and draw AGB maps for the study area. On the basis of these results, we
analyze the response of AGB to climate change, and estimate the distribution of AGB under
different future climate change scenarios. The accuracy of XGBoost for AGB estimation
based on remote sensing data was significantly improved compared with the accuracy
of linear regression [22]. Furthermore, the methods used in this study such as XGBoost,
spatial analysis, and Kriging interpolation, are common methods, which are convenient for
other study areas.



Sustainability 2022, 14, 14222 3 of 27

2. Study Area

The Xiangjiang River (9.47 × 104 km2, 24◦31′ N–29◦01′ N, 110◦30′ E–114◦15′ E) is
the largest tributary of the Dongting Lake in the Yangtze River Basin (Figure 1). The
Xiangjiang River Basin, which is located within both the Yangtze River Economic Belt and
South China Economic Circle, is characterized by densely distributed towns, a concentrated
population, convenient transportation, and a developed economy; thus, it is the core area of
socioeconomic development in Hunan Province. The Xiangjiang River Basin is a long basin
with complex topography; the east, south, and west parts are surrounded by mountains,
the north is relatively flat, and the center is predominantly hills, with the terrain tilted
from south to north in a horseshoe shape (Figure 1). The entire basin is located in a humid,
subtropical monsoon climate zone with abundant sunlight, water, and heat, and obvious
seasonality. It is hot in summer and cold in winter, with an annual average temperature of
17.5 ◦C. Annual precipitation is unevenly distributed throughout the year, i.e., concentrated
in spring and summer, and the annual average precipitation and evaporation are 1400 mm
and 1200 mm, respectively. The typical vegetation is subtropical evergreen forest, with a
forest cover percentage of 54.4% [41].
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3. Data
3.1. Forest Inventory Data

Forest inventory data are important for AGB estimation based on remote sensing. In
this study, the NFCI data of the Xiangjiang River Basin in Hunan Province from 1999, 2004,
2009, and 2014 were used. The NFCI data are currently the highest-quality data available
at the provincial scale in China [42,43]. The size of each square plot is 25.82 m × 25.82 m
(approximately 0.0667 ha), and the plots were systematically allocated based on a grid of
4 km × 8 km [34]. The data of the plots situated on non-forestry land (such as water areas,
cropland, urban land, and bare land) or covered by clouds in the remote sensing images
were eliminated. Ultimately, 1685 plots were used for modeling in this study (Figure 2).
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Figure 2. Spatial distribution of the sample plots, including the forest types and observed AGB
from 1999.

The AGB of a plot is the sum of the AGBs of all the trees recorded in the plot. The AGB
of a tree was calculated by using the general one-variable aboveground biomass model,
which can be expressed as follows [44]:

Ma = 0.3× p× D7/3 (1)

where Ma (kg) is the AGB of a tree, D (cm) is the diameter of the tree at breast height, and p
(g/cm3) is the basic wood density (Table A1). The plot AGB was converted to biomass per
hectare (Mg/ha).

Based on the species standing volume according to China’s technical regulation for
forest continuous inventory, the plots were classified into three types, i.e., broadleaved,
coniferous, and mixed forest (Table 1 and Figure 2). The statistical results of AGB are
reported in Table 2.
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Table 1. Classification standard of forest types.

Forest Type Standard of Division

Broadleaved Pure broadleaved forest (single broad-leaved species stand volume ≥ 65%),
Broadleaved mixed forest (broad-leaved species total stand volume ≥ 65%)

Coniferous
Pure coniferous forest (single coniferous species stand volume ≥ 65%),
Coniferous mixed forest (coniferous species total stand volume ≥ 65%)

Mixed Broadleaved-coniferous mixed forest (total stand volume of coniferous or
broadleaved species accounting for 35–65%)

Table 2. Distribution of the plot AGB values (Mg/ha) of the different forest types.

Year
Forest
Type Count Minimum Maximum Mean Standard

Deviation

Percentage of Different AGB
Ranges (%)

<30 30–60 60–100 >100

1999 All 1685 0.420 246.188 33.196 27.760 60.276 28.011 8.674 3.039
Broadleaved 682 0.420 246.188 29.644 36.934 70.355 16.120 7.923 5.601
Coniferous 793 7.397 123.115 33.897 16.569 56.808 35.211 7.277 0.704

Mixed 210 18.466 135.054 42.060 24.441 40.708 39.381 16.372 3.540

2004 All 1685 0.550 248.447 37.034 29.465 54.088 29.724 12.597 3.591
Broadleaved 683 0.550 248.447 33.781 37.055 65.027 18.169 10.929 5.874
Coniferous 793 7.893 166.310 38.553 21.989 48.357 36.737 12.911 1.995

Mixed 209 19.035 165.184 41.849 24.834 40.265 40.708 16.814 2.212

2009 All 1685 0.607 265.575 39.112 31.238 51.547 30.829 12.541 5.083
Broadleaved 683 0.607 265.575 36.010 39.712 61.612 20.902 9.563 7.923
Coniferous 794 7.561 164.652 39.711 21.709 46.714 37.207 13.498 2.582

Mixed 208 18.917 208.682 46.898 28.943 37.168 38.938 18.584 5.310

2014 All 1685 0.682 273.073 48.026 34.140 35.801 37.680 18.785 7.735
Broadleaved 685 0.682 273.073 46.459 42.713 47.131 26.639 15.027 11.202
Coniferous 795 7.676 185.178 47.415 25.642 29.577 46.479 18.897 5.047

Mixed 205 19.833 221.553 55.402 29.718 22.566 40.265 30.531 6.637

Note: “All”, results of all forest plots with no classification of forest type.

3.2. Remote Sensing Data

Landsat Surface Reflectance products, which were derived from Landsat 5 TM (The-
matic Mapper), Landsat 7 ETM+ (Enhanced Thematic Mapper), and Landsat 8 OLI (Op-
erational Land Imager) satellite images from 1999, 2004, 2009, and 2014, were used in
this study. Li et al. analyzed Landsat images taken in various seasons to examine the
accuracy of AGB estimation and demonstrated the highest levels of accuracy in images
taken in autumn [45]. Therefore, Landsat images taken in autumn were considered for
use in this study. The images were downloaded from the United States Geological Survey
(USGS) website (https://earthexplorer.usgs.gov/, accessed on 1 May 2021). There were
30 scene images (Figure 1 and Table S1 in the Supplementary Information section). The
images were resampled to a pixel size of 25.82 m × 25.82 m, which was the same size
as the inventory plots. Lu et al. explored the relationship between the Landsat 5 TM
image textures and forest AGB in Rondônia, the Brazilian Amazon, in 2005. The results
indicated the correlation between the textures and forest AGB, which might improve the
AGB estimation [46]. Therefore, the textures were considered for use in this study. The
texture images were calculated using a grey-level co-occurrence matrix algorithm with
3 × 3-, 5 × 5-, and 7 × 7-pixel windows. In addition, 20 vegetation indices were generated
for this study (Table 3; Table S2, in the Supplementary Information section). Landsat data
were processed by Environment for Visualizing Images (ENVI) software (version 5.3.1;
Boulder, CO, USA).

https://earthexplorer.usgs.gov/
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Table 3. Summary of predictor variables including Landsat Surface Reflectance band images, vegeta-
tion indices, and texture images for AGB estimation.

Variable Type Variable
Number Variable Code Description

Band
Image 6 B1, B2, B3,

B4, B5, B6

Landsat Surface Reflectance Bands:
B1, Blue band; B2, Green band; B3, Red band;

B4, NIR band; B5, SWIR1 band; B6, SWIR2 band

Vegetation
Index 20

ARVI
DVI
EVI

GARI
GDVI

GNDVI
GRVI
GVI
IPVI
LAI

MNLVI
MSRVI
NDVI
NLVI

OSAVI
RDVI
RVI

SAVI
TDVI
VARI

Atmospherically Resistant Vegetation Index
Difference Vegetation Index
Enhanced Vegetation Index

Green Atmospherically Resistant Index
Green Difference Vegetation Index

Green Normalized Difference Vegetation Index
Green Ratio Vegetation Index

Green Vegetation Index
Infrared Percentage Vegetation Index

Leaf Area Index
Modified Non-Linear Vegetation Index

Modified Simple Ratio Vegetation Index
Normalized Difference Vegetation Index

Non-Linear Vegetation Index
Optimized Soil Adjusted Vegetation Index
Renormalized Difference Vegetation Index

Ratio Vegetation Index
Soil Adjusted Vegetation Index

Transformed Difference Vegetation Index
Visible Atmospherically Resistant Index

Texture Image 144 BiTjCon, BiTjDis, BiTjMea, BiTjHom,
BiTjSeM, BiTjEnt, BiTjVar, BiTjCor

Landsat bands texture measurement using
gray-level co-occurrence matrix

Note: BiTjXXX represents a texture image developed in the Landsat Surface Reflectance band i (1–6) using the
texture measure XXX with a j × j (3, 5, 7) pixel window, where XXX is Con (contrast), Dis (dissimilarity), Mea
(mean), Hom (homogeneity), SeM (angular second moment), Ent (entropy), Var (variance), or Cor (correlation).

3.3. Land Cover Data

The European Space Agency (ESA) Climate Change Initiative (CCI) project consistently
delivered annual global land cover (LC) maps at a 300 m spatial resolution from 1992 to
2015 [47]. The CCI-LC maps for 1999, 2004, 2009, and 2014 were downloaded from the
ESA website (http://maps.elie.ucl.ac.be/CCI/viewer/index.php, accessed on 1 May 2021).
The CCI-LC maps were then consolidated into seven types based on the typology of the
CCI-LC, i.e., broadleaved, coniferous, and mixed forests, as well as cropland, urban land,
water, and others (including bare land, grassland, etc.) (Figure 1).

To validate the accuracy and consistency between the classifications of the NFCI and
CCI-LC, the attributes of the CCI-LC maps were extracted by the NFCI plot center. The CCI-
LC maps were highly accurate, and can therefore satisfy the research needs of this study.
For example, the producer accuracies of the CCI-LC map of broadleaved, coniferous, and
mixed forests in 2014 were 0.91, 0.88, and 0.82, respectively, and the user accuracies were
0.93, 0.91, and 0.92, respectively. Furthermore, the overall accuracy and kappa coefficient
of broadleaved, coniferous, and mixed forests were 0.92 and 0.88, respectively. The CCI-
LC maps were then converted from raster to polygon to clip the AGB maps based on
forest type.

http://maps.elie.ucl.ac.be/CCI/viewer/index.php
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3.4. Climate Data

The climate data used in this study can be divided into two types, namely historical
climate data and future climate scenario data. The climate scenarios for the 2050s and
2070s were derived from the downscaled global climate model (GCM) of the IPCC AR5.
The Beijing Climate Center Climate System Model version 1.1 (BCC-CSM1-1), which was
developed by the Beijing Climate Center of the China Meteorological Administration,
provided the data on China for the IPCC AR5 [48]. The BCC-CSM1-1 included data on four
climate change scenarios under different representative concentration pathways (RCPs),
i.e., RCP2.6, RCP4.5, RCP6.0, and RCP8.5, which represent possible ranges of total radiative
force (the cumulative measure of human emissions of greenhouse gases from all sources
expressed) values are respectively 2.6, 4.5, 6.0, and 8.5 W/m2 for the year 2100 [48,49]. The
climate scenario data used in this study were downloaded from the WorldClim Global
Climate Data website (http://www.worldclim.org/, accessed on 1 June 2016). The data
include 19 climate variables derived from monthly temperature and precipitation values
to generate more biologically meaningful data that reflect a range of temperature and
precipitation summaries (e.g., trends, seasonality, and extremes) (Table 4). The spatial
resolution of the data was 30” (approximately 1 km × 1 km).

Table 4. Climate variables used for AGB estimation.

Variable Code Description Unit

Bio01 Annual Mean Temperature ◦C

Bio02 Mean Diurnal Range (Mean of monthly [max.
temperature—min temperature])

◦C

Bio03 Isothermality (Bio02/Bio07) (×100) –
Bio04 Temperature Seasonality (standard deviation × 100) ◦C
Bio05 Max Temperature of Warmest Month ◦C
Bio06 Min Temperature of Coldest Month ◦C
Bio07 Temperature Annual Range (Bio5–Bio6) ◦C
Bio08 Mean Temperature of Wettest Quarter ◦C
Bio09 Mean Temperature of Driest Quarter ◦C
Bio10 Mean Temperature of Warmest Quarter ◦C
Bio11 Mean Temperature of Coldest Quarter ◦C
Bio12 Annual Precipitation mm
Bio13 Precipitation of Wettest Month mm
Bio14 Precipitation of Driest Month mm
Bio15 Precipitation Seasonality (Coefficient of variation) –
Bio16 Precipitation of Wettest Quarter mm
Bio17 Precipitation of Driest Quarter mm
Bio18 Precipitation of Warmest Quarter mm
Bio19 Precipitation of Coldest Quarter mm

Historical climatic data were derived from the Dataset of Monthly Surface Observation
Values in Individual Years in China of the China Meteorological Data Service Centre
(http://data.cma.cn/, accessed on 1 September 2022). The data include 23 climate elements
from 75 surface meteorological observation stations in and around the study area. The
same climate variables in 1999, 2004, 2009, and 2014 were produced by the historical climate
data according to the calculation method of the climate scenario data using ANUSPLIN
software (version 4.3; Canberra, ACT, Australia).

4. Methods

This study first has accurately estimated the AGB in 1999, 2004, 2009, and 2014, and
then based on this result has estimated AGB under different climate scenarios for the future.

http://www.worldclim.org/
http://data.cma.cn/
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4.1. AGB Estimation Combined with Spatial Interpolation

The non-parametric XGBoost model was used to estimate the AGB in this study. XG-
Boost was proposed by Chen et al. [50] in Kaggle machine learning competitions. XGBoost
performs second-order Taylor expansion for the objective function and uses the second
derivative to accelerate the convergence speed of the model during training. Furthermore,
a regularization term is added to the objective function to control the complexity of the
tree, thereby obtaining a simpler model and avoiding overfitting [50]. XGBoost is a highly
scalable tree-structured enhanced model that can effectively handle sparse and missing
data and greatly improve the speed of the algorithm and compress the computational
memory in large-scale data training [50]. XGBoost exhibits excellent performance and is
very popular in data mining and machine learning activities globally [34].

In this study, XGBoost was used to establish AGB models for different forest types.
The model errors were then corrected by spatial interpolation to improve the accuracy of
AGB estimation. The procedure comprised the following three steps (Figure 3).

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 27 
 

4.1. AGB Estimation Combined with Spatial Interpolation 

The non-parametric XGBoost model was used to estimate the AGB in this study. 

XGBoost was proposed by Chen et al. [50] in Kaggle machine learning competitions. 

XGBoost performs second-order Taylor expansion for the objective function and uses the 

second derivative to accelerate the convergence speed of the model during training. Fur-

thermore, a regularization term is added to the objective function to control the complex-

ity of the tree, thereby obtaining a simpler model and avoiding overfitting [50]. XGBoost 

is a highly scalable tree-structured enhanced model that can effectively handle sparse and 

missing data and greatly improve the speed of the algorithm and compress the computa-

tional memory in large-scale data training [50]. XGBoost exhibits excellent performance 

and is very popular in data mining and machine learning activities globally [34]. 

In this study, XGBoost was used to establish AGB models for different forest types. 

The model errors were then corrected by spatial interpolation to improve the accuracy of 

AGB estimation. The procedure comprised the following three steps (Figure 3). 

 

Figure 3. Schematic of the workflow: AGB estimation with spatial interpolation (orange part), and 

AGB estimation under different climate scenarios for the future (blue part). 

(1) AGB modeling and estimation. The XGBoost models based on forest type were es-

tablished and the optimal predictor variables were selected based on variable im-

portance. The AGB and AGB residuals were then calculated for the entire study area. 

XGBoost defines two measures for variable importance that can be used to rank var-

iables: the first measure is calculated by the fractional contribution (Gain) of each fea-

ture to the model based on the total gain of this variable’s splits; the second measure 

is calculated by the relative number (Frequency) of times a feature be used in the trees 

[51]. More important predictor variables have higher Gain and Frequency percentages. 

The method of variable selection was derived from the study of Li et al. [34]. 

(2) Spatial analysis and spatial interpolation of AGB residuals. First, the Global Moran’s 

Index was used to evaluate the spatial autocorrelation of AGB residuals. Then, if the 

spatial autocorrelation of AGB residuals was determined, the spatial interpolation of 

AGB residuals was performed by Kriging interpolation. The Global Moran’s Index 

can measure the spatial distribution pattern of AGB residuals, i.e., clustered, dis-

persed, or random [52]. This index and both the z-score and p-value can be used to 

evaluate the significance of that spatial distribution pattern. In general, the Global 

Moran’s Index value is bounded by −1.0 and 1.0, i.e., a positive correlation exists if 
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AGB estimation under different climate scenarios for the future (blue part).

(1) AGB modeling and estimation. The XGBoost models based on forest type were
established and the optimal predictor variables were selected based on variable
importance. The AGB and AGB residuals were then calculated for the entire study
area. XGBoost defines two measures for variable importance that can be used to
rank variables: the first measure is calculated by the fractional contribution (Gain)
of each feature to the model based on the total gain of this variable’s splits; the
second measure is calculated by the relative number (Frequency) of times a feature
be used in the trees [51]. More important predictor variables have higher Gain and
Frequency percentages. The method of variable selection was derived from the study
of Li et al. [34].

(2) Spatial analysis and spatial interpolation of AGB residuals. First, the Global Moran’s
Index was used to evaluate the spatial autocorrelation of AGB residuals. Then, if the
spatial autocorrelation of AGB residuals was determined, the spatial interpolation
of AGB residuals was performed by Kriging interpolation. The Global Moran’s
Index can measure the spatial distribution pattern of AGB residuals, i.e., clustered,
dispersed, or random [52]. This index and both the z-score and p-value can be used to
evaluate the significance of that spatial distribution pattern. In general, the Global
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Moran’s Index value is bounded by −1.0 and 1.0, i.e., a positive correlation exists if
the value is greater than zero, a negative correlation exists if the value is less than zero,
and no correlation exists if the value equals zero. Kriging interpolation, which is a
geostatistical method of interpolation, assumes that the distance or direction between
sample points reflects a spatial correlation that can be used to explain variation in
the surface; it fits a mathematical function to a specified number of measured points,
or all measured points within a specified radius, to determine the value for each
point [53,54]. Moreover, Kriging interpolation has the capacity to produce a prediction
surface as well as some measure of the certainty or accuracy of the predictions [54].
Ordinary Kriging, which is the most common and extensively used Kriging method,
was used to predict the AGB residual maps for different forest types in this study.

(3) Correction and evaluation of the AGB map. The final AGB maps were obtained by
correcting the original predicted AGB maps with the AGB residual interpolation maps,
then evaluating the accuracy of the corrected maps.

4.2. Response of AGB to Climate Change

In this study, the final predicted AGB values for 1999, 2004, and 2009 were used as the
response variables, whereas the climate variables in the corresponding years were used
as the predictor variables to establish the XGBoost model for AGB estimation. Then, the
AGB result for 2014 was used as validation data to evaluate the performance of the model.
Finally, the AGB maps were predicted under different climate change scenarios in the 2050s
and 2070s using the developed model (Figure 3).

4.3. Evaluation Criteria

In this study, the coefficient of determination (R2), the root-mean-square error (RMSE)
and the percentage root-mean-square error (RMSE%) were also used to evaluate the perfor-
mance of the models [34]:

R2 = 1−∑n
i=1(yi − ŷi)

2/ ∑n
i=1(yi − yi)

2 (2)

RMSE =
√

∑n
i=1(yi − ŷi)

2/n (3)

RMSE% =
RMSE

y
× 100 (4)

where yi is the observed AGB value, ŷi is the predicted AGB value based on models, y
is the arithmetic mean of all the observed AGB values, and n is the sample number. In
general, a higher R2 value and lower RMSE and RMSE% values indicate a better estimation
performance of the model.

The method of cross validation was also used to verify the performance of the model
and evaluate the generalization ability of the model. The recommended 10-fold cross
validation procedure was selected. A standard deviation map, which can analyze the
stability of cross validation and the uncertainty of AGB estimation, was generated using
the estimation results of 10-fold cross validation. A higher standard deviation indicates
higher uncertainty, whereas a lower standard deviation indicates lower uncertainty.

5. Results
5.1. Evaluation of AGB Estimation
5.1.1. Variable Selection

Figure 4 illustrates how the R2 values changed with the count of variables selected for
XGBoost models in the different years. Each line represents an independent model, and the
different colors indicate the different forest types. The results showed that the R2 values
of models increased as the number of predictor variables decreased, which indicates that
variable selection can effectively reduce the data dimensions and improve the performance
and interpretability of models.
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Figure 4. Accuracy XGBoost models with the selected variable count changing based on different
forest types. “All”, results of all forest plots with no classification of forest type.

Figure 5 shows the final selected predictor variables according to variable importance
for the different forest types in the four years. Despite the fact that the predictor variables
differed for the different forest types in the four years, the textures of bands 3 (Red band), 4
(NIR band), and 6 (SWIR2 band) were extremely important in the models. The correlation
and mean values of these bands were included in all models, which indicated that these
variables contained abundant information that enhances the performance of AGB estima-
tion models. In addition, the spectral variables, particularly B3 (Red band), were also very
important. Moreover, according to the value and shape of the graph of variable importance,
XGBoost models tended to centralize the importance at a single variable. For example, B3
(Red band) was significantly correlated with B3T7Mea at a significance level of 0.01 with a
value of 0.854, whereas the importance of B3 (Red band) was significantly higher than that
of B3T7Mea for the broadleaved forest model in 2014.
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of each model was scaled to sum to 100. “All”, results of all forest plots with no classification of
forest type.
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5.1.2. Evaluation of XGBoost Models

Model performance was expressed by scatterplots, which show the relationship be-
tween the predicted and observed AGB values (Figure 6). The results showed that the
broadleaved forest model had the highest accuracy, followed by coniferous and mixed
forests models. Moreover, the combined accuracy of broadleaved, coniferous, and mixed
forests models was higher than that of the model for all forest plots with no classification of
forest type. This indicates that AGB estimation is more accurate when performed according
to forest type. The models had the highest accuracy in 2004, followed by 2009, 2014, and
1999. According to the statistical results, the RMSE% values were relatively high when
AGB was low (<30 Mg/ha), but very low otherwise (less than 50%) which indicates that
the accuracy of AGB estimation was relatively high (Table A2). However, problems of
over- and underestimation of AGB based on remote sensing data using the XGBoost model,
which have been noted in previous studies, were observed in all models, although model
performance was significantly improved.
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Figure 6. Scatter plots of predicted and observed AGB for XGBoost models of different forest types
in different years. “All”, results of all forest plots with no classification of forest type. “Combined”,
merged with the respective results of broadleaved, coniferous, and mixed forest.

5.1.3. Spatial Interpolation of AGB Residuals

The spatial correlation of AGB residuals was analyzed after the AGB residuals were
calculated for all models. Table 5 shows that the Global Moran’s Index for different forest
types in the four years. The Global Moran’s Indices of AGB residuals were above zero
for all models, indicating that the AGB residuals were positively spatially correlated. In
addition, the z-scores and p-values of AGB residuals indicated a statistically significant
aggregation rather than a random distribution pattern. Therefore, Kriging interpolation
was deemed appropriate for the interpolation of AGB residuals (Tables S3–S5 and Figure
S1, in the Supplementary Information section).
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Table 5. Summary of the Global Moran’s Index for different forest models.

Year Forest Type Moran’s Index z-Score p-Value Year Moran’s Index z-Score p-Value

1999 All 0.422 2.001 0.043 2004 0.318 3.276 0.002
Broadleaved 0.126 2.179 0.028 0.166 2.095 0.034
Coniferous 0.159 3.284 0.002 0.145 2.512 0.012

Mixed 0.115 2.682 0.008 0.141 1.914 0.053

2009 All 0.401 2.951 0.004 2014 0.365 3.154 0.002
Broadleaved 0.173 2.105 0.033 0.133 2.049 0.038
Coniferous 0.142 3.340 0.002 0.167 4.709 0.000

Mixed 0.109 2.184 0.027 0.115 2.702 0.007

Note: “All”, results of all forest plots with no classification of forest type.

Figure 7 presents scatterplots between the AGB residuals and predicted AGB residuals
for different forest types. The accuracy was highest for broadleaved forest, followed by
coniferous and mixed forest. Furthermore, the problem of under- and overestimation also
occurred using Ordinary Kriging interpolation of the AGB residuals; thus, the variability
of the AGB residuals of the sample points was not sufficiently estimated using Ordinary
Kriging. Although the high and low values were similar between AGB values and the AGB
residuals, the error derived from Ordinary Kriging interpolation of AGB residuals will be
transferred to the AGB map when using the Kriging interpolation map to correct the errors
in the AGB model; meaning that the problems of under- and overestimation of AGB were
not completely eliminated.
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Figure 7. Evaluation of cross validation of the Ordinary Kriging interpolation of AGB residuals for
different forest types. “All”, results of all forest plots with no classification of forest type. “Combined”,
merging the respective results of broadleaved, coniferous, and mixed forest.
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Figures 8 and 9 show the predicted AGB residual maps and the standard error maps
for different forest types, respectively. The predicted AGB residual map of the combined
forest model revealed a higher range of AGB residuals and a higher standard deviation
than the model for all plots with no classification of forest type, which indicates that
the Ordinary Kriging interpolation of AGB residuals based on forest type improved the
estimation accuracy of AGB residuals. Moreover, the combined model exhibited a lower
average standard error and a larger area of low value. Furthermore, the standard errors
were lower than the AGB residuals, which also indicates that the Ordinary Kriging method
achieves more accurate estimation of AGB residuals.
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Figure 8. AGB residual predicted using Ordinary Kriging interpolation for all plots with no clas-
sification of forest type (upper panels) and combined forest types (lower panels). “All”, results of
all forest plots with no classification of forest type. “Combined”, merging the respective results of
broadleaved, coniferous, and mixed forest.

5.2. AGB Mapping

The final AGB maps were obtained after correction using the spatial interpolation
map of AGB residuals. Figure 10 shows the estimation accuracy of the final AGB maps for
different forest types in the four years. The estimation accuracy was highest for broadleaved
forest, followed by coniferous and mixed forests. Moreover, the accuracy of the combination
of broadleaved, coniferous, and mixed forests was greatly improved from that of all forest
plots with no classification of forest type, and the accuracy of the final corrected AGB maps
was greatly improved from that of the original AGB map created by XGBoost models. The
RMSE and RMSE% values of the final corrected AGB maps were lower than the original
AGB maps, which further verifies that AGB maps corrected by AGB residual maps can
effectively improve the accuracy of AGB estimation based on remote sensing (Table A3).

The F-test was used to determine any significant differences between the results of
original and corrected AGB maps based on forest type and those based on all plots with no
classification (Figure 11). The confidence level was set to 95%. The F-test results showed
significant differences in the predicted AGB maps at a confidence level of 95%, although
the p-values and t-values differed. The F-test results also indicated the need to improve the
accuracy of AGB estimation corrected by AGB residuals.
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Figure 9. Standard error of Ordinary Kriging interpolation of AGB residuals for all plots with no
classification of forest type (upper panels) and combined forest types (lower panels). “All”, results
of all forest plots with no classification of forest type. “Combined”, merging the respective results of
broadleaved, coniferous, and mixed forest.
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Figure 10. Scatterplots of the predicted AGB from the final corrected AGB maps and the observed AGB
for different forest types in different years. “All”, results of all forest plots with no classification of forest
type. “Combined”, merging the respective results of broadleaved, coniferous, and mixed forest.
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the row and column labels, if the first letter is O, it refers to the original AGB; if it is C, it refers to the
corrected AGB. If the second letter is A, it refers to the predicted result without classification of forest
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mixed forests. Green cells are t-values and blue cells are p-values.

Figure 12 shows the final predicted AGB maps based on forest type and the standard
deviation maps using 10-fold cross validation in 1999, 2004, 2009, and 2014. The mean of the
AGB map was 54.623, 66.242, 68.079, and 77.579 Mg/ha, respectively, indicating an increase
in total AGB and improved forest quality over time in the study area. The mean of the
standard deviation map was 1.881, 3.109, 3.036, and 2.914 Mg/ha, respectively, indicating
that the predicted result of 10-fold cross validation was stable with only slight changes. Re-
garding the spatial distribution of AGB, high AGB values were predominantly distributed
in the southeastern and southern regions, which are characterized by a high altitude, steep
slopes, high vegetation coverage, low population density, less human interference, and
poor economic conditions. Conversely, low AGB value were predominantly distributed in
the low hills and valleys of cropland, villages, and towns, which are characterized by a low
altitude, gentle slopes, and more human interference.
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5.3. Response of AGB to Climate Change
5.3.1. Model Construction

The Pearson correlation coefficients between the climate variables and AGB indicated
that all climate variables had a significance level of 0.01 with AGB; the two variables
with the highest correlation coefficient were Bio06 (minimum temperature of the coldest
month) and Bio01 (annual mean temperature), with a value of−0.62 and−0.50, respectively
(Table S6, in the Supplementary Information section).

Figure 13 shows the validation result and variable importance of the XGBoost model
based on climate variables. The predicted AGB values of the XGBoost model were mainly
distributed in the middle range (50–150 Mg/ha). The accuracy of the XGBoost model
based on climate variables for high AGB values (>30 Mg/ha) with a lower RMSE% was
greater than that of the XGBoost model based on Landsat variables because there were
more samples available to establish the decision tree in this range; however, the model had
relatively low accuracy for low AGB values (<30 Mg/ha) with a higher RMSE% (Table 6).
Similarly, the problem of under- and overestimation also existed in this XGBoost model.
In terms of the importance of variables, the two most important variables for Gain were
Bio06 (minimum temperature of the coldest month) and Bio14 (precipitation of the driest
month), whereas the two most important variables for Frequency were Bio01 (annual mean
temperature) and Bio02 (mean diurnal range).
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Table 6. Performance of the XGBoost model based on climate variables. 

Evaluation Criteria 
AGB Ranges (Mg/ha) 

<30 30–60 60–100 >100 

RMSE 32.16 21.24 12.22 12.33 

RMSE% 141.97 40.05 15.06 11.04 

5.3.2. AGB Estimation under Climate Scenarios 

Figure 14 shows the distribution of AGB under four different climate scenarios pre-

dicted for the 2050s and 2070s. The overall spatial distribution trends of AGB for climate 
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Table 6. Performance of the XGBoost model based on climate variables.

Evaluation Criteria
AGB Ranges (Mg/ha)

<30 30–60 60–100 >100

RMSE 32.16 21.24 12.22 12.33
RMSE% 141.97 40.05 15.06 11.04

5.3.2. AGB Estimation under Climate Scenarios

Figure 14 shows the distribution of AGB under four different climate scenarios pre-
dicted for the 2050s and 2070s. The overall spatial distribution trends of AGB for climate
scenarios in the 2050s and 2070s were similar to the current distribution of AGB, that
is, high AGB was predominantly distributed in areas of high altitudes and less human
activity, whereas low AGB was predominantly distributed in the valleys and plains with
low altitude and frequent human activities in the central areas of the study area. However,
the spatial distribution of AGB exhibited significant differences between the four different
climate scenarios. The mean AGB for the study area in the 2050s was 207.15, 192.30, 180.24,
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and 176.26 Mg/ha for RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively, and the mean
AGB in the 2070s was 196.55, 191.80, 175.08, and 170.58 Mg/ha, respectively. Thus, the
total AGB consistently decreased in the following order: RCP2.6 > RCP4.5 > RCP6.0 >
RCP8.5, indicating that greenhouse gas emissions have a negative effect on forest growth
and quality improvement.
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Figure 14. AGB predicted with the established XGBoost model based on climate variables for the
2050s and 2070s under four different climate scenarios. RCPs: Representative Concentration Pathway
data defined by the possible range of radiative forcing values (2.6, 4.5, 6.0, and 8.5 W/m2, respectively)
in the year 2100.

6. Discussion
6.1. Methods of Improving AGB Estimation

In this study, 170 predictor variables were extracted from Landsat images to estab-
lish the XGBoost model of AGB estimation. However, not all predictor variables can be
used for modeling and estimation due to their high correlations and high number, which
affect the performance and operational efficiency of the XGBoost model. Variable selection,
which is one of the most important processes of non-parametric models, can reduce the
memory space and data dimensions, increase the speed of calculation, and improve the
performance and interpretability of the model [55]. The results of this study revealed
that the performance of XGBoost models was significantly improved through variable
selection, which reduced the number of predictor variables from hundreds to merely
several (Figures 4 and 5). Moreover, texture and spectral variables were very important
in this study. The role of spectral variables and texture variables differed depending on
the forest structure. The multiple species and canopy layers of broadleaved and mixed
forest were sufficiently expressed by abundant spectral information for AGB estimation;
thus, the models tended to choose spectral variables. Conversely, the more limited species
composition of coniferous forest meant that the spectral characteristics were not signifi-
cantly different, whereas the textural information effectively explained the AGB estimation;
thus, the models tended to select texture variables [21,56,57]. In addition, the decision
tree of XGBoost was generated based on the previous tree to correct the residuals error;
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therefore, if a predictor variable was selected by the previous tree, the importance of other
highly correlated predictor variables would be greatly reduced in the subsequent decision
tree [34,58].

Traditional statistical theory assumes that the studied variable is a random variable. In
fact, many factors of the forest ecosystem, such as volume, biomass, and soil physiochemical
properties, are not completely independent and randomly distributed due to the influence
of the natural environment and human disturbances; instead, they are autocorrelated
within a certain spatial range, showing structural unity and randomness [59]. Geostatistical
methods are based on the regionalized variable theory and take the empirical variogram as a
basic tool to study phenomena exhibiting either random and structural spatial distributions,
or spatial autocorrelation and dependence [60–62]. Because of its significant advantage
for the spatial calculation and analysis of uncertain factors, the geostatistical method has
become the preferred method of studying the spatial randomness and structure of forest
ecosystem factors.

As an important method of geostatistics, Kriging can provide interpolated surfaces as
well as a measure of uncertainty, indicating the accuracy of the predictions [63]. The mea-
surement of uncertainty is critical to informed decision making, as it provides information
on the possible values for each location rather than just one interpolated value [63]. The
results of this study showed that the predicted standard error of Kriging interpolation of
AGB residuals was relatively low; thus, the highly accurate Kriging interpolation maps of
AGB can be used for AGB correction (Figure 7). However, the results also showed that the
variability of AGB residuals was not adequately estimated by Kriging; thus, problems of
under- and overestimation also occurred in the Kriging interpolation results, which led to
errors in the correction of AGB maps using Kriging interpolation maps (Figure 10).

The non-parametric XGBoost model was used for AGB estimation in combination
with the Kriging interpolation of AGB residuals in this study. The results indicated that
the problems of under- and overestimation of AGB based on remote sensing data were
efficiently reduced and the accuracy of AGB estimation was significantly improved, al-
though this error still existed after correction by AGB residuals. Most early AGB estimation
studies were based on parametric models, such as linear regression, multiple regression,
and non-linear regression [22]. Parametric models have ideal assumptions for data distri-
bution on which the model is established, e.g., the data obeys a normal distribution [64].
However, in reality, it is difficult to estimate the distribution of data or there are no obvious
features due to the complex relationship between the remote sensing factors and AGB. In
contrast, non-parametric models are a statistical analysis method that makes no assump-
tions about the overall distribution of the sample and directly analyzes the sample [65].
Non-parametric models have a strong fitting ability and can obtain a good prediction result,
although needing more data and more time for training, and there is a risk of overfitting
the training data [65].

The problem of under- and overestimation, which also existed in previous studies,
was the main factor influencing the accuracy of AGB estimation based on remote sensing
data in this study [66]. This problem is partly determined by the algorithm itself. The
decision trees, which are key components of the XGBoost model, were built on the training
data; thus, the accuracy is reduced when extrapolations are performed outside the training
data [34]. However, the under- and overestimation problem is also related to the data. For
remote sensing data, saturation in multispectral data is the main reason for underestimation
of plots with high AGB values [21,67,68]. The pixels in Landsat images with relatively
low spatial resolution are mixed, so cannot accurately express the spectral information of
land cover for plots with low AGB values. Furthermore, NFCI data contain fewer plots
with high or low AGB values because of the large proportion of secondary forest with an
uneven age distribution, which is composed primarily of young and middle-age trees and
few mature and over-mature trees; thus, the XGBoost model is unable to obtain sufficient
information to establish the decision trees.
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To solve the problem of under- and overestimation and further improve the accuracy
of AGB estimation, the following method is suggested for future research. For remote
sensing data, high spatial and radiometric resolution data, such as hyperspectral data,
synthetic aperture radar data, and LiDAR data, can be solely or synergistically used for
AGB estimation. Recent research has proved that this approach can effectively reduce the
problem of mixed pixels and multispectral saturation, thereby improving the accuracy of
multi-sensor data synergy for AGB estimation. As such, this approach has become a new
trend in AGB estimation based on remote sensing data [69–71]. In addition, as well as the
variables used in this study, other factors such as soil, climate, topography, and phenology
can be as the predictor variables for AGB estimation. For NFCI data, it is recommended
to establish and survey as many temporary plots (especially plots with high or low AGB
values) as possible in accordance with the technical regulations of the continuous NFCI
of China to ensure the accuracy and consistency of NFCI data and increase the amount of
training samples. In addition, existing plots should be screened to select representative
plots and eliminate unrepresentative plots to ensure a more reasonable representation of
the distribution of AGB in the study area.

6.2. Impact of Climate Change on Forests

Numerous studies have revealed the current and future impacts of climate on plant
phenology, forest succession, the composition and distribution of forest structure, biodiver-
sity, forest productivity, and the forest carbon sink function of forest ecosystems [5,72–74].
Close material and energy exchanges exist between the climate and forests, which affect
and restrict each other [75–78]. Therefore, the forest ecosystem, as the largest carbon source
and sink in the terrestrial ecosystem, will respond to climate change and exhibit feedbacks
and regulation effects in relation to climate change [79–82].

The direction and magnitude of climate change impacts on forests vary according
to environmental factors and forest types [38,83]. Previous studies have shown that the
productivity of forest ecosystems typically increases due to the growth extension benefit
caused by rising temperatures and the fertilization benefit caused by rising CO2 concentra-
tions; however, some studies have reached the opposite conclusion, that is, climate change
has a negative impact on the productivity of forest ecosystems [81,84–86]. The results of
this study indicated that climate change has a negative impact on AGB.

As an important aspect of global change, climate change is predominantly manifested
as temperature increases, precipitation pattern changes, and greater climate extremes [48].
In the forest ecosystem, stomatal conductance between the leaves and canopy will decrease
significantly, leading to inhibited plant growth when plants are stressed by high temper-
atures and CO2 concentrations [87–89]. The greenhouse effect results in a higher rate of
temperature increase at night than during the day; thus, the dark respiration of plants
cancels out the organic matter of forests accumulated during the day [90]. Meanwhile, the
greenhouse effect increases soil temperatures, which stimulates the growth and activity of
edaphon and increases the mineralization rate of soil organic matter; however, the carbon
nitrogen ratio of soil will also increase with an increase of soil carbon, which will inhibit the
respiration of edaphon, slowing the litter decomposition rate and preventing the prompt
replacement of nutrients, thereby hindering normal plant growth [91,92].

Water availability also has a significant impact on plant height, leaf area, branch num-
ber, photosynthesis, and growth [93]. The greenhouse effect accelerates the transpiration of
plants and increases soil evaporation; thus, plants are subjected to water stress, generating
physiological drought, which will affect the photosynthesis and growth of plants when
the soil moisture content is below the minimum threshold required by plants [72,94]. Cli-
mate change not only causes temperature changes in different regions, but also changes in
precipitation. An increase in precipitation during the driest month will result in a longer
growth season, thereby facilitating plant growth [95]. Furthermore, climate extremes have
important impacts on the diversity, distribution, and growth of plants [96,97]. For example,
a decrease in the minimum temperature of the coldest month will result in premature freez-
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ing injuries to plants, and long-term low temperatures will lead to the death of plants [98].
Conversely, an increase in the maximum temperature of the warmest month will destroy
the water balance of plants and promote the coagulation of proteins and the internal mech-
anism of harmful metabolites, thereby hindering plant growth [99]. The results of this
study indicated that variables related to climate extremes were very important for AGB
estimation based on climate variables (Figure 13).

The temporal changes in AGB were similar under all climate scenarios in this study.
The differences in AGB in different climate scenarios were slightly greater than the change
in AGB over time (Figure 14 and Table 7). We hypothesized that the AGB dynamics may
be driven by climate change. We also hypothesized that the spatiotemporal changes in
AGB in response to climatic changes were equivalent, but the impact of climate change
on AGB actually differed among forest types, stand ages, and regions [76,93,100], hence
lacking a consensus on the impact of climate change on AGB [38,101–103]. The impact
of climate change on AGB is a relatively long-term process [104,105], and long-term field
measurement is necessary to accurately predict future changes in AGB under changing
climate regimes.

Table 7. Summary of AGB estimation for the 2050s and 2070s under four different climate scenarios.

Year RCPs Minimum Maximum Mean Standard
Deviation

Percentage of Different AGB Ranges (%)

<140 140–160 160–180 180–200 200–220 >220

2050s

2.6 7.68 331.08 207.15 31.69 1.80 2.35 10.03 26.06 28.77 30.98
4.5 6.38 323.02 192.30 33.35 3.54 7.19 25.14 29.30 20.58 14.26
6.0 5.42 325.46 180.24 31.51 2.34 14.46 29.09 25.47 16.45 12.19
8.5 4.91 317.10 176.26 27.04 7.58 29.90 31.72 18.07 8.21 4.51

2070s

2.6 7.15 322.26 196.55 26.72 1.79 4.31 20.86 30.93 24.60 17.51
4.5 6.74 327.94 191.80 28.27 2.26 9.29 21.57 28.21 20.57 18.10
6.0 5.08 310.34 175.08 33.82 4.97 15.06 26.17 26.57 16.44 10.80
8.5 4.62 304.43 170.58 37.16 12.93 32.06 29.53 15.42 6.26 3.80

In addition, human activity, which is another major factor affecting forest ecosystems,
has more direct, rapid, and drastic impacts [106,107]. The IPCC has revealed the unprece-
dented speed and scale of the impact of human activities on environmental change over
the last 100 years, and shown that climate change is closely related to human activities [1].
Humans can implement a variety of forest management measures that will either exac-
erbate or slow down the impact of climate change caused by human activities [108,109].
The estimation of AGB distribution under the influence of human activities and climate
change, as well as the scientific and rapid assessment of future forest changes, are crucial for
formulating targeted management plans. In this study, climate data were used to establish
an AGB estimation model and predict AGB under four different climate scenarios in the
2050s and 2070s; however, we did not consider the impact of human activities on the
forest ecosystem or climate. This was predominantly because the comprehensive impact
of human activities is too complex to quantitatively evaluate, and there is no reasonable
index for quantifying the impact of human activities or predicting future human activi-
ties. In the future, basic research on the response of forest ecosystems to climate change
should be conducted at different levels (e.g., typical tree species, typical forest communities,
and forest landscapes), along with forest management planning with a focus on climate
change adaptation, and quantitative scientific research on the impact of human activities
on forest ecosystems and climate change. Furthermore, it will be important to explore
the comprehensive impacts of human activities and climate change on forest ecosystems
from the perspective of human-natural system coupling and the need for multidisciplinary
development.
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It is important to notice that the results and conclusions of this study cannot be directly
used at different spatial and temporal scales, because forest stands with different AGB and
different geography conditions have different characteristics reflected in remote sensing
images. The methods adopted in this study, such as XGBoost model, semivariance analysis,
Kriging interpolation, and evaluation criteria, have been frequently used in previous studies
as well and are easy to implement in the spatial analysis of AGB estimation.

7. Conclusions

In this study, the variable selection method based on variable importance was used to
select optimal variables from Landsat predictor variables, then establish an XGB model for
AGB estimation according to forest type. Then, Kriging interpolation of the AGB residuals
was employed to correct the errors of the XGBoost model. Subsequently, a new XGBoost
model was established based on climate variables using the final corrected AGB maps
to estimate the AGB under four different climate scenarios during the 2050s and 2070s.
The major conclusions were as follows. (1) Variable selection significantly improved the
performance of the XGBoost model. (2) Kriging interpolation of AGB residuals based
on spatial autocorrelation improved the accuracy of AGB estimation. (3) The total AGB
increased and the forest quality improved over time in the study area. (4) The total AGB
under different climate scenarios decreased in the following order: RCP2.6 > RCP4.5 >
RCP6.0 > RCP8.5, indicating that greenhouse gas emissions have a negative effect on forest
growth and quality. The observed negative impacts of climate change on forest growth
and productivity have prompted humans to implement a variety of measures to protect
forests. However, the impact of forest management on ecosystems and the evaluation
of its effectiveness are long-term processes; therefore, the impact of climate change must
be considered when formulating long-term forest management plans. Determining the
dynamic changes of AGB and the main driving variables under different climate scenarios
is highly significant for formulating appropriate forest management plans.
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Appendix A

Table A1. Wood density of the tree species or groups.

Tree Species/Groups Wood Density (p) Tree Species/Groups Wood Density (p)

Abies 0.3464 Pinus massoniana 0.4476
Betula 0.4848 Pinus tabulaeformis 0.4243

Cinnamomum 0.4600 Pinus taiwanensis 0.4510
Cryptomeria 0.3493 Pinus yunnanensis 0.3499

Cunninghamia lanceolata 0.3098 Populus 0.4177
Cupressus 0.5970 Quercus 0.5762
Eucalyptus 0.5820 Robinia pseudoacacia 0.6740

Fraxinus mandshurica 0.4640 Salix 0.4410
Larix 0.4059 Schima superba 0.5563

Liquidambar formosana 0.5035 Tilia 0.3200
Paulownia 0.2370 Ulmus 0.4580

Picea 0.3730 Other conifers 0.3940
Pinus armandii 0.3930 Other pines 0.4500
Pinus densata 0.4720 Other hardwood broadleaves 0.6250
Pinus elliottii 0.4118 Other softwood broadleaves 0.4430

Note: The total relative error of the tree species or groups was 2.10%, not exceeding the common allowance of 3%,
and the average of the absolute relative error was 6.37%, less than the error allowance of 10%.

Table A2. Summary of AGB estimation of the XGBoost models for different forest types.

Year
Forest
Type Min Max Mean Standard

Deviation

RMSE RMSE%

AGB Ranges (Mg/ha)

<30 30–60 60–100 >100 <30 30–60 60–100 >100

1999 All 1.95 121.25 39.25 13.61 20.16 12.21 26.88 64.85 113.38 29.02 35.97 46.79
Broadleaved 3.75 143.74 36.34 22.62 22.77 17.92 25.69 59.81 189.66 41.86 33.67 40.59
Coniferous 17.05 72.31 36.92 7.15 12.03 8.07 25.59 47.48 51.75 19.45 35.24 42.41

Mixed 16.90 84.16 45.38 12.43 20.37 11.56 21.25 38.36 95.42 26.88 28.05 33.69
Combined 3.75 143.74 37.74 16.09 18.55 11.69 24.68 55.92 104.29 27.79 33.02 40.34

2004 All 11.26 131.11 43.42 14.91 15.81 12.10 22.72 64.69 83.07 29.20 30.50 46.11
Broadleaved 4.60 140.01 40.93 23.43 23.39 15.37 21.75 59.05 163.31 36.34 28.89 40.55
Coniferous 15.40 100.00 41.82 10.50 15.48 9.62 21.70 50.67 65.69 23.46 29.19 40.34

Mixed 20.19 97.20 45.63 14.09 17.62 12.09 19.39 63.06 76.06 28.94 26.47 43.70
Combined 4.60 140.01 41.94 17.34 14.63 11.71 21.83 57.31 76.87 28.26 29.30 40.85

2009 All 10.84 130.81 45.99 16.67 23.55 13.87 22.02 55.46 125.27 32.42 29.46 41.08
Broadleaved 4.45 138.98 42.74 25.15 24.91 17.79 20.13 55.95 183.94 41.51 25.89 39.31
Coniferous 20.90 98.45 44.96 12.98 17.26 11.02 15.34 40.00 72.45 25.99 21.18 34.12

Mixed 17.09 103.07 50.02 14.59 20.83 13.45 20.38 53.32 89.69 30.61 26.80 40.34
Combined 4.45 138.98 44.70 19.15 21.67 13.58 17.92 52.22 115.28 31.74 23.97 38.68

2014 All 5.52 128.22 55.48 18.20 28.33 18.49 18.06 55.22 140.98 42.73 23.85 41.47
Broadleaved 6.02 152.87 53.94 25.29 30.17 19.59 22.36 52.48 184.91 45.73 28.81 37.46
Coniferous 18.80 107.13 53.59 13.20 23.01 14.05 14.63 40.46 94.26 32.64 19.66 33.37

Mixed 26.38 120.38 59.82 15.37 25.15 16.86 17.75 49.30 103.51 37.34 23.38 38.18
Combined 6.02 152.87 54.51 19.35 27.21 16.20 18.06 48.75 135.42 37.43 23.86 36.61

Note: “All”, results of all forest plots with no classification of forest type. “Combined”, merged with the respective
results of broadleaved, coniferous, and mixed forest.

Table A3. Summary of AGB maps corrected by the residual AGB interpolation maps.

Year
Forest
Type Min Max Mean Standard

Deviation

RMSE RMSE%

AGB Ranges (Mg/ha)

<30 30–60 60–100 >100 <30 30–60 60–100 >100

1999 All 1.86 137.86 44.54 15.70 21.87 13.27 16.67 54.69 123.01 31.55 22.31 39.46
Broadleaved 1.68 207.30 43.84 30.36 23.46 20.68 15.53 23.21 195.42 48.31 20.36 15.75
Coniferous 16.32 81.68 39.63 9.31 12.89 6.80 16.03 33.58 55.43 16.38 22.07 29.99

Mixed 18.38 95.39 50.20 14.92 20.84 13.47 12.46 29.77 97.57 31.32 16.45 26.15
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Table A3. Cont.

Year
Forest
Type Min Max Mean Standard

Deviation

RMSE RMSE%

AGB Ranges (Mg/ha)

<30 30–60 60–100 >100 <30 30–60 60–100 >100

Combined 1.68 207.30 42.65 21.29 19.24 12.60 15.07 25.56 108.18 29.95 20.17 18.44

2004 All 10.28 158.91 47.53 18.85 22.45 12.76 14.04 45.34 117.97 30.80 18.85 32.32
Broadleaved 2.70 215.55 47.77 31.53 23.90 19.43 16.59 24.12 166.88 45.95 22.04 16.56
Coniferous 15.17 129.46 47.23 13.83 17.78 10.74 11.38 33.87 75.45 26.20 15.31 26.97

Mixed 19.66 117.78 49.22 16.95 18.59 12.38 11.57 44.16 80.29 29.62 15.79 30.60
Combined 2.70 215.55 47.70 22.98 21.05 13.66 13.47 28.89 110.58 32.96 18.08 20.60

2009 All 10.25 164.54 51.48 20.51 25.10 15.48 13.62 37.78 133.52 36.18 18.22 27.99
Broadleaved 4.19 209.61 52.38 34.30 26.97 21.97 19.65 18.32 199.17 51.26 25.28 12.87
Coniferous 19.85 113.56 48.33 15.68 16.88 11.90 10.53 24.83 70.84 28.06 14.54 21.18

Mixed 17.87 127.99 54.91 16.91 23.81 14.87 12.98 37.05 102.51 33.84 17.06 28.03
Combined 4.19 209.61 50.79 25.16 22.89 15.74 14.37 23.20 121.78 36.79 19.23 17.18

2014 All 5.13 150.91 58.09 18.84 28.89 17.47 14.26 44.47 143.78 40.38 18.82 33.40
Broadleaved 5.84 194.44 63.75 30.91 33.28 21.94 19.30 29.12 203.93 51.22 24.86 20.79
Coniferous 14.62 131.37 58.75 15.78 24.41 16.03 8.57 25.60 100.00 37.23 11.52 21.11

Mixed 22.25 138.87 60.10 16.95 26.24 15.47 14.67 33.73 107.98 34.26 19.33 26.13
Combined 5.84 194.44 60.94 23.35 29.59 17.85 14.11 28.64 147.26 41.26 18.62 21.51

Note: “All”, results of all forest plots with no classification of forest type. “Combined”, merged with the respective
results of broadleaved, coniferous, and mixed forest.
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