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Abstract: This research evaluates four sustainable cementitious composites with sustainable plant
fibers and bio-aggregates: (1) cementitious matrix composite with lechuguilla fibers (LFC) and (2) with
flax fibers (FFC); and (3) cementitious matrix composite with wood shavings (WSC) and (4) with hemp
shavings (HSC). The fibers are for reinforcement and the shavings act as bio-aggregates as a total
replacement for limestone aggregates. The lechuguilla (LF) and flax (FF) fibers were treated; wood
(WS) and hemp (HS) bio-aggregates were also processed. Nineteen mixtures were manufactured,
and five were used as controls, and the hygrothermal, mechanical, and durability properties were
evaluated. The results for LFC and FFC showed that fiber treatment negatively affected flexural–
compressive strength; untreated LFC with accelerated deterioration had better mechanical behavior,
higher density, and lower porosity than FFC. Strength and density decreased, but porosity increased
with increasing fiber volume (Vf). Regarding WSC and HSC, the microstructure of WS and HS had a
significant effect on the physical and mechanical properties. The high porosity influenced the results
obtained, since it decreased compressive strength and bulk density; however, thermal conductivity,
hygroscopicity, and vapor resistance showed better behavior in most cases than the control specimens,
i.e., without bio-aggregates.

Keywords: cementitious composite; sustainability; plant-based materials; hygroscopicity; durability;
bio-aggregate

1. Introduction

The increase in the world’s population has led to the construction of larger and
more expensive infrastructures that are designed for a specific minimum duration. The
world population was 7942 million in 2022 according to the report of the United Nations
Department of Economic and Social Affairs, and population growth is expected to continue
increasing over time, mainly in cities in Africa, Asia, and Latin America, with projected
growth reaching 9.7 billion in 2050 [1]. The need for affordable and sustainable housing is an
inherently global problem, and numerous challenges remain in producing environmentally
friendly construction products [2].

The rising problem of resource depletion and global pollution has challenged many
researchers to look for new materials based on renewable resources. The construction
sector struggles with four main environmental impacts: greenhouse gas emissions; energy
consumption; natural resource consumption; and waste production. The alternative tech-
nologies currently adopted in buildings will have immediate consequences concerning
energy consumption and emission patterns [3]. The consideration and application of sus-
tainability practices in construction can generate a 35% reduction in CO2 emissions, and
water and energy consumption savings of 30% to 50%, respectively, and a reduction in
solid waste disposal costs of up to 90% [4–7].
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In this context, the concept of "sustainable construction" has been used to characterize
construction that includes environmental criteria in the project conception, in the form
of construction and maintenance, and, when the time comes, demolition of the infras-
tructure [8]. Most products came from renewable resources until the beginning of the
20th century; however, the enormous growth of the petrochemical industry slowed down
the growth of biotechnological products [9]. The combination of plant materials with
non-organic matrices to produce competitive composite materials is increasingly gaining
attention based on the strategy of preventing the clearing of agroforestry resources as
well as producing good economic returns for their cultivation, resulting in valuable bene-
fits for the environment, favoring a comfortable habitat (humidity, thermal, and acoustic
management) [10–12].

The agroindustry is a sector that mainly serves agriculture to meet the demand for food
supplies. The unit operations implemented in the production chain of any raw material
bring environmental problems, namely, the high production of associated residues [13].
An analysis of the use given to the residues obtained from different agro-industrial sectors
shows, for instance, that the brewing industry uses 8% of the grain nutrients, while in
the palm oil and cellulose industries, less than 9% and 30% are used, respectively, and in
the coffee industry, only 9.5% of the weight of the fresh fruit is used for the preparation
of the beverage, leaving 90.5% as residue [14]. Depending on the type of raw material,
it can be treated to reduce the negative environmental impacts and to transform it into
valuable products that can be used as raw materials for other production processes and
generate additional economic income. Thus, one of the challenges of research in this area
is to optimize the results and diversify the use of these raw materials. Hence, achieving
greater waste utilization depends on creating a strong value proposition throughout the
value chain [15]

The main environmental benefit of bio-based building materials is their carbon storage
capacity, which could contribute to climate change limitations. For instance, the use of
these by-products can bring enormous benefits to reducing the cost of most of the world’s
industries, such as biotechnology or construction, among others [13]. The widespread
use of plant materials and their products is attributed to properties such as low density,
high electrical resistance, specific modulus and stiffness, non-abrasive properties, and
biodegradability, among others. On the other hand, plant materials are raw materials from
renewable sources and are of high availability, although to use them correctly it is necessary
to know their properties and limitations in more detail to include them in new projects.
The use of these materials has allowed for the availability of cheap, biodegradable, and
recyclable construction materials from renewable resources, and under certain conditions of
preparation, the insulating effect is comparable to that of other synthetic materials widely
used in the industry, such as polystyrene, but with greater variability in their mechanical
properties, which allow diverse applications given the difficulty to recycle the material
of synthetic origin [16]. Natural fibers and their use in construction materials will have a
positive impact on the construction projects in which they are used, generating a reduction
in greenhouse gas emissions, climate control energy savings (operational energy), and less
waste generation [11,17]. On the other hand, the main disadvantage of using plant fibers is
the durability of these fibers in the cement matrix and the compatibility between the two
phases. Alkaline media tend to mineralize the fibers, which is associated with long-term
loss of toughness of the composite material attributed to interfacial damage caused by the
continuous volume change of the porous plant fibers in the cement matrix. In addition, the
fibers in contact with the reaction water release water-soluble substances that interfere with
the hydration of the cementitious material, decreasing its potential toughness [18].

The present research study proposes to evaluate sustainable plant-based cementitious
composites: (1) a composite based on a cementitious matrix with natural lechuguilla fibers
(LFC) and flax fibers (FFC) as reinforcement; and (2) a cementitious matrix composite
with wood shavings (WSC) and hemp shavings (HSC) as bio-aggregates, and whose
hygrothermal, mechanical, and durability properties were evaluated. The results are
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expected to have an important benefit for the environment, for a comfortable habitat
(improvements in the hygrothermal performance of the home), and as sustainable materials
for dignified housing.

2. Materials and Mixtures
2.1. Cementitious Materials

Two types of Portland cement were used, namely, type III from México, which complies
with ASTM C150-21 [19], and type II from France, which complies with UNE-EN 197-1 [20],
with a relative density of 3.1 and 3.0, respectively. The fly ash used was class F according
to ASTM C-618-19 [21], which was obtained from a thermoelectric power plant in the city
of Nava, Coahuila, and its relative density was 2.2. In addition, a metakaolin was used,
since this type of pozzolan is very reactive in hydraulic cementitious matrices, and it had a
relative density of 2.5. The fly ash came from Mexico and the metakaolin came from France,
and both pozzolans were used additionally. The chemical compositions of the cementitious
substances are shown in Table 1.

Table 1. Chemical composition of cementitious materials.

Material
Chemical Composition (%)

SiO2 Al2O3 Fe2O3 CaO MgO Na2O

Cement Type III 14.99 4.26 3.15 68.11 1.23 0.37
Cement Type II 15.20 3.82 2.12 59.90 - -

Fly ash 59.95 25.98 4.92 2.66 0.12 -
Metakaolin 65.90 25.10 4.26 1.63 0.10 -

2.2. Aggregates

Two types of fine aggregates were used, namely, crushed limestone sand (Mexico) and
river sand (France). The physical properties of the aggregates are shown in Table 2, and
their grain size is presented in Figure 1. The limestone aggregate complied with ASTM
C33-18 [22], and the river aggregate complied with NF P18-545 [23]. The grain size of the
aggregates improves the workability of the mixture when plant components are added.
Previous studies have shown that particle sizes with a maximum size of less than 10 mm
are adequate when organic materials are used in a cementitious matrix, since they allow
for a uniform distribution and reduce the agglomeration effect of the aggregates [24].

Table 2. Physical properties of aggregates.

Bulk Density
kg/m3

Dry Weight
kg/m3

Surface Dry
Saturated Weight

kg/m3

Water
Absorption

%

Specific Weight
kg/m3

Water Content
%

Fineness
Modulus

Limestone 1651 2600 2617 1.60 2600 0.10 2.71
River 1660 2628 2660 1.54 2660 0.15 2.70
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2.3. Organic Materials

Two plant fibers were used as reinforcements; the first was the lechuguilla fiber (Agave
lechuguilla) coming from the arid zones of Mexico, and the second was the flax fiber (Linum)
from the south of France. Table 3 shows the physical and mechanical properties of the
fibers. Pine wood shavings and commercial hemp shavings were used as bio-aggregates,
and their properties are also shown in Table 3.

Table 3. Properties of organic materials [24–26].

Material
Physical and Mechanical Properties

Diameter/Width
mm

Average Length
mm

Absorption
%

Specific
Weight

Tensile Strength
MPa

Elongation
%

Porosity
%

Lechuguilla 0.16–0.26 45 92.3 1.38 275–627 2.0–2.5 21–25
Flax 0.009–0.049 45 120.0 1.54 1015 1.8–2.0 3–21

Wood 1.0 4.1 180.0 1.05 710 2.0–3.0 56
Hemp 1.8 7.6 105.0 1.50 900 1.6–1.8 51

2.4. Composition of the Mixtures

To choose the composition of the mix, one was looked for that met adequate workabil-
ity and compaction parameters, which would allow for a better distribution and prevent
agglomeration of the fibers and bio-aggregates in the mixture. Control mixes were pro-
duced to optimize the concrete proportions; a w/c ratio = 0.5 was used for the composites
with fibers, and a w/c ratio = 1.0 for the composites with bio-aggregates. The mixtures
with different formulations of both plant fibers and bio-aggregates are shown in Table 4.
Table 5 shows the proportions of the five definitive control mixtures; their consistency was
measured with the ASTM C143-20 slump test [27].

Table 4. Formulations of the mixes for the plant-based cementitious composites, % in volume.

Mixture Composite LF FF WS HS MK FA

M1
LFC

0.4 15
M2 0.7 15
M3 1.0 15

M4
FFC

0.4 15
M5 0.7 15
M6 1.0 15

M7

WSC

2.0
M8 4.0
M9 2.0 20

M10 4.0 20
M11 10.0 20

M12
HSC

4.0
M13 4.0 20
M14 10.0 20

Table 5. Proportion of the control composite mixture.

Mixture
Mix Proportion (LFC–FFC) (kg/m3)

Type II Cement Water River Sand Metakaolin W/C Ratio Slump (mm)

C-1 383 169 1350 68 0.50 50

Mixture
Mix Proportion (WSC) (kg/m3)

Type III Cement Water Limestone Sand Fly Ash W/C Ratio Slump (mm)

C-2 150 150 1928 0 1.00 72
C-3 150 150 1893 30 (20%) 1.00 75

Mixture
Mix Proportion (HSC) (kg/m3)

Type II Cement Water River Sand Metakaolin W/C Ratio Slump (mm)

C-4 150 150 1973 0 1.00 70
C-5 150 150 1941 30 (20%) 1.00 73
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3. Experimental Procedure
3.1. Testing of LFC and FFC Specimens

A deterioration procedure was performed to study the durability of specimens fabri-
cated with the M1–M6 mixtures corresponding to the LFC and FFC, with Vf values of 0.4%,
0.7%, and 1.0%. This accelerated deterioration procedure consisted of 8 wetting and drying
(AD) cycles; in each cycle, the composites were exposed to one day of wetting and 3 days
of drying, and the specimens without fibers that were exposed to this procedure were the
control specimens. The fibers were treated (TF) with a wax-based coating (Emulwax 3060)
for protection in the alkaline cementitious environment. Uncoated fibers were also used as
controls (UF), and for all mixtures the fiber length was 45 mm. The experimentation of the
LFC and FFC is described below.

To evaluate the flexural strength, three 40 × 40 × 160 mm bars were fabricated for
each test mixture. The specimens were demolded 24 h after fabrication, and during this
period, water evaporation was prevented by protecting them with a plastic film, and they
were kept at a room temperature of 20 ◦C. After specimens were extracted, they were kept
for one week in a curing room at 20 ◦C with 100% relative humidity. Both fabrication and
curing were performed using the procedure indicated in NF EN 196-1 [28]. The flexural
strength of all specimens was evaluated at 40 days of age at the end of 8 exposure cycles
according to NF EN 196-1 [28]. The compressive strength was obtained from the three
specimens previously tested in flexure according to NF EN 196-1 [28]. Before testing, the
specimens were dried in an oven at a temperature of 50 ◦C for 7 days to ensure that the
specimens were completely dry.

Porosity and density are physical properties that are correlated and that have an
impact on the durability of the material. The three samples from the specimens previously
tested in compression were obtained, and their values were determined as described in
NF P18-459 [29]. Finally, the interaction mechanisms of the fiber/matrix interface were
determined by scanning electron microscopy. The observations were performed with a
scanning electron microscope (JEOL JSM-6380LV). In order to limit the deterioration of
the plant material, the observations were performed without coating the sample and at a
vacuum of 60 Pa (LV) with an accelerating voltage of 15 kV.

3.2. Testing of WSC and HSC Specimens

Consumption values of 2%, 4%, and 10% substitution by volume of the aggregate
were proposed, according to the method of absolute volumes. The following tests were
carried out to evaluate the physical and mechanical behavior of these composites based on
wood and hemp shavings.

To determine the compressive strength, 6 cylindrical specimens of 100 × 200 mm each
were fabricated for each test formulation based on the specifications of ASTM C192-19 [30].
After 24 h of initial curing, all specimens were placed in the curing and maturing room at a
temperature of 23◦ ± 2 ◦C at a relative humidity above 95% based on the recommendations
of ASTM C511-21 [31]. Compression tests were performed at the corresponding ages
according to ASTM C39-18 [32].

The bulk density was obtained in the 6 cylindrical and 3 prismatic specimens from
the compressive strength and thermal conductivity tests, respectively. This was done by
placing the specimens inside an oven at a temperature of 105◦ ± 5 ◦C in order to obtain
a constant weight, which was related to the volume of each specimen, and thus the bulk
density was obtained.

To measure the thermal conductivity, three prismatic specimens of 50 × 150 × 150 mm
each were manufactured for each test mixture according to the specifications of the Lambda
Meter-500 equipment, intended for the hot plate method test according to RILEM recom-
mendations in the RILEM-13 report [33]. The conductivity tests were performed according
to the specifications of the measuring equipment and standards specified in the manual [34].

The MBV test consists of subjecting a specimen to cycles of high and low relative
humidity to determine the humidity content that the composite material absorbs and
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releases under these conditions. Three 50 × 150 × 150 mm prismatic specimens were
prepared for each mixture. This test was performed in a climatic chamber at a preset
temperature and relative humidity for a defined time. All specimens completed more than
20 cycles, which in total was more than 480 h of testing. The test was based on the research
work “Moisture Buffering of Building Materials in Nordisk Innovations Center” [35].

For the measurement of water vapor permeability, two cylindrical specimens of
100 × 200 mm were produced, from which three slices of 100 × 25 mm were cut to be placed
in metallic cups for the wet cup method. Additionally, two specimens of 110 × 220 mm
were manufactured, from which three slices of 110 × 25 mm were cut to be placed in
the metallic cups for the dry cup method. These tests were performed according to the
specifications of NF EN ISO 12572:2001-10 [36].

The pore network of the WSC and HSC was analyzed by scanning electron microscopy,
which allowed the complementing of the experimental results obtained for compressive
strength, bulk density, heat transfer, moisture regulation in absorption and desorption
cycles, and water vapor permeability. A scanning electron microscope (JEOL JSM-6380LV)
was used.

4. Analysis and Discussion of the Results
4.1. Results of LFC and FFC Specimens
4.1.1. Flexural Strength

Figure 2 shows the results obtained for flexural strength at 40 days of age. The treat-
ment of the fibers adversely affected the flexural strength for the LFC and FFC. In all
cases, the untreated fibers showed better mechanical behavior; this was due to the better
adhesion with the cementitious matrix without the presence of a wax-based coating [37].
Additionally, it is evident that this coating on the fibers did not provide adequate protection
when the composites were exposed to accelerated deterioration. The LFC/TF resulted
in lower flexural strength values than the 0% fiber volume, while the LFC/UF had an
increase in flexural strength with respect to the 0% fiber volumes of 38%, 28%, and 16% for
Vf = 0.4%, 0.7%, and 1.0%, respectively. The FFC composites with and without coatings
were more affected by accelerated deterioration for all fiber volumes exhibiting lower flexu-
ral strength than the control; this may have been due to flax fiber being more susceptible to
degradation in alkaline environments. In all cases, a reduction in strength was observed as
Vf increased [37].
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4.1.2. Compressive Strength

Figure 3 shows the results of the compressive strength at 40 days of age. The behavior
was similar to that of the flexural strength. The LFC composites with Vf = 0.4% without
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wax coating had higher compressive strength than the control in 14%, and for all the
Vf, the strengths were higher than those corresponding to the FFC, and the accelerated
deterioration seemed to affect more the latter composites. The tendency for compressive
strength to decrease with increasing Vf was maintained as in the bending behavior. The
chemical composition of both LF and FF had an important role in their mechanical behavior,
since by their nature they are mainly composed of cellulose, hemicellulose, and lignin,
which provide strength, stability, and stiffness in the fiber [18] and can contribute to the
mechanical properties of the developed composites. Their cellulose and lignin composition
has an impact on the hydration process and finally on the development of flexural and
compressive strength [38].
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4.1.3. Porosity and Density

The open porosity of a material is the ratio between the volume of pores communicat-
ing to the exterior and its total volume expressed in percentage. Porosity and dry density
are properties that are related to each other. Figure 4 shows that porosity increased while
density decreased with the increase of fibers in the matrix [39]. For LFC (Figure 4a), the
results showed a slight increase in porosity of 1%, 7%, and 9% for fiber volumes of 0.4, 0.7,
and 1.0%, respectively; these results agree with Siddique [40]. Figure 4b for FFC shows
higher porosity than LFC, which may be due to the physical properties of flax fiber that
have a higher absorption capacity than agave fibers, and this could cause a higher porosity
in the composite.
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Figure 4 shows that the treatment affects in a more significant manner the poros-
ity/density than do the presence and the percentage of fibers in both composites. On
the other hand, porosity and density are important properties of concrete, as they affect
mechanical behavior. Figure 5 shows how compressive strength is affected by density
and porosity, showing that the compressive strength increases with higher density and
decreases with higher porosity [39]. The FFC showed lower density and higher porosity
than LFC, which achieved higher compressive strength values.
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4.1.4. Microstructure of LFC and FFC with Deterioration

Figure 6 shows the micrographs of the LFC with accelerated deterioration. Deposits of
mineral products on the fiber walls can be observed in Figure 6a,b, which were in the form
of small plaques (white deposits), but these were not present in the depths of the fiber. This
may be because matrix products could adhere to the fiber, but these did not embrittle the
fiber, even in fibers without wax coatings. Figure 6c,d shows the failure mode of the fibers.
In Figure 6c, the rupture of the untreated fiber caused by the adhesion to the cementitious
matrix can be observed. While the treated fibers showed a pull-out type of failure due to
adhesion failure, as can be seen in Figure 6d, it is clear that the adhesion between the LFs
and the matrix is an important factor in the mechanical strength of the LFCs. The SEM
observations show the interface with the cementitious matrix, where volumetric variations
produced by water absorption could be observed because an amount of water absorbed
by the fiber during mixing did not diffuse into the paste, and upon drying, it produced a
reduction in volume. These dimensional variations could result in adhesion defects such as
those observed in the micrographs (Figure 6d), which can lead to a loss of strength. Similar
results of pull-out failures in FF have been reported in other studies [41].

Similarly, micrographs of the FFC with accelerated deterioration are shown in Figure 7.
Figure 7b,d show that the flax fiber bundles did not disperse into individual fibers; this
could have occurred when the fibers were incorporated into the mixture. The FF had
a smaller diameter than the LF, which gave it more bonding surface area for the same
volume; however, this was not evident in the mechanical results, as relatively good bonding
between the FF and the matrix was lost due to the agglomeration of the FF. Additionally, in
Figure 7a,b, some mineral deposits can be observed that are visible on the surface of the FF;
after the accelerated deterioration procedure, the specimens were at least 60 days old at
the time of the observations conducted, and with this elapsed time there were no signs of
deep mineralization for the FF with and without treatment. This was evident by the fact
that no embrittlement was observed in the fibers; on the contrary, they had a certain degree
of ductility. SEM observations showed greater chemical interaction between the LFs with
the mineral deposits compared to the FF, as they tended to have greater embrittlement,
and their color changed. Other studies have used a metakaolin matrix as the formulation
of this research, and they agree that this pozzolan can help to avoid the mineralization of
plant fibers [42]. On the other hand, minimal volumetric variations of the untreated fiber
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are observed in Figure 7c. The agglomeration shown in Figure 7d makes it evident that
the flax fiber was not adequately distributed, which may have influenced the low flexural
and compressive strength that the FFC showed. This also explains, however, the higher
porosity of these composites.
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4.2. Results of WSC and HSC Specimens
4.2.1. Compressive Strength

The addition of porous plant aggregates led to a decrease in compressive strength,
which was the expected behavior. The results of the compressive strength at 84 days of
age of the composites are shown in Figure 8, where it is shown that the WSCs had better
mechanical behavior than the HSCs. For WSC, the formulations M7 and M8 with 0% FA
were similar to C2 (0% FA), but M9, M10, and M11 (20% FA) formulations did not exceed
C3 (20% FA). Comparing C2 and C3, it was observed that the addition of FA produced a
59% increase in resistance; this contribution of FA had a positive impact on formulations
M9 and M10. For HSC, the difference in resistance with respect to the control formulations
C4 (0% MK) and C5 (20% MK) was not very significant; M12 (0% MK) was lesser than
C4, and M13 and M14 with 20% MK were lesser than C5. In the case of HSC, it was
mainly due to the presence of bio-aggregates (HS) with high water absorption capacity
in the cementitious matrix, as well as the impact of hydrosolubility coming from HS on
the hydration and hardening of the mineral matrix, which promoted a slower evolution
in strength growth [43]. It was observed that both FA and MK behaved as fillers and also
densified the matrix of WSC–HSC specimens.
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Figure 9 shows the effect of shavings replacement within the cementitious matrix; as
the percentage of bio-aggregate replacement increased, there was a decrease in compressive
strength. Figure 9a shows that for WSCs, for 10% WS replacement there was a 54% reduction
with respect to the C3 control formulation with an FA-based matrix. HSC specimens with
the MK matrix in contrast had a lower strength reduction of 26% for the maximum 10%
replacement of HS compared to C5. It is evident that the presence of bio-aggregates affected
the matrices with FA more than the matrices with MK and even the matrices that did not
have cementitious agents, as can be seen in Figure 9b. However, the matrices with FA
without bio-aggregates had a higher resistance to compression. A previous study found
different mechanical behaviors, reporting that FA mortars had the lowest compressive
strength values up to 180 days compared to MK mortars [44]. It is well known that if
a sufficient amount of calcium hydroxide is not available in the early stages of cement
hydration, the initial strength of the pozzolanic compounds forming additional calcium
silicate may be lower than the strength of the control, which may explain the mechanical
behavior observed in Figures 8 and 9.
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4.2.2. Density

The results of the bulk density are shown in Table 6. It was observed that all WSC
formulations reduced their density with respect to the controls (0% WS) C2 and C3, with
formulation M11 (10% WS) being the one that decreased up to 19% and 16%, respectively.
The HSC had similar behavior; all formulations had lower densities than the C4 control
(0% HS), and the formulation with higher shaving content of M14 (10% HS) decreased up
to 13% with respect to the C4 control. With respect to the C5 control with 20% MK, the
reduction was not very significant (2%), and even the formulations M12 and M13 had a
slightly higher density, namely, 5% and 3%, respectively, with 4% HS. Higher percentages
of WS and HS would be necessary to obtain even lower bulk density values; however, they
must be related to the compressive strength in order not to affect its mechanical behavior.

Table 6. Variation of the bulk density for the different formulations (kg/m3).

Composite
Mixtures

C-2 C-3 C-4 C-5 M7 M8 M9 M10 M11 M12 M13 M14

WSC 2121 2052 1786 1777 1775 1792 1728
HSC 1900 1699 1788 1742 1658

Bulk density is affected by the accommodation of different shavings sizes within the
cementitious matrix; thus, the pore content will have an impact on the reduction of bulk
density in the specimens. The unit weight of the WSC and HSC decreased compared to
the control specimens, as observed in Table 6. This reduction was also related to the fact
that WS and HS were lighter than the fine aggregate, and this lightened the cementitious
matrix [45]. Another aspect to consider is that during compaction, water is expelled from
the shavings, leaving an unoccupied void within it, and subsequently these voids in the
shavings are occupied by air [46]. The use of wood shavings has been found to substantially
reduce the bulk density in cementitious composites and has comparable values with wood
agglomerates [47].

4.2.3. Thermal Conductivity

The thermal behavior of the WSC and HSC are shown in Figure 10. It was observed
that as the density decreased, the thermal conductivity also decreased. The highest density
and the thermal conductivity of 0.7 W/(mK) were given by the control values, and all
formulations produced lower results. As seen in Figure 10a, for the WSCs, the values
showed that the use of WS decreased from 0.7 to 0.4 W/(mK), leading to a thermal conduc-
tivity decrease of approximately 43% with respect to the control, which is comparable to
the materials classified as insulators [48]. As seen in Figure 10b, HSC specimens showed
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a reduction in thermal conductivity from 0.7 to 0.4 W/(mK), which was lower than the
control and which represents 31%, and its density was lower than WSCs. It is evident that
for the same % of replacement, HSC is just as efficient as WSC in reducing the thermal
conductivity, and the difference in the evolution of the thermal conductivity with respect
to the shaving replacement, as shown in Figure 11, can also be attributed to the origin of
the bio-aggregates, since the different morphological nature of the hemp for HSC and the
wood used for the WSC affects the thermal conductivity.
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Figure 11. Effect of the shaving volume on the thermal conductivity for the WSC–HSC specimens.

As seen in Figure 11, increasing the content of shavings decreased the thermal conduc-
tivity of the composites and thus increased their insulating capacity. With the proportions
of shavings used, the HSC showed slightly higher thermal conductivities than the WSC [49],
and the tendency was to increase further with the increase of the replacement percentage.
The low thermal conductivity of WSC was also related to the large number of voids, as
reported in other studies [50]. The obtained values of thermal conductivity for WSC and
HSC were relatively low and within the limits of lightweight and low thermal conductivity
materials [50].

4.2.4. Moisture Buffering Value (MBV)

Figure 12 shows that the bulk density modified the MBV; as the density decreased, the
MBV increased for WSC and HSC. Figure 12a shows that for WSC, the MBV values varied
from 0.4 to 0.6 g/(m2%RH), being higher for HSC, which varied from 0.8 to 1.0 g/(m2%RH)
(see Figure 12b). The control formulations were those with the highest density and lowest
MBV, and it was observed that the presence of WS and HS led to an improvement in the
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hygroscopic behavior by increasing the MBV, and the effect of HS was more evident. For
the same density, HSC mixtures exhibited higher MBV than WSC; we can thus conclude
that the nature of the cementitious matrix and the nature of the plant aggregate significantly
affected the buffering behavior of the composite. The decrease in density was produced
mainly by the porous structure of the WSC and HSC, which was primarily due to the
nature of the bio-aggregates themselves and to the effect of the inclusion of these materials
in a cementitious matrix. It is evident that porosity influenced the decrease in density and
also the improvement of the hygroscopic behavior and water vapor permeability, as will be
seen later [51].
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Table 7 shows ranges of values for the MBV classification; according to these value, the
WSC and HSC could be classified in the moderate category (0.5–1.0) for moisture regulation,
which for a material with a cementitious matrix is adequate. The aforementioned can be
seen in Figure 13, where the average MBV values are shown for different materials. For
example, concrete and brick had a value of approximately 0.4 g/(m2%RH), similar to the
control formulation of WSCs. For HSCs with a higher percentage of HS (10%), the MBV
values were approximate to the order of cellular concrete [35].

Table 7. Ranges for practical moisture buffer value classes [35].

MBV Practical Class
Minimum MBV Level Maximum MBV Level

g/(m2%RH)

Negligible 0 0.2
Limited 0.2 0.5

Moderate 0.5 1.0
Good 1.0 2.0

Excellent 2.0 -

It is important to know the moisture-regulating properties of the materials to classify
them in accordance with Table 7 and Figure 13; in this manner, one can have an idea of
the behavior they will have in their specific application. Thus, a material with excellent
conditions to regulate moisture will be able to absorb moisture and release it quickly. This
will allow one to know if the WSC and HSC are able to regulate the humidity of the
environment (absorption and desorption) to which they are exposed.



Sustainability 2022, 14, 14397 14 of 18Sustainability 2022, 14, x FOR PEER REVIEW 15 of 20 
 

 
Figure 13. Average MBV values for different materials [35]. 

Table 7. Ranges for practical moisture buffer value classes [35]. 

MBV Practical Class 
Minimum MBV Level Maximum MBV Level 

g/(m2%RH) 
Negligible 0 0.2 

Limited 0.2 0.5 
Moderate 0.5 1.0 

Good 1.0 2.0 
Excellent 2.0 - 

It is important to know the moisture-regulating properties of the materials to classify 
them in accordance with Table 7 and Figure 13; in this manner, one can have an idea of 
the behavior they will have in their specific application. Thus, a material with excellent 
conditions to regulate moisture will be able to absorb moisture and release it quickly. This 
will allow one to know if the WSC and HSC are able to regulate the humidity of the envi-
ronment (absorption and desorption) to which they are exposed. 

4.2.5. Water Vapor Permeability 
Figure 14 shows the behavior of WSC and HSC with respect to the water vapor re-

sistance factor. Figure 14a for WSC shows that the WS effect caused a reduction in the 
factor with respect to the C2 and C3 controls, allowing the transfer of moisture in greater 
quantities. Formulation M8 was the one that had a significant reduction with respect to 
the other formulations and the controls. Figure 14b shows that all the HSC formulations, 
including the controls, had higher water vapor permeability than those obtained for the 
WSCs. The HSCs were able to release more moisture to the environment due to the porous 
microstructure of HS, which caused an increase in the flow of water vapor passing 
through the capillary tubes, leading to higher moisture transfer. Other studies on hygro-
scopic materials have found that the presence of palm fibers in these composites decreases 
the resistance to water vapor diffusion and improves moisture transfer, and also in con-
cretes with hemp there is a high permeability to water vapor, regardless of age [52]. These 
results can be positive depending on the place of application, since it can serve as a buffer 
to sudden changes in humidity; however, in cold places, it can affect the thermal perfor-
mance of the envelope, and therefore it is a factor that should be considered at the time of 
application. 

Figure 13. Average MBV values for different materials [35].

4.2.5. Water Vapor Permeability

Figure 14 shows the behavior of WSC and HSC with respect to the water vapor
resistance factor. Figure 14a for WSC shows that the WS effect caused a reduction in the
factor with respect to the C2 and C3 controls, allowing the transfer of moisture in greater
quantities. Formulation M8 was the one that had a significant reduction with respect to
the other formulations and the controls. Figure 14b shows that all the HSC formulations,
including the controls, had higher water vapor permeability than those obtained for the
WSCs. The HSCs were able to release more moisture to the environment due to the porous
microstructure of HS, which caused an increase in the flow of water vapor passing through
the capillary tubes, leading to higher moisture transfer. Other studies on hygroscopic
materials have found that the presence of palm fibers in these composites decreases the
resistance to water vapor diffusion and improves moisture transfer, and also in concretes
with hemp there is a high permeability to water vapor, regardless of age [52]. These results
can be positive depending on the place of application, since it can serve as a buffer to sudden
changes in humidity; however, in cold places, it can affect the thermal performance of the
envelope, and therefore it is a factor that should be considered at the time of application.
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4.2.6. Microstructures of WS and HS

Figure 15a,b show micrographs of WS, where high porosity can be observed from the
micrographs. WS was found to be composed of 60% cellulose, and cellulose has a fibrous
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structure originating from compact microfibrils that constitute the plant cell wall [53].
WS had a three-dimensional cellular microstructure, with an orientation of stiff cellulose
microfibrils in a matrix of hemicellulose and lignin (see) Figure 15a,b. Hemicelluloses are
closely associated with cellulose microfibrils, and these are embedded with lignin, which
gives it its mechanical and physical properties [54]. HS, as can be observed in Figure 15c,d,
had a distribution of cells or micropores with dimensions of 20–25 µm wide by 40–50 µm
long in a tubular shape. Figure 15c shows a separation between the large parenchyma cells
seen in the upper section and the lower part with smaller longitudinal parenchyma cells.
In Figure 15d, the micropore walls that are not pitted can be seen. In other studies, it has
been observed that some walls show cell-to-cell pitting [55]. HS is a highly porous material,
as opposed to WS, as can be seen in the micrographs. HS has an approximate porosity
25 times larger than WS, due to the species type and stem size. The higher porosity of HS
observed in its microstructure explains the lower compressive strength and bulk density,
along with a better performance in thermal conductivity, moisture regulation in absorption
and desorption cycles (MBV), and water vapor permeability, as shown in the experimental
results of HSC.
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5. Conclusions

The present study aimed to determine the physical, mechanical, microstructural, and
durability properties of sustainable plant-based concretes in order to reduce the environ-
mental impact of conventional concretes, and the conclusions for each of the proposals are
presented below:

(1) LFC and FFC with wax treatment on the fibers had an adverse effect on flexural
strength; on the other hand, untreated fibers and those with accelerated deterioration
showed better mechanical behavior, since they had an increase in flexural strength
with respect to the control of 38% and 19%, respectively, for a Vf = 0.4%. Flexural
and compressive strength decreased with increasing Vf. Although the fibers may not
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improve the flexural strength still they contribute to reducing the brittleness of the
material by allowing performance to be maintained after the first cracks appear.

(2) Porosity increases while density decreases when there is the presence of fibers in
the matrix. The FFC presented higher porosity than LFC, which could be due to the
higher porosity of the FF; in addition, the agglomeration shown in the micrographs
is evidence that the FF does not have a uniform distribution within the matrix, and
this could cause larger voids in the matrix, which influenced the low flexural and
compressive strength shown by the FFC.

(3) Micrographs of LFC and FFC with accelerated deterioration showed no signs of fiber
embrittlement in any case, even in the untreated fibers. The failure mode for the
untreated LF was the rupture type and with treatment was the pull-out type, which
explains the flexural and compressive behavior of the composites.

(4) The microstructure of WS and HS had a significant effect on all physical and mechani-
cal properties of the composites. The high porosity influenced the experimental results
obtained since it decreased the compressive strength and bulk density; however, for
the thermal conductivity, hygroscopicity, and vapor resistance, it showed a behavior
in most cases better than the controls that did not have bio-aggregates.

(5) The incorporation of WS and HS was important in improving the hygrothermal
properties of the composites. On the other hand, WSC and HSC showed reductions in
thermal conductivity values of 43% and 31%, respectively, with respect to the controls
without bio-aggregates. These results are comparable with those established in the
current regulations for low conductivity or insulating materials. The WSC and HSC
are classified in the moderate category according to the MBV classification, and in
comparison with values established for other materials with respect to the efficiency
of moisture regulation, the HSC with the highest volume of bio-aggregate (10%); the
MBV values are of the order of cellular concrete.

(6) Although the results demonstrate the positive effects of using vegetable raw materials
as reinforcement or aggregate in cementitious matrices, future research should focus
on the variability of the raw materials by incorporating local agricultural residues and
on the long-term durability of the developed composites considering the incompati-
bility that may exist on the use of natural fibers in alkaline environments.
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