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Abstract: With the increasing global water shortage issue, the development of water desalination
and wastewater recycling technology is particularly urgent. Capacitive deionization (CDI), as an
emerging approach for water desalination and ion separation, has received extensive attention
due to its high ion selectivity, high water recovery, and low energy consumption. To promote the
further application of CDI technology, it is necessary to understand the latest research progress and
application prospects. Here, considering electric double layers (EDLs) and two typical models, we
conduct an in-depth discussion on the ion adsorption mechanism of CDI technology. Furthermore,
we provide a comprehensive overview of recent advances in CDI technology optimization research,
including optimization of cell architecture, electrode material design, and operating mode exploration.
In addition, we summarize the development of CDI in past decades in novel application fields other
than seawater desalination, mainly including ionic pollutant removal, recovery of resource-based
substances such as lithium and nutrients, and development of coupling systems between CDI and
other technologies. We then highlight the most serious challenges faced in the process of large-scale
application of CDI. In the conclusion and outlook section, we focus on summarizing the overall
development prospects of CDI technology, and we discuss the points that require special attention in
future development.

Keywords: capacitive deionization (CDI); desalination; electrosorption; system architectures;
electrode materials; energy efficiency

1. Introduction

Due to rapid industrialization, climate change, population explosion and the spread
of water pollution, natural freshwater resources can no longer meet the growing global de-
mand for clean water [1]. However, freshwater accounts for only 2.5% of total global water
resources, and they are mostly stored in the form of glacial water or deep groundwater [2].
Seawater and brackish water with abundant reserves cannot be directly used as domestic
water. Therefore, desalination technology is considered to be one of the most effective
solutions to alleviate the water shortage issue [3]. Currently, desalination technologies can
be broadly classified into three categories according to the driving force to separate ions
from water. The first category is the conventional thermally driven desalination technology,
which involves evaporating the feedwater and the subsequent condensation of the vapor
to obtain distilled water (Figure 1a) [4]. The widely used thermal desalination techniques
including multistage flash (MSF), multiple-effect distillation (MED), and mechanical vapor
compression (MVC). [5]. In addition, membrane distillation is based on the fractional
pressure-driven vapor transport of hydrophobic membranes [6], and it represents an emerg-
ing thermally driven desalination technology. Due to the inherent limitations of energy
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efficiency, the application of thermally driven desalination technologies in the market has
been decreasing over the past few decades [7]. The second category is pressure-driven
desalination technology represented by reverse osmosis (RO). When the pressure is greater
than the osmotic pressure of the aqueous solution, the water in the solution is pushed
across the semipermeable membrane, while the solute is expelled to the other side of the
semipermeable membrane (Figure 1b) [8]. RO has near-perfect repulsion to charged ions
and has been widely used in seawater and brackish water desalination. The third category
is electro-desalination technology, which is driven by an external electric field. The most
typical electrolytic desalination technology is electrodialysis (ED) (Figure 1c), in which
ions are selectively passed through ion-exchange membranes (IEMs) under an applied
electric field and delivered to a concentrated stream, thus effectively removing the ions
of the feedwater [9]. Since the cost of IEMs is much higher than that of RO membranes,
and the high-voltage operation mode leads to the consumption of electricity via Faradaic
reactions, ED technology suffers from inherently low energy efficiency, which makes it not
as widely used in desalination as RO. Although the existing technologies play a pivotal
part in the development of the desalination field, the defects are also relatively obvious. In
addition, traditional technologies usually do not have the ability to selectively remove ionic
substances in water, which limits their application in specific pollutant (heavy metals, etc.)
removal or resource (lithium, nutrients, etc.) recovery. With the increasing demand for
fresh water, it is urgent to develop a desalination technology with a better desalination
effect, higher energy efficiency, and long-term stable operation.
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as electrodes [10], which would produce a positive and negative charge, respectively, 

Figure 1. Schematic representation of three main types of desalination processes: (a) thermally driven
desalination, such as MED, MSF, MVC, or membrane distillation (not shown here); (b) pressure-
driven desalination, such as RO or NF; (c) electric field-driven desalination (or electrochemical
desalination), such as CDI or ED.

In 1967, Murphy and Caudle created the first CDI cell with porous carbon material
as electrodes [10], which would produce a positive and negative charge, respectively,
under an applied potential (Figure 2a). Compared with RO, CDI usually does not require
membrane modules, and the limitations for influent quality are much less than those of
RO. It not only simplifies the complex pretreatment process, but also reduces the risk of
degradation of desalination efficiency caused by membrane fouling. The ion removal
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mechanism of traditional CDI is to form electric double layers (EDLs) on the surface of
carbon electrodes with large specific surface area [11]. Two models are mainly used in
the current study. Among them, the Gouy–Chapman–Stern (GCS) model is suitable for
carbon electrode materials with a large pore and suitable for quantifying the effects of
pore size, carbon-specific surface area, and the feed concentration on the desalination
performance [12–14]. However, the EDLs would overlap inside the microporous carbon
electrode (pore size < 1 nm) according to the GCS model. Alternatively, the modified
Donnan model [15] can be used to describe the electric double-layer structure in the
micropore and serve as the modeling basis for the CDI desalination system [16–18]. The
optimized model construction lays a certain theoretical basis for the research of CDI systems
in the application of desalination.

In order to further optimize the ion removal performance of the CDI system, re-
searchers have carried out comprehensive research on the aspects of cell configuration,
electrode material design, and operation mode optimization. Due to the energy efficiency
of the system being affected by the co-ion expulsion of classic CDI, Lee et al. introduced
IEMs alongside electrodes and proposed the concept of membrane capacitive deionization
(MCDI) [19]. Under the selective permeation of ions by IEMs, the charge on the electrode
surface can be used for the attraction of counter ions without spending on the repulsion of
co-ions, which effectively improves the salt removal ability and the energy efficiency of
the system. In addition, the electrode adsorption and desorption processes of traditional
CDI and MCDI are separated, and the intermittent electrode regeneration process makes
the control process more complicated. Jeon et al. introduced the activated carbon slurry
electrode into the CDI system and proposed the concept of flow electrode capacitance
deionization (FCDI), which enables achieving continuous desalination operation [20]. The
development of early CDI and its derivative systems was mainly based on carbon materials,
which are the most mature CDI electrode materials due to their cheap and easy availability,
good electrical conductivity, abundant porous structure, and high specific surface area.
Carbon material electrodes that have been reported for use in CDI systems including carbon
nanotubes [21], graphene [22], mesoporous carbon [23], and carbon aerogels [24]. However,
carbon materials have limited charge storage capacity (100–200 F·g−1) [25] and cannot
achieve selective removal of ions. Although the adverse effect of co-ion repulsion can be
mitigated by the introduction of IEMs, there is a contact resistance between the IEMs and
the electrode, which may also bring membrane fouling to the CDI cell. In order to further
improve the deionization performance of the CDI system, the researchers introduced Fara-
day electrodes, which constituted a hybrid capacitive demineralization (HCDI) [26] with
superior ion removal performance. Unlike traditional CDI, the Faraday electrode achieves
ion capture by intercalating ions between electrode material layers, inside the lattice, or
through redox reactions with ions, which effectively reduces ion migration resistance, so as
to improve energy efficiency. In recent decades, intercalated electrode materials (including
two-dimensional MXenes and three-dimensional PBAs) [27,28], polymer electrode materi-
als (polyaniline (PANI) and polypyrrole (PPy)), etc. have been used as Faraday electrodes.
Materials have been used in the field of CDI and have made significant progress. However,
the selective adsorption performance of existing electrode materials for target ions needs
to be further improved, and the interaction mechanism between the electrode interface
structure and specific ions needs to be further studied.

Recently, CDI has gradually expanded broader application fields from the initial appli-
cation of seawater and brackish water desalination, especially for the selective removal of
ionic pollutants in the water environment, including water softening [29] and removal of
toxic heavy metals [30], as well as the selective recovery of resource-based ions, including
the recycling of high-valent elements lithium [31–37] and nutrient ions [38,39]. In addition
to ionic species, CDI systems have been applied for the capture of CO2 through the con-
version of dissolution equilibrium and adsorption equilibrium, and this progress provides
a new idea for the capture of soluble gas molecules [40,41]. Since CDI technology is only
suitable for the removal of ionic substances, the ability to remove neutral organic substances
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is limited. To further explore wider applications, researchers coupled CDI technology with
other techniques, which effectively compensated for the limitations of the two techniques
and resulted in better performance than the single technique [42]. Although the existing
application research has achieved remarkable results, most examples are limited to the
laboratory scale. Due to the fact that the feed stream in practical applications is usually
composed of complex components and the water quality fluctuates greatly, further in-depth
research is still required before CDI technology is promoted for application.

In this review, we first outline the mechanism of ion removal during CDI desalination
and focus on two adsorption models. Then, the current research progress of CDI technology
optimization is reviewed, and strategies for optimizing CDI systems from the perspectives
of cell configuration, electrode material design, and operation mode are summarized.
Lastly, some emerging fields in which CDI technology is currently applied are summarized,
and some guiding opinions for future development are put forward.

2. Reaction Mechanism of CDI

The reaction mechanism of CDI for desalination is an “electrosorption” process, in
which the counter ions are fixed to the EDL under an electric field, while the co-ions are
repelled and moved away from the surface of the electrode (Figure 2b) [43,44]. Among
them, some of the counter ions are not concentrated on the electrode surface, but diffuse on
the layer close to the electrode. The formed region is called the Gouy–Chapman (GC) layer,
and its ion concentration decreases gradually with increasing distance from the electrode
surface. The inner layer that exists between the diffusion layer and the electrode is called
the Stern layer, which is electrically neutral [17].

When the pore size of the porous electrode material is much larger than the Debye
length, it can be assumed that the EDLs do not overlap. In this case, the classical GCS
model is usually used to study the ion distribution at the plane or electrode interface. At
present, most of the research on EDL focuses on the amount of charge stored in the EDL.
However, the CDI system focuses on the number of ions stored in the EDL, where the
related research is scarce. The EDL model of charge storage and ion storage is the same.
At low voltage, the capacitance for charge storage is not zero, while the capacitance for
ion storage is zero, resulting in a system with a current efficiency close to zero. Therefore,
how to effectively improve the current efficiency of the CDI system under low-voltage
conditions and achieve low energy consumption for desalination is the key issue in this
field. During the charging process, ions are separated from the electrolyte and stored
in EDLs on the electrode surface; subsequently, during the discharging process, the ion
concentration of the solution increases with the release of the stored ions into the electrolyte.
The concentration difference generated in the discharge process is accompanied by the
release of energy, which can be transferred to an adjacent cell or individual supercapacitor
and recovered by the converter [45,46].

When the GCS model was applied to CDI experiments with porous carbon electrodes,
the theoretical amount of co-ion expelled from the EDLs exceeded the amount of co-ion
originally present in the electrode under high-voltage conditions [13]. This is caused by the
pore size of the electrode micropores being smaller than the Debye length and resulting
in the overlap of EDLs. Applying the modified Donnan model (Figure 2c) to the CDI
system can effectively avoid the limitation and accurately describe important theoretical
data such as salt adsorption and charge storage balance in CDI [47–51]. When the Debye
length is much larger than the electrode micropores size (about 1–2 nm), the EDLs inside
the carbon electrode particles are highly overlapped, and it can be considered that the
potentials at different positions in the micropores are consistent. Donnan theory assumes
that the properties of the diffusion layer are independent of its distance from the Stern
plane, but the rest of the Donnan model is similar to that of the GCS model.

Although the Donnan model is mathematically simpler, it cannot clearly describe
the detailed data of salt adsorption and charge distribution in microporous carbon; thus,
the Donnan model usually needs to be modified in two ways [52]. The first modification
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method is to introduce a Stern layer between the charges in the carbon matrix and the
electrolyte ions in the electrode micropores. Since ions have different radii under hydra-
tion/dehydration conditions, the electronic charges are not completely located at the edge
of the carbon material, and there is a certain “roughness” at the interface between the
carbon electrode and the electrolyte, the ionic charges in the Stern layer cannot be infinitely
close to the electronic charges. The second correction method is to introduce chemical
gravitational energy during the transfer of ions from the outside to the inside of the car-
bon electrode particles. This approach takes into account that, in the absence of electric
charges, ions enter the inside of the electrode pores under the action of non-electrostatic
attraction [53]. When the electrode has macropores and micropores, both of which are
filled with electrolytes, the ion concentration in the micropores is assumed to be equal to
the local average by the Donnan model, while the macropores present electrically neutral.
When the salt ion concentration reaches a certain value, the excess ionic charge in the
micropores is compensated for by the charge in the carbon matrix. In general, the GCS
model and the modified Donnan model are effective tools to study CDI systems, which can
provide a clearer understanding of the equilibrium and ion transport characteristics in the
reaction system. They provide a general concept and theoretical basis for studying the CDI
reaction mechanism.
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3. Optimization Strategies of CDI
3.1. Cell Architecture

Although CDI has significant advantages among desalination technologies, there is a
tradeoff between ion removal rate and energy efficiency. In order to further promote the
application of CDI, researchers have made various attempts in cell architecture. At present,
cell architectures that have attracted the most attention include classic CDI, membrane
CDI (MCDI), flow-electrode CDI (FCDI), and hybrid CDI (HCDI). Figure 3 is a schematic
diagram of these cell architectures.
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3.1.1. Classic CDI

Founded on the principle of ion electrosorption, classic CDI (Figure 3a), which orig-
inated in the 1960s [10], consists of a pair of carbon electrodes with porous structure
separated by a nonconductive spacer. Due to its simple structure and ease of establishment,
the classic CDI has been widely used in industry [56,57]. At present, the research of classic
CDI systems is mainly focused on theoretical modeling [13,16,17], construction of novel cell
architectures [17,26,55], electrode material design [23,58,59], and energy recovery [60,61].

The theoretical potential difference for electrochemical water splitting is 1.23 V. In order
to avoid charge depletion by parasitic water splitting (hydrogen and oxygen evolution
reactions) and other side reactions from consuming electric charge [62], the operating
voltage of classic CDI is usually ≤1.2 V [63]. Compared with electrodialysis desalination
technology, the low-voltage operation mode effectively improves energy efficiency, making
CDI the most promising electrically driven desalination technology. In addition to the
adsorption of counter ions, the electrode of classic CDI will repel co-ions back to the
reaction channel, thus reducing the desalination efficiency of the CDI system. Especially in
high-concentration brine, the energy consumption of the co-ion exclusion process in the
adsorption stage is higher, resulting in lower current efficiency. Therefore, classic CDI is
only suitable for the treatment of low-concentration brine [64].

Carbon materials used in classic CDI have porous structures, various surface functional
groups, and limited active sites, making them ideal organic adsorbents [65]. The effective
adsorption characteristic also makes the porous carbon electrodes sensitive to organics
in the feed stream [66], which might lead to a significant reduction in the removal rates
under long-term operating conditions [67]. In addition, the porous carbon materials used
in classic CDI have a fixed adsorption active area, which limits the total adsorption capacity
of electrodes [17,68]. Therefore, how to improve the salt adsorption capacities (SACs) of
the CDI system has become the key issue of the related research.

3.1.2. Membrane Capacitive Deionization (MCDI)

By introducing IEMs on the surface of CDI electrodes, the constructed cell architecture
is called MCDI (Figure 3b). Since IEMs are semipermeable to charged ions, an AEM allows
only anions to pass through, while a CEM allows only cations to pass through. Placing
AEM in front of the anode and CEM in front of the cathode can weaken the co-ion repulsion
effect on the surface of the electrode. In MCDI, the co-ion expelled during the adsorption
process is not trapped in the water channel by the IEMs. Moreover, to achieve charge
balance, the trapped co-ion within the electrode can go a step further by attracting more
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and more counter ions into the electrode; thus, MCDI can achieve higher total salt removal
than classic CDI.

Compared with the classic CDI, MCDI has a larger ion adsorption capacity, higher
charge efficiency [17,18], more diverse operation conditions, and better anti-fouling perfor-
mance, which is due to the ion-selective migration in MCDI with the IEMs [17,19,47,69,70].
Biesheuvel et al. approved through a laboratory-scale study that MCDI increased the
salt removal rate by 20% compared with classic CDI when treating a 1200 ppm NaCl
solution [69]. Another lab-scale study showed that MCDI performed nearly 30% better
salt removal rate than classic CDI when treated with 400 ppm NaCl [71]. Furthermore,
compared with classic CDI, MCDI cells have more diverse operation modes. In addition
to the constant-voltage (CV) mode, MCDI can use the constant-current (CC) mode for
desalination operation. When the adsorbed ions on the fixed electrode are saturated, the
reverse voltage desorption (RVD) mode can be used to accelerate the desorption of ions
inside the electrode (see Section 3.3 for the optimization of the operation mode). Moreover,
IEMs have been shown to be effective in extending electrode lifetime by reducing the
oxidation of anodic carbon electrodes [72,73].

Although the introduction of IEMs significantly improved the desalination perfor-
mance, MCDI still uses static electrodes. The pore structure on the fixed electrode for
storing ions is limited, and the saturated electrode limits its total SACs in the adsorption
stage [17,74]. Therefore, MCDI is only suitable for treating low and medium concentrations
(about 3000–4000 mg·L−1) of ions and is not suitable for treating industrial brine with
high ion concentration (>10,000 ppm). In addition, since the saturated electrode needs
to be regenerated, the adsorption and desorption stages are separated, resulting in the
discontinuous operation of both classic CDI and MCDI systems [55,75]. Although MCDI
currently has an industrial scale, its stability under long-term application still needs to be
verified [76,77]. In addition, the fouling mechanism of IEMs under long-term operating
conditions still needs further research.

3.1.3. Flow Electrode Capacitive Deionization (FCDI)

During the operation of classic CDI and MCDI, the ion adsorption and electrode
regeneration processes need to be alternated. This noncontinuous operation mode requires
the design of a complex control mode. During the switching of the potential direction,
a part of the diluted water will be lost, which will affect the water recovery rate. In
order to solve the limitations caused by the fixed electrodes, Jeon et al. first proposed
the concept of FCDI in 2013 (Figure 3c) [20]. The slurry electrode used in FCDI consists
of activated carbon particles with a specific surface area of about 3200 m2/g, and it has
a higher electrosorption capacity (>20 mg·g−1) than MCDI (average 1–11 mg·g−1). The
conductive slurry is continuously pumped into the electrode chamber of the FCDI cell, and
the regeneration of the electrode is carried out in a separate system outside the FCDI cell.

The flow electrode in FCDI has a higher specific surface area than the fixed electrode,
which leads to better desalination performance of FCDI for high-concentration brine.
Studies have proven that FCDI has a high desalination performance for brines with a high
total dissolved solid concentration (TDS) of seawater (about 35,000 mg·L−1) [78]. Unlike
classic CDI and MCDI, the flow electrode can be recycled outside FCDI batteries, and
the desorption and adsorption processes in the system can be performed separately. It
enables continuous desalination operation of the FCDI system and effectively improves
the water recovery rate. When a voltage is applied, the charged ions tolerate the IEMs and
are fixed to the surface of the suspended carbon particles within the flow electrode. The
effused flow electrodes from the anode and cathode chambers of the FCDI cell are mixed
and regenerated in an external system. Furthermore, the desalination capacity of the FCDI
system can be extended by increasing the number of flow electrodes [20]. The significant
advantages of the FCDI system make it a great potential for industrial-scale desalination
applications [20,79].
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Early research about FCDI mainly focused on increasing the ion loading of carbon
electrode materials in FCDI, thereby improving the desalination efficiency of the system.
Since 2016, some of the research has turned to cell architecture design and operation mode
research. The FCDI cell architectures that have been developed so far include single-
module FCDI batteries [80], dual-module FCDI batteries [81], and two-step regenerative
FCDI batteries with energy recovery [82]. In addition to basic and lab-scale studies, it is
particularly important to evaluate the feasibility of FCDI systems in various industrial
applications. In general, FCDI research is still at its lab scale, and energy consumption
optimization is required in the case of high-concentration TDS feed (>2000 ppm) [83–85].
Further research on the long-term operational stability of the system should also be carried
out [84,86], and its feasibility in large-scale desalination (>125 mL·min−1) needs to be
evaluated [87–89]. The mechanism of electrode or IEM scaling in FCDI systems has not
been extensively studied; thus, any analysis and development are still needed before FCDI
technology can be widely used.

3.1.4. Hybrid Capacitive Deionization (HCDI)

In addition to flow electrodes, the introduction of Faraday electrodes is one of the
important ways to improve the ion adsorption capacity of CDI electrodes. Since the target
ions of the two electrodes in the CDI system are different, various Faraday electrodes are
used to selectively adsorb cations or anions, respectively. Na+ intercalation materials can
be used as CDI cathodes, such as sodium transition metal oxides, polyanionic compounds,
or metal hexacyanometalates, to adsorb/desorb Na+ through intercalation/release. In
contrast, CDI anodes usually use conversion materials (such as Ag/AgCl or Bi/BiOCl) to
capture Cl− [90,91]. In 2012, Pasta et al. first carried out the research on the CDI system
with double Faraday electrodes (Na2Mn5O10//AgCl) [90]. The introduction of the Faraday
electrodes can effectively reduce the co-ion repulsion effect and has shown the capacity for
desalination of low-concentration and high-concentration brines (such as brackish water
or even seawater) [92]. The concept of HCDI was first proposed in 2014 by Yoon et al.,
which refers to a CDI system consisting of two different Faraday electrodes, or a Faraday
electrode and a capacitive carbon electrode (Figure 3d) [26]. A Faraday electrode with
high Na+ storage capacity was selected as the cathode, and a porous carbon electrode
coupled with AEM was used as the anode for selectively adsorb Cl−. The constructed
HCDI (Na4Mn9O18//AC-AEM) performs a high desalination capacity of 31.2 mg·g−1,
which is more than twice that of the classic CDI (13.5 mg·g−1).

Due to high energy density, high conductivity, high Faraday reaction, and low cost,
transition metal oxides (TMOs) are ideal HCDI cathode materials and have been used as
electrode materials for energy storage devices such as secondary batteries and supercapaci-
tors. Among them, MnO2, as a typical TMO, has a high theoretical capacitance (specific
capacitance is greater than 1300 F·g−1, and volume specific capacitance is approximately
290 F·g−1), and its application in HCDI systems has received further attention from re-
searchers. Hand et al. synthesized a MnO2 electrode using the electrodeposition technique,
and the assembled HCDI system exhibited good desalination performance (2.29 mmol
Na+·g−1, charging efficiency of 0.95) [93]. Due to the asymmetric architecture of HCDI, the
desalination capability and stability of the system composed of MnO2//C electrodes are
restricted by the less reactive carbon anode. To handle this drawback, Qiu et al. developed
an inverted HCDI system [94]. By combining a MnO2 anode with a positively charged
anion-selective activated carbon (AC) material, the created HCDI cell also possesses the
advantages of a selective carbon anode (reducing the negative effects of co-ion rejection)
and the advantages of Faraday anodes (wide operational voltage and no anode corrosion).
The salt ion adsorption capacity is 14.9 mg·g−1, and the desalination capacity of 95.4% is
maintained after 350 adsorption/desorption cycles. Additionally, several different TMOs,
such as Co3O4, ZrO2 [95], Fe3O4 [96], and RuO2 [97], have been widely explored as HCDI
electrodes in recent years. However, the electrical conductivity of TMOs is typically poor,
and carbon materials are usually used as composite additives. In addition, the structural
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stability of some TMO electrodes is poor, and it may dissolve within the electrolyte solution,
which may lead to serious secondary pollution and other issues.

Transition metal carbides (TMC, such as MXene) and transition metal dichalcogenides
(TMDs) have unique two-dimensional nanostructures and excellent electrical conductivity.
Researchers have carried out extensive explorations for its applications in catalysts, solar
cells, secondary batteries, and capacitors [98–101]. Since two-dimensional intercalation
materials such as MXene have adsorption capacity for both cations and anions [102,103],
they can be introduced into CDI cells as two parallel cathodes and anodes, respectively.
Srimuk et al. using a Ti3C2–MXene electrode constructed an HCDI system whose desali-
nation capacity was stably maintained at 13 ± 2 mg−1 [58]. Since Ti3C2–MXene has an
intercalation layered structure, its desalination mechanism is mainly ion intercalation rather
than EDL adsorption. However, due to the abundant negatively charged functional groups
on the surface of MXene nanosheets, its adsorption capacity for Na+ is strong [58,102], but
its removal capacity for Cl− is significantly lower. Therefore, the application of MXene as a
CDI anode requires further functional groups and structural design.

3.2. Electrode Material Design

The adsorption capacity of electrode materials plays a crucial role in the desalination
performance of CDI systems. According to the capture mechanism of the CDI systems, the
electrode materials may be divided into three types: electrosorption electrodes, insertion
electrodes, and redox reaction electrodes. Among them, electrosorption mainly occurs on
carbon electrodes, while the other two types require the introduction of Faraday electrodes.
This section takes several typical examples to briefly introduce the latest research progress
of carbon-based electrode materials, intercalation electrode materials, and polymerized
electrode materials in the field of CDI, as well as summarizes the general strategies for
electrode material optimization.

3.2.1. Carbon Material

Carbon materials have the characteristics of rich pore structure and good electrical
conductivity, representing the earliest electrode materials for CDI systems. Traditional
carbon materials (such as activated carbon and carbon cloth) only have a porous structure,
and the removal of ions is usually achieved by an electrosorption mechanism in the CDI
system. Nanostructured carbon materials (such as graphene and carbon nanomaterials)
have the characteristics of intercalation materials, and the design and optimization of
related materials have become the recent research emphasis.

As a common carbon-based material, carbon cloth has the characteristics of high
electrical conductivity, high porousness, convenient form adjustment, and sensible me-
chanical stability, and it has been widely utilized in numerous fields [104]. There have
been many reports on pure carbon cloth as CDI electrodes [105–107]. However, in order
to further improve the energy efficiency and desalination efficiency of the CDI system,
it is necessary to modify the carbon cloth surface with nanostructures. Guo et al. used
a simple method to grow nitrogen-doped carbon-coated Li4Ti5O12 nanosheet arrays on
the surface of carbon cloth through polymerization and annealing steps [108]. Due to the
Faraday effect of Li4Ti5O12, the SACs of the modified electrode are increased by 300%
(25 mg·g−1/7 mg·g−1) compared with the bare carbon cloth electrode. The charge effi-
ciency is increased to 83%, the energy consumption is reduced to 9.92 × 10−20 J·mol−1 for
ion removal, and the long-term stability exceeds 30 cycles.

As one of the most typical carbon-based nanomaterials, graphene has a honeycomb-
like carbon atomic single-layer structure and a huge specific surface area (2675 m2·g−1),
which can be used for ion storage. The sp2-hybridized carbon–carbon conjugated structure
makes it have good electrical conductivity; hence, it is an ideal electrode material for the
development of new CDI systems [109–112]. However, due to the stacking tendency of the
two-dimensional structure, there is an effect on the precise expanse and effective surface
adsorption capability of the electrode. Furthermore, the preparation process usually has
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problems such as high material cost, introduction of toxic chemical reagents, and harsh
preparation conditions, which further limits its large-scale application in CDI systems. In
response to the above problems, researchers have carried out many attempts in the prepara-
tion and optimization of graphene. Using CO2 as the raw material, metallic Mg powder as
a reducing agent, and nano-magnesium oxide as a template agent, Li et al. prepared high-
quality graphene rich in mesoporous structure (13,000 S·m−1, 709 m2·g−1) in batches under
high-temperature conditions [113]. The capacitance and energy densities were 224 F·g−1

and 136 Wh·kg−1, respectively. Due to the simple preparation method and the excellent
properties of the prepared porous graphene, it has great commercialization prospects.

Since graphene has fewer surface functional groups and strong π–π interactions
between its layers [114,115], functional group modification is a commonly used method for
stacking inhibition of nanosheets. Liu et al. used pyridine as an intercalator and dispersant
agent for exfoliation and reduction of graphite oxide (Figure 4a) [110]. The π–π stacking
between the pyridine benzene ring embedded into the plane of graphite oxide, which
effectively suppresses the re-stacking of graphene during the reaction process, and the
material exhibits good CDI performance. In addition, the introduction of other active
materials between the nanosheet layers can also play a role in suppressing the stacking
of nanosheets. Huang et al. added an etchant (H2O2) into the graphene oxide solution,
and the prepared three-dimensional nanoporous structure graphene material was used as
the symmetrical electrode of the CDI system. The nanopores created by the hydrothermal
reaction increase the effective active surface area on the graphene nanosheets, facilitating
the diffusion of ions [116].

Carbon nanotubes (CNTs) are one-dimensional tubular carbon nanomaterials with
glorious electrical conductivity, appropriate pore structure, high theoretical specific surface
area, and sensible mechanical stability, which are suitable for use as CDI electrodes [117,118].
However, the CNTs are inherently hydrophobic, which affects the effective contact area
between the electrolyte and the electrode. Furthermore, the one-dimensional nanostructure
has a tendency to aggregate, which also affects its theoretical performance [119]. Therefore,
CNTs are mainly used in the form of composite materials when applied as CDI electrodes,
and they are usually modified with functional groups to achieve functionalization. For
example, CNTs can be used as an additive to graphene electrodes, which can prevent
the aggregation of graphene nanosheets, improve electrode conductivity, and ultimately
improve electrode efficiency [120].

In a recent study by Sriramulu et al., self-supporting electrode films with a layered
structure were obtained by vacuum filtration of graphene oxide and two composite precur-
sor solutions (Figure 4c) [121]. Through the reduction reaction, graphene oxide is converted
into reduced graphene oxide (rGO), which improves the conductivity of the electrode. A
novel high-efficiency HCDI system was constructed with the prepared self-supporting
Na2Ti3O7–CNT@reduced graphene oxide (NCNT@rGO) film as the anode and activated
carbon@graphene oxide (AC@rGO) film as the cathode. In the constant-current (CC) op-
eration mode, sodium ions are inserted into the negative electrode (NCNT@rGO), while
chloride ions are adsorbed to the positive electrode surface (AC@rGO). In addition to
graphene, CNTs can also be combined with a variety of materials to prepare composite
materials. The unique morphological structure of one-dimensional CNTs can be used
as a nano-skeleton, which enables the assembled composite materials to gain a unique
three-dimensional structure. Li et al. prepared carbon nanotubes and carbon nanofibers
(CNTs–CNFs) composite films with an excellent network structure as MCDI electrodes
using chemical vapor deposition method (Figure 4b), which improves the desalination
performance of the electrode [122].

Pan et al. explored hierarchical porous carbon nanotube (CNT)/porous carbon poly-
hedron (PCP) composites (hCNT/PCP) for the first time via in situ intercalation of CNTs
in ZIF-8 followed by pyrolysis [123]. Due to the porous structure, high specific surface
area, and good electrical conduction of the composite, hCNT/PCP exhibited a high elec-
trosorption capability of 20.5 mg·g−1 and stable cycling stability (no significant decrease in
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30 charge/discharge experiments) beneath 1.2 V operative voltage. In addition, composites
of metal–organic framework (MOF)-derived carbon and carbon nanotube have controllable
morphologies, appropriate pore size distribution, and wonderful electrical conductivity,
which have additionally been tried to exhibit excellent desalination performance in recent
studies [124]. Gao et al. grew CNTs on ZIF-67 using chemical vapor deposition, and the
obtained composites were carbonized to form carbon polyhedra and carbon nanotube
hybrids (HCNs) [125]. HCN features a distinctive network structure in which polyhedral
porous carbons are tightly connected by ultralong carbon nanotubes (Figure 4d). HCN
combines the benefits of the two materials and makes up for their shortcomings. It is
an excellent electrode material with high specific surface area, sturdy hydrophilicity, and
sensible electronic conduction.
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Figure 4. (a) The process of pyridine thermal preparation of graphene. Adapted with permission
from Ref. [109]. 2017, Liu P; (b) SEM image of carbon nanotube and carbon nanofiber (CNT–CNF)
composite film (the inset is a low magnification electron microscope image). Adapted with permission
from Ref. [122]. 2008, Li H; (c) schematic diagram of the formation of layered NCNT@rGO films,
lattice structure of Na2Ti3O7 nanowires, and schematic illustration of AC@rGO membrane formation
by vacuum infiltration of hydrophilic membranes using suspensions. Adapted with permission from
Ref. [121]. 2019, Sriramulu D; (d) hybrid carbon nanotube (HCN) synthesis process. Adapted with
permission from Ref. [125]. 2018, Gao T.

3.2.2. Insertion Electrode Materials

Cations or anions are inserted into the lattice or between sheets of electrode materi-
als when CDI desalination is performed under the insertion mechanism. This calls for an
electrode material [27,103] with a high electrical conduction, water wettability, pseudocapac-
itive ion storage, and straightforward ion insertion/deintercalation [126,127]. The research
of related materials in the CDI desalination field has gained increasing attention. The
spacious interstitial sites of electrode material led to larger ion adsorption capacities, faster
adsorption kinetics, and higher cycling stability. The insertion electrode materials that have
been reported for CDI systems include Prussian blue (PB) and its gels (PBAs) [128–130],
MXenes [131,132], NaFe2P2O7 [133], and NaTi2(PO4)3 [58,134,135]. Since the charge storage
mechanism of insertion materials is different from that of electrosorption materials with a
pore structure, which can achieve higher storage capacity with a lower surface area.

In 2011, Gogotsi et al. first discovered a new class of two-dimensional (2D) transition
metal carbon/nitrides, referred to as MXenes [136]. It has an open-layered structure,
high volume capacitance, good hydrophilicity and conductivity, and tunable thickness
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and interlayer spacing. An efficient ion transport path can be constructed by structural
modifications, and it can achieve optimized CDI desalination performance. Agartan et al.
selectively etched the MAX phase of Ti3AlC2 in 30% HF aqueous solution and rolled
the slurry into a freestanding electrode with a thickness of about 140 µm [127]. The
as-prepared Ti3C2Tx–MXene-based electrode was used in the MCDI system. Under the
optimized operating conditions, the maximum SAC was 8.88 mg·g−1, and the charging
efficiency was 74.47%, which was far superior to the CDI system based on carbon electrodes.
Similar to 2D graphene nanosheets, the designed and modified MXene-based electrode
materials can exhibit high-efficiency desalination capabilities. However, the inherent low
ion diffusion characteristics of the 2D nanosheet structure limit its desalination rate, which
slows down the ion diffusion rate [137]. To solve this problem, Ding et al. prepared
Ti3C2Tx–MXene nanosheets using a selective etching method, which were then treated with
melamine nitridation to convert MXenes into a novel nitrogen-doped three-dimensional
(3D) nanofibrous structure (N-TNF) [138]. The synthesis process is shown in Figure 5a.
N-TNF has a unique nanofibrous structure and abundant nitrogen-containing functional
groups, which endow it with enlarged interlayer spacing, high specific surface area, and
excellent electrochemical activity. N-TNF exhibits an ultrahigh average desalination rate of
5.6 mg·g−1·min−1, an excellent desalination capacity of 44.8 mg·g−1, and good long-term
cycling stability in HCDI system, outperforming most 2D materials.
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In addition to the ultrahigh ion adsorption capacity, the inherent selective properties
of insertion electrode materials for ions are also worthy of further research [139]. In
some materials such as PBAs, the intercalation process of ions is accompanied by redox
in the lattice. The mechanism excluding the co-ion repulsion during desalination [140],
and the charge efficiency of the HCDI system can be effectively improved without the
use of IEM [94]. PB and PBAs are a class of coordination compounds with cubic lattice
structure and rich functional group, possessing an open three-dimensional (3D) framework
to store cations [141]. These lattices can differentiate cations based on factors such as ion
size or hydration energy, enabling the constructed CDI system to have the ability of ion
selectivity [142]. Reversible insertion/de-insertion of cations in the lattice can be achieved
by reacting with redox-active elements in the lattice (usually Fe2+/Fe3+ redox pairs) [143].
The insertion/de-insertion process generally has high Coulombic efficiency, indicating
that these insertion electrode materials are easy to regenerate. Lee et al. developed a
rocking-chair desalination without Cl− storage electrode based on PB material consisting of
NaNiHCF and NaFeHCF electrodes (Figure 5b) [128]. During the charging process, cations
in the cathodic chamber are captured by the cathodic electrode, while cations inserted
into the anode are released into the anodic chamber. Real seawater electrolyte coexistence
of multiple ions is used as the feed stream, and the system produces a high desalination
capacity of 59.9 mg·g−1 and good stability (retaining 91.5% of the initial capacity after
100 cycles). The system can not only improve the desalination capacity, but also improve
energy efficiency.

In addition to PB and its analogs, other intercalation materials such as NaMnO2
(NMO), and TiS2 have been used in CDI to selectively separate specific ions from ionic
mixtures. Yoon et al. used NMO as a Na+-selective electrode and PB as a K+-selective
electrode in an asymmetric CDI device for purification of Na-ion-contaminated KCl feed
solution [37]. The results showed that, when PB is intercalated with K+, the NMO electrode
can remove 36% of Na+ impurities in the feed solution. Kim et al. also used the λ-MnO2/AC
system to recover Li+ from brines containing Na+, K+, Ca2+, and Mg2+, and the selectivity
was due to the ease of Li+ insertion into the λ-MnO2 spinel structure [144]. Unlike PBAs,
λ-MnO2 mainly inserts Li+ into other cations, and the property is attributed to the tiniest
size of Li+ ions, which inserts the lattice site of λ-MnO2 electrodes.

3.2.3. Polymer Electrode Materials

Conductive polymer (including polyaniline (PANI) and polypyrrole (PPy))-based
electrodes have been widely used in batteries and supercapacitors [145–148]. Due to
the flexible preparation method and good capacitance storage capacity, they have great
application potential in CDI electrode materials [149,150]. The charging or discharging
process under electric field can affect specific interactions, thereby leading to the ion
selectivity of electrodes. To promote the performance of conductive polymers in CDI
systems, the ion–electrode interaction can be regulated through material surface design.
The ion removal efficiency can be promoted by improving the conductivity of the electrode
or modifying functional groups, while the selectivity of the electrode can be achieved
by specific modification [151]. Selective capture of electrode is not limited to charged
species; by introducing redox-active molecules or exploiting the characters of polymers, the
interaction of neutral species to electrodes can be reversibly switched through electric field.

As shown in Figure 6a, PANI is composed of repeating units of phenylenediamine
and quinonediamine. It is a conductive polymer with good conductivity, easy synthesis,
and high pseudocapacitance [150]. When it is used as a supercapacitor electrode material,
it is usually doped with selenite [152], graphene oxide [153], or hydrochloric acid [154].
Liu et al. directly electrodeposited polyoxometalates (POM) and PANI on 3D exfoliated
graphite support (EGC), and the obtained composite electrode was applied in the MCDI
system [155]. The composite electrode material performs high ionic capacitance and good
stability. Lai et al. discovered a significant increase in capacitance after adding PANI
to graphene [156]. In addition, single-walled carbon nanotubes (SWCNTs) and PANI
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composites were investigated as electrode materials for CDI. The introduction of PANI
modified the mesoporous structure of SWCNTs, which promoted the entry and exit of ions
on the electrode surface [157]. The constructed CDI system exhibited great regeneration
characteristics and improved stability, which proved the enhancement effect of PANI on
the capacitance of the carbon material [158].

As a typical conductive polymer, PPy (Figure 6b) has attracted much attention due to
its unique redox properties, biocompatibility, good electrical conductivity, and chemical
stability [159–161]. Surfactant-functionalized conductive PPy has a special electronic con-
figuration, which can realize the reversible adsorption and release of neutral compounds
through electric field conversion [162]. However, its amorphous structure and insolubility
limit further study of its structure and properties at the atomic level. Using an ab initio
method, John et al. constructed the molecular mechanical fields of PPy and its deriva-
tives [159]. The model was integrated into the optimized potentials for liquid (OPLS) force
field to simulate the molecular dynamics (MD) of polypyrrole, and the structure, charge
distribution, and main chain flexibility of polypyrrole were studied. The study provided a
suitable fixed charge force field and facilitated the investigation of the properties of PPy
and its interaction with other molecules, thus promoting the application of PPy in the
field of CDI as a desirable material with inherent selectivity. Some polymer electrodes are
reported to have superior electrochemical performance to carbon materials due to their
all-porous structure, short diffusion paths, and large functional effective surface area. Feige
et al. proved the enhancement of the overall electrosorption capacity through the use of
polymer-treated electrodes [163]. The electrode had an appropriate diffusion length, large
surface area, and high pore volume, presenting high SAC and high processing efficiency. To
improve the utilization of a single conductive polymer material for energy storage, Ezika
et al. composited conductive MXene with PPy to obtain a hybrid multifunctional material
with enhanced electrochemical performance [164].

Organometallic redox polymers exhibit superior performance in controllable surface
electrosorption [151]. For example, polyvinylferrocene (PVFc) has a robust structure that
can be utilized to manage charge-transfer interactions with many target anions, together
with organic anions and transition metal oxyanions (Figure 6c). The interaction between
ferrocene units and numerous anions is widely utilized in the field of sensing. PVFc-coated
electrodes have a strong affinity for carboxylates, sulfonates, and phosphates [165]. When
anions are bound to electrodes, redox-active polymers can suppress side reactions and
selectively capture trace amounts of micropollutants [166]. PVFc-based electrodes have
been used for the capture of heavy metal oxyanions (Figure 6d). For many polymers with
redox activity, the binding process can be enhanced by understanding the mechanism of
ionic interactions.

The polymer precursors have extremely tunable structures, and the polymer-derived
carbon materials have higher charge storage and capacitive properties. Their porosity and
surface area are simply and effectively controlled by synthesis conditions. Conductive
polymers are ideal electrode materials for CDI systems due to their excellent properties
such as high conduction, versatility, low-cost and facile synthesis methods, higher electric
double-layer capacity, and longer cycle life.
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such as oxyanions. Adapted with permission from Ref. [167]. 2018, Su X.

3.2.4. Fibrous Membranes Materials

Recent studies have shown that fibrous membranes prepared by electrospinning meth-
ods often have high porosity, high specific surface area, and easily adjustable structures.
Electrospinning is one of the most prevalent methods for producing free-standing nanofiber
electrodes using polymer precursors. This method has been attractive to many researchers
regarding its tunable and favorable properties. Typically, electrospinning is a fiber pro-
duction method in which the charged precursor solution (as an anode) is spread to an
oppositely charged substrate or rotating drums (as a cathode) [131].

In a study by Ding et al., a free-standing polymer/MOF composite electrode was
fabricated using the electrospinning method followed by an annealing process leading to a
satisfactory capacity. Carbon nanofibers encased the MOF-derived carbon nanoparticles,
which led to higher electrical conductivity and prevented aggregation [168]. Another
desalination study was carried out by Liu et al. using electrospun CNF- and MOF-derived
porous carbon polyhedral (PCP), followed by thermal treatment, to produce a freestanding
CDI electrode which outperformed its counterparts in other CDI devices [169]. In order
to improve the electrochemical performance, specific capacitance, and pore structure of
electrodes, some researchers have suggested the growth of metal oxides on CNF substrates
as a promising and fruitful way to improve the electroadsorption function of electrodes.
Among them, the desalting performance of self-supporting electrospun NiO-doped porous
carbon nanofiber electrodes was evaluated by Hussain et al. [170]. Due to sufficient
micropores, mesopores, and macropores, the addition of an appropriate amount of NiO
to carbon nanofibers can improve the hydrophilicity, electrochemical performance, and
double-layer capacitance. Since electrode conductivity is one of the most important factors
in the CDI process, increasing this parameter can potentially lead to more fruitful results.
Wang et al. prepared rGO/activated carbon fiber (ACF)-composite independent electrodes
for CDI using polymer-based cornerstone ink composite precursors with different RGO-
to-polyacrylonitrile ratios by electrospinning and then heating activation. The addition of
more conductive material to the electrospinning precursor greatly enhances the ability of
the electrode in terms of conductivity and ion storage. The inclusion of graphene in the
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net structure of ACF enables the electrode to have a good porous structure and electrical
conductivity, as well as a high electroadsorption performance [171].

In conclusion, there is still much room for the development of freestanding electrodes
with excellent robustness and mechanical stability, high conductivity, large-scale manufac-
turing capability, and super-strong ion removal capability. In addition, these substrates
must provide a high-loading platform for nanoparticles with good redox activity. The
electrospinning method can be used to construct a micro/nano permeable and porous
interface structure. It is a good method to improve the wettability of electrode and reduce
the resistance of ion transport, which is helpful to improve the electroadsorption efficiency
of CDI electrode to remove ionic pollutants.

3.3. Operation Mode

The operation process of CDI technology can be divided into the electro-adsorption of
salt ions on the porous electrode (also called the “charging” stage) and the electrodesorption
(also called the “discharging” stage) process, which are alternately cycled. Among them,
the electro-adsorption process can be divided into two operation modes: constant-voltage
adsorption (CVA) [172,173] and constant-current adsorption (CCA) [174–176] according
to the applied electric energy. In order to prevent the energy consumption caused by the
Faradaic reaction, the electro-adsorption process CDI is usually performed under a low
charging voltage [177]. However, applying a higher charging voltage to the CDI cell can
effectively improve the ion adsorption capacity according to the EDL model. Therefore, the
selection of a suitable operating voltage is crucial for the improvement of the salt removal
performance of the CDI system. Compared with the CVA mode, the electrode is exposed
to the high-voltage condition for a shorter time under the CCA mode, which results in a
lower internal resistance value and lower parasitic energy loss of the system [178]. Hence,
the CCA mode is more advantageous than the CVA mode. The energy consumed during
the charging process can be stored inside the electrode. Lin et al. investigated the effect of
different charging modes on energy recovery and electrode regeneration [179]. Figure 7a,b
show that the energy recovery of the MCDI system decreased with the rise in charging
current/voltage upon charging the MCDI system in CCA and CVA modes. The increase in
discharge current also adversely affects the energy recovery rate of the system; therefore,
the energy recovery rate of the CCA mode is mostly beyond the CVA mode. In addition,
the electrode regeneration rate increases with the decreased discharge current, and the
electrode regeneration rate in CCA mode (86%) is significantly higher than that in CVA
mode (64%) under 0.1 A discharge current (Figure 7c,d).

The electrodesorption process includes three operation modes: zero-voltage desorp-
tion (ZVD) [180], reverse current desorption (RCD) [47], and reverse voltage desorption
(RVD) [49]. Among them, the RVD and RCD modes can achieve effective desorption only in
the presence of IEMs; hence, they are not suitable for the traditional CDI system. The most
used operation mode of the CDI system is CVA/ZVD. Figure 7e shows the curve of effluent
salt concentration with time in one operation cycle [17,18,181]. The initial desalination
rate is the highest because of the initial feed stream, and then the ion concentration in the
effluent rapidly decreases to the lowest value. With the increase in reverse EDL voltage,
the desalination rate slows down and the effluent salt concentration slowly rises to the
feed value [17]. During the ZVD process, the counter ions are spontaneously discharged
from the electrode into the spacer channel until the electrode micropores are no longer
charged [77]. The electrode desorption rate is the fastest when the counterion concentration
in the EDLs is the largest; thus, the salt concentration during the ZVD process exhibits a nar-
row peak, and the desorption rate slows down when the EDLs are close to electroneutrality.
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Figure 7. In CC and CV modes, the energy recovery rate of the MCDI system (a) under different charg-
ing and same discharge current of 0.1 A, and (b) under different discharge current (0.1–0.4 A). Adapted
with permission from Ref. [179]. 2018, Chen L; (c) charge in CV mode; (d) adsorbed/desorbed ion
amount and electrode regeneration rate of the MCDI stack in CC charging mode. Adapted with
permission from Ref. [179]. 2018, Chen L; (e) CVA, ZVD, and RVD; (f) CCA and RCD dimensionless
and idealized effluent salt concentration curves, where the horizontal dashed line represents the feed
salt concentration. Adapted with permission from Ref. [54]. 2020, Liu E. (The up and down arrows
represent coordinates of CA and CC respectively; The left arrow represents the coordinates of the ion
amount and the right arrow represents the coordinates of the energy regeneration rate.).

In RVD mode, the counter ions are not only desorbed by the electrode repulsion, but
also driven by the reverse electric field, which accelerates the electrode desorption rate
by 30% [69]. The ions are first desorbed from the EDL in the micropore, and the co-ions
act as counter ions to attract them under the action of the reverse electric field. Then, the
ions are desorbed from the macropores between the electrode particles, and the salt ion
concentration in the macropores drops sharply until it approaches zero at the end of the
desorption process. In this way, the RVD can more effectively remove the counter ions
from the electrode structure, so that the adsorption rate and capacity of the counter ions
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are increased during the adsorption process of the next cycle [17]. Compared with the
ZVD operating mode, the salt removal rate was increased by 20% in the RVD mode [69].
The advantage of CCA [181,182] and RCD [47,182] modes is their constant and adjustable
effluent salt concentration. In CCA mode, the ionic current is determined by the counter
ion adsorption flux and the co-ion expulsion flux. The introduction of IEMs effectively
reduces the co-ion flux in MCDI. Therefore, the applied constant ionic current is interpreted
into a constant counter ion adsorption flux, which results in a constant salt removal rate for
the overall solution, and further maintains the salt concentration in the effluent constant
(Figure 7f) [181]. As the effluent electrolyte concentration decreases, the reverse EDL
voltage at the electrode interface increases, and the voltage needed to keep up constant
current increases steadily [47]. When the voltage reaches a certain value (such as 1.2 V,
1.4 V, and 1.6 V) [176,182], the CCA stops and starts the desorption step. Similar to CCA,
in the presence of IEMs, the concentrated stream produced by RCD mode has a constant
concentration [17]. It has a good “purifying” effect on the electrode during the desorption
process, which can alleviate the electrode and membrane fouling problems during the
adsorption process. However, the fouling mitigation mechanism in the RCD process needs
further research.

Since the selection of the CDI operation mode has a great influence on the performance
of the system, it should be reasonably selected according to the requirements in the actual
application. The “purifying” effect of the reverse desorption mode (RVD and RCD) leads
to an increase in the adsorption capacity and adsorption rate in the next adsorption cycle,
which is beneficial to the desalination treatment of high-concentration industrial brine. In
addition, the reverse desorption mode can alleviate the electrode and membrane fouling
problems in the CDI system, which is beneficial to the treatment of industrial brine with
high fouling potential. However, the effectiveness and mechanism of pollution mitigation
in reverse desorption mode have not been fully demonstrated. The main advantage of
constant-current operation (CCA and RCD) is the constant effluent concentration. Particu-
larly multistage operation has to be introduced facing with high-concentration brine, which
may effectively simplify the operation management of the system.

3.4. Technoeconomic Evaluation

Numerous studies of CDI have focused on increasing the production capacity and
energy consumption through materials (such as ion selective membranes and charged
carbon) and operational improvements. However, there is a gap between laboratory-scale
experimental and practical application. The capital and operating costs of the technology
need further evaluation. Some performance metrics, including thermodynamic efficiency
(ηT) and recently volumetric energy consumption (Ev, W·h·m−3) [18], have been used to
compare the direct energy footprint of CDI with other desalination technologies. On the
basis of the developed performance metrics, the tradeoff and optimization strategy of CDI
operation mode have been determined [48]. In these studies, it was generally considered
that productivity and energy consumption are alternative metrics of capital and operating
costs, respectively. However, the relationship between individual performance metrics and
the estimated cost of CDI systems has been less studied.

Steven et al. developed a parameterized framework that can be used to determine the
size and cost of an (M) CDI system for specific operational requirements [183]. The number
of cell pairs of the system and the required quality can be calculated by inputting reported
materials and operation conditions. The output can then be used to calculate capital costs
(electrodes, housing/assembly, current collectors, IEMs, power, and thermal regulation
costs) and operating costs (electricity costs). The framework provides a simple system
cost estimate for any proposed material or operational improvement. By incorporating
the uncertainty of material design, operation, and parameters, the key performance and
lifetime of the (M) CDI systems can be benchmarked. However, both the capital and the
operating costs are greatly reduced when treating low concentration feedwater. Therefore,
CDI may be an economical alternative to membrane-based technologies such as RO when
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selective ion removal in low salinity water is required. The study is limited to evaluating
the size and design of the CDI system, whose influent and effluent are typical saltwater
and drinking water, respectively.

Although energy consumption was an important consideration in many desalina-
tion studies, it is challenging to provide an evaluation of energy efficiency due to the
different separation mechanisms achieved by the various desalination processes. Lin et al.
suggested the energy efficiency of any desalination process can be quantified in terms of
thermodynamic energy efficiency (TEE), which accounts for the inherent “difficulty” of
the separation process [184]. Theoretically, non-thermal desalination processes are energy
efficient because they direct energy to brine separation rather than inducing phase changes.
However, the activated carbon electrodes CDI system stores a large amount of energy
during the charging phase, which brings great challenges to achieve high TEE. The TEE of
CDI can be effectively improved by reducing the excess voltage. This calls for further efforts
on using high-capacitance electrodes (more AC electrode mass per unit area or electrodes
made of intercalated materials) and optimizing the operation (reducing the current density
and maximizing the energy recovery during discharge).

Overall, current scientific research tends to focus on technical specifications, but the
energy consumption in desalination is actually only related to the overall cost of water
treatment. Research into new desalination technologies should aim to achieve lower overall
treatment costs, instead of just improving energy efficiency.

4. Emerging Application Fields

In addition to the widely applied seawater or industrial brine desalination, CDI can
be used in some novel ion separation applications. From the environmental treatment,
CDI systems can be applied to the selective removal of ionic pollutants, including ap-
plications such as drinking water softening, heavy-metal ion removal, and CO2 capture.
From the resource recovery, CDI systems can selectively separate and recover high-value
ions from the water environment. Through electrode design and operation optimization,
CDI technology can achieve high-efficiency recovery of anions and cations separately or
even simultaneously. Furthermore, the development of the coupling system can effectively
overcome the limitations of the CDI system and further expand its application fields. In
this section, we summarize the coupling technology of CDI with RO, as well as photochem-
istry and bioelectrochemistry, and we clarify its technical advantages and applicable field
of application.

4.1. Contaminant Removal
4.1.1. Water Softening

Hard water contains a variety of soluble mineral elements such as Ca2+ and Mg2+. The
existence of the hardness ions can lead to membrane fouling, pipeline blockage, scaling,
and other problems. A variety of water-softening technologies have been developed to
remove Ca2+, Mg2+, and other metal cations in hard water [185,186], including chemical
precipitation [187,188], ion exchange [189], nanofiltration, and reverse osmosis membrane
technology [190,191]. However, these typical technologies usually need high energy input,
have high operative costs, and use chemicals that cause environmental concerns. Recent
studies have shown that CDI systems can utilize the strong interaction between the Faraday
electrodes and metal ions to achieve efficient softening of hard water. Compared with tradi-
tional water-softening technology, CDI technology has the advantages of less production of
hard waste, no need to introduce external chemicals, and low energy consumption, which
makes it a good alternative for hardness ion removal.

The mechanism of CDI for hardness ion removal is mainly based on two aspects: ionic
interaction strength and ion replacement reaction. The electrostatic attraction between two
charges determines the removal of hardness ions under electric field. It is proportional to
the number of charges, inversely proportional to the distance between the charges, and
inversely proportional to the hydration radius of the ions. Since hardness ions are usually
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multivalent, CDI electrodes exhibit stronger electrostatic attraction for them compared
to monovalent cations [192]. The order of attraction of different cations on the carbon
electrode surface is Ca2+ > K+ > Na+ [193]. The ion replacement reaction is the replacement
of ions adsorbed on the carbon electrode by ions dissolved in the bulk solution, which is an
important factor for the selective removal of hardness ions by CDI. As shown in Figure 8a,
the captured Na+ on the CDI electrode was replaced by Ca2+, indicating the stronger
attraction of electrode to divalent Ca2+ [29]. Since Mg2+ and Ca2+ have the same number
of electrons and similar hydration radii, the removal trends of the two main hardness
elements in the CDI system are similar [194].
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Figure 8. (a) Schematic illustration of the substitution effect on carbon electrodes [29,192,193]. The
deionization performance of calcium-alginate-coated MCDI (CA-MCDI) is expressed as (b) effluent
cation concentration and (c) selective deionization ability in 5 mM CaCl2 and 5 mM NaCl mixture so-
lution. Adapted with permission from Ref. [194]. 1996, Aslani P; (d) Na+ and (e) Ca2+ concentrations
in flow electrodes in SCC operation. Adapted with permission from Ref. [84]. 2018, He C.

Using the ion replacement reaction, Yoon et al. prepared a low-cost calcium alginate
coated carbon electrodes to enhance the interaction between the electrode and multivalent
ions [29,194,195]. Since the calcium alginate-coated CDI electrode is more attractive to
divalent cations (Ca2+) than monovalent cations (Na+), the constructed MCDI system has a
stronger removal effect of the hardness species Ca2+ (Figure 8b). As shown in Figure 8c,
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the removal capacity of Ca2+ continued to increase and did not reach a steady state after
8 min. This indicates the replacement of the Na+ adsorbed on the electrode surface by Ca2+,
which was derived from the higher selectivity of MCDI system toward Ca2+ than Na+.
Compared with the bare carbon electrode, the calcium alginate-coated electrode assembled
CDI system had a 44% increase in the removal rate of Ca2+, indicating its great potential as
an ecofriendly water-softening technology [29].

In addition to electrode material modification, the application of FCDI system in
water softening has gradually attracted attention [20,196]. A study used FCDI to treat a
feed solution containing 2000 mg·L−1 NaCl and 150 mg·L−1 CaCl2. The obtained diluted
water had TDS < 500 mg·L−1 and CaCl2 < 15 mg·L−1, and the unit processing energy
consumption was only 0.44 kWh·m−3, which proves that FCDI has great potential in water-
softening applications [84]. He et al. proved that the FCDI using short circuit closed cycle
(SCC) had the best water-softening effect among different cell configurations [84,192]. As
shown in Figure 8d, all the dissolved Na+ in the flow electrode was removed from the
feed solution, while 60% of Ca2+ was fixed on the carbon particles through the membrane
(Figure 8e). The system effectively alleviated the accumulation of Ca2+, which can be a
cost-effective method for water softening. However, this study did not consider the energy
consumption of electrode and feed flow pumping, which is not adequate enough for energy
recovery and cost evaluation.

At present, the research on the application of CDI for water softening remains in its
infancy, and further research must be distributed to gauge its feasibility. This will lay a
theoretical foundation for the sensible application and development of CDI systems in
water softening. In future research, continuous attention should be paid to the development
of selective electrode materials, which will improve the removal selectivity of CDI and
prevent scaling [66]. For the FCDI system, the research on its long-term durability, economy,
and regeneration in the process of water softening is particularly important.

4.1.2. Heavy-Metal Removal

Toxic heavy metals such as lead, cadmium, copper, arsenic, and chromium in water
can cause serious environmental problems and have become a major environmental health
hazard worldwide [197]. Existing heavy metal removal technologies include chemical sedi-
ment, ion exchange, adsorption, electrochemistry, and membrane-based water treatment
methods. However, these traditional methods usually produce secondary byproducts, and
the processing cost and energy consumption are usually high, limiting their large-scale
application [30]. Recent studies have shown the feasibility of CDI in heavy-metal removal
(Figure 9a). It has high energy efficiency without introducing chemicals and produces no
secondary waste.

At present, CDI technology has shown excellent ion removal performance when treat-
ing arsenic [198,199], lead [200], copper [201], uranium [202], and other heavy metals. Since
the CDI system can simultaneously remove anions and cations, it has obvious advantages
for the removal of heavy-metal ions with various valent states. Chen et al. found that As(V)
and As(III) can be removed simultaneously using CDI. The removal efficiency of arsenic
ions could be improved by increasing the applied voltage and initial concentration, and the
adsorption amount of As(V) was higher than that of As(III) [197]. However, when NaCl or
natural organic matter (NOM) was present, the removal rates of both arsenic ions decreased
due to the competitive effect. NOM may obstruct electrode pores, thereby reducing the
effective specific surface area of the electrode. In contrast, the activated carbon electrode
effectively removes copper even in competition with NaCl and NOM [203]. In addition,
the pH of the electrolyte has a significant effect on the removal efficiency of heavy-metal
ions during the removal of heavy-metal ions such as Pb2+ by CDI process [200]. Liu et al.
studied the difference in the removal efficiency of Li+ and Na+ by pH. The results showed
that the removal rate of Li+ was highest when the pH was close to 6, and the removal
selectivity between Li+ and Na+ was higher under the condition of shorter operation time
and neutral pH [112]. Due to the low sensitivity of the FCDI system to the pH value of the
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feed liquid, the FCDI system has a stronger technical advantage than the CDI system when
dealing with Li+ and other heavy metals that are highly dependent on pH.
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When CDI is used for heavy-metal ion removal, the selective adsorption of heavy-
metal ions by CDI electrodes is a key factor determining the performance of the system.
Therefore, researchers have developed a series of Faradaic electrode materials with selec-
tive functions for heavy-metal ions, including manganese oxides [73,204,205], metal hexa-
cyanoformates [206], and polymers [170,207,208]. Li et al. prepared an α-MnO2/carbon
fiber paper (α-MnO2/CFP) composite electrode for Ni2+ removal from industrial wastewa-
ter [73]. Due to the intercalation reaction of Ni2+ between MnO2 crystals, accompanied by
efficient charge transfer, compared with the pure CFP electrode (0.034 mg Ni2+·g−1) and the
AC electrode (2.5 mg Ni2+·g−1), the α-MnO2/CFP electrode exhibited higher Ni2+ removal
capacity (16.4 mg Ni2+·g−1). Liu et al. prepared a 2D manganese oxide/carbon nanotube
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composite electrode, which had a removal capacity of 155.6 mg·g−1 and 158.4 mg·g−1 for
Zn2+ and Ni2+, respectively [203]. Since most chromium and arsenic species exist in the
form of oxygen-containing anions (such as Cr2O7

2−, CrO4
2−, HCrO4

−, H2AsO4
−, and

HAsO4
2−), the development of related CDI electrode materials is also critical to their appli-

cation in heavy-metal ion removal. Su et al. prepared a metal–polymer composite electrode
material to selectively remove high-valence chromium and arsenic ions [167]. DFT simula-
tion results showed that there is a good charge transfer pathway between ferrocene salt and
oxyanion. As shown in Figure 9b,c, the electrode material could achieve high-efficiency
removal of chromium and arsenic in both the concentration range of 20 × 10−3 M NaCl
solution and actual wastewater.

Although, in recent studies, spreads of electrode materials were shown to have strong
interactions with heavy-metal cations or oxygen anions, the mechanism of electrode ma-
terial in trapping different ions may be different. Furthermore, the actual wastewater
contains a variety of coexisting cations and anions, and the pH value fluctuates greatly,
making the removal process of heavy-metal ions more complicated and difficult. Therefore,
the feasibility of applying the CDI system to the removal of heavy metals still needs to be
further explored.

4.1.3. CO2 Capture

As the most common greenhouse gas, the content of CO2 in the atmosphere is increas-
ing year by year. Controlling the growth of CO2 has become one of the biggest technical
challenges in this century. Existing CO2 separation and capture technologies include ab-
sorption [209,210], membrane separation [211,212], electrochemical methods [213–215], and
biochemical methods [216,217]. Problems such as low energy efficiency [218–220], toxic
chemical emissions [221], and corrosive effects [222] remain due to conventional technolo-
gies. As an emerging research field, the application feasibility of CDI in CO2 capture and
recovery has been confirmed [41].

Legrand et al. proposed a method for CO2 capture based on an MCDI system [41].
In this study, MCDI technology was used to capture CO2 in HCO3

− and CO3
2− forms.

As shown in Figure 9d,e, carbonate ions (HCO3
− and CO3

2−) and H+ are adsorbed into
the electrode pores under an electric field, respectively, and stored in the electric double
layer (EDL). The dissolution and ionization equilibrium of CO2 in deionized water is
replaced, which enhances the absorption of CO2. Carbonate ions (HCO3

− and CO3
2−) can

be desorbed from the carbon electrode under an applied reverse current. The chemical
equilibrium correspondingly shifts to the opposite direction, which allows CO2 to desorb
into the gas phase. Therefore, by controlling the applied current and energization time, the
concentration of CO2 can be precisely controlled. The energy consumption of the system
was about 40 kJ·mol−1 at a CO2 concentration of 15%, and it could be further optimized by
reducing the ohmic and non-ohmic energy losses of MCDI cells. The method can capture
CO2 at room temperature and normal pressure without using chemicals, and it has good
potential in the application of CO2 capture and recovery. Shu et al. compared the CO2
uptake effect of three CDI systems with double membrane (CO2-MCDI), single membrane
(AEM or CEM), and no membrane (CO2-CDI) [40], so as to explore the role of electrodes
and IEMs of MCDI system in CO2 capture application. The results showed that AEM was
critical for maintaining high CO2 absorption efficiency, while CO2-CDI cells had lower
absorption efficiency than expected.

At present, researchers have proposed a new concept of CO2 capture using CDI elec-
trodes and deionized water. Existing research shows that MCDI can be used to capture
carbonate ions (HCO3

− and CO3
2−) produced by the reaction of CO2 with water. The

MCDI system can capture CO2 with low energy consumption without using any chemical
solvent and external heating source. During this process, the adsorption and desorption
equilibrium of carbonate ions (HCO3

− and CO3
2−) in deionized water drives the adsorp-

tion/desorption equilibrium of CO2 in the gas phase. In future studies, general evaluation
methods should be developed to compare MCDI with other CO2 capture technologies.
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4.2. Resource Recovery
4.2.1. Lithium Extraction

Lithium is the third element in the periodic table and has a wide range of applications
in the fields of energy, medicine, aerospace, and other industries due to its unique chemical
properties [223,224]. Therefore, there is an urgent need to develop efficient lithium recovery
methods to meet the substantially increasing lithium consumption demand. The lithium
content in brine, salt lakes, and other water resources is as high as nearly 25 million tons,
accounting for 62% of global lithium reserves [225–227]. Currently, the foremost usually
used technique for lithium extraction is the lime–soda evaporation method, which is not
only time-consuming, but also greatly affected by weather conditions [228]. In addition,
due to the existence of a variety of coexisting ions in the concentrated solution [203], the
subsequent precipitation method removes divalent cations, leading to a large amount
of sludge [33]. Recently, electrochemical lithium recovery has gradually emerged as a
potential alternative for lithium extraction from lithium-containing solutions thanks to its
high efficiency, selectivity, and low energy consumption [229–232].

The electrochemical lithium recovery emphasizes the separation of Li+ from other
cations in the salt solution (ion selectivity) [233]. Therefore, a Faraday electrode that can se-
lectively capture Li+ is usually required. Compared with evaporative lithium extraction, the
electrochemical lithium recovery technology can significantly shorten the treatment time,
and subsequent precipitation steps are not required to remove divalent ions. Figure 10a–d
are schematic diagrams of several typical electrochemical lithium recovery reaction de-
vices based on Li+-selective electrodes. Figure 10a shows the device with a porous carbon
electrode attached to an AEM as the cathode. During the lithium ion adsorption stage,
the cathode selectively captures Li+ from the electrolyte, while only Cl− is captured at the
carbon anode [146,234]. After several cycles of adsorption and desorption operation, the
concentration of Li+ within the electrolyte decreased significantly whereas the concentra-
tions of other cations remain virtually unchanged. Due to the highly targeted reaction, the
reactor enables efficient lithium ion recovery with low energy input.

In addition, researchers have developed PPy electrodes that can undergo pseudocapac-
itive reactions with anions in aqueous solutions and replace IEMs. The assembled reaction
device still showed strong stability after 200 cycles (Figure 10b) [235,236]. As shown in Fig-
ure 10c, Liu et al. developed a Faraday reaction system with a rocking-chair structure. The
AEM divides the electrochemical reactor into two chambers, one for the lithium-containing
salt solution and the other for the recovery solution (FePO4 and LiFePO4 in the brine and
recovery solution, respectively) [237,238]. Two symmetrical electrodes are placed in the two
chambers, and the Li+ content in the electrodes varies with the reaction process (LiFePO4
and FePO4). The recovery of lithium ions can also be achieved by the replacement of
other ions in the electrode. Using Na0.44MnO2 [31] and KNiFe(CN) [32] electrodes with
Li+-repelling properties as anodes, a heterogeneous Faraday electrochemical reactor was
constructed (Figure 10d). After the reaction starts, the Li+ selective electrode captures Li+ at
the cathode, while Na+ or K+ is released from the Li+ repelling electrode. Then Na+ or K+ is
trapped on the Li+ repelling electrode and completes the electrode regeneration, while Li+

is released from the Li+ selective electrode into the recovery solution. The system exhibits
high selectivity and high energy efficiency.

As the core element of electrochemical lithium recovery technology, the adsorption
activity of Li+ selective electrode is the decisive factor for system performance. The first
study of MCDI applied to lithium separation was to coat lithium-selective materials (such
as LiMn2O) on activated carbon electrodes [239]. The results showed that Li–Mn–O com-
pounds are a class of highly selective lithium-adsorbing electrode materials. Zhang et al.
proved that lithium titanium oxide (LTO) spinel is also an ideal electrode material for
electrochemical lithium recovery systems [240,241]. In addition to the selective electrode
for efficient Li+ capture, the ion desorption process plays a crucial role in the performance
of the system. Anna Siekierka et al. proposed an HCDI system with fast adsorption and
desorption properties [242]. The cathode was composed of spinel-type Li+ selective elec-
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trode material, and the anode was composed of AEM and activated carbon electrodes.
The system could effectively selectively recover lithium from geothermal brine [32], and
the Na:K:Li ratio in the recovery solution could be reduced from 227:1:1.1 to 2.9:0:1 in
one cycle [243]. In addition, the research group also improved the preparation process
of Li–Mn–Ti–O compounds. Since the Li–Mn–O and Li–Ti–O structures are the basis for
the Li+ selective electrodes, the study compared the optimization schemes of Li/Mn/Ti
adsorption electrode structures with different ratios. An HCDI cathode suitable for lithium
extraction from multicomponent geothermal water was constructed. Therefore, the idea of
using electrochemical lithium recovery method to separate Li+ from aqueous solution is
feasible and has a relatively broad development space.

In addition to the recovery of lithium using the cathode of CDI, the synchronous
recovery of anions and cations can be achieved through electrode design. Wei et al. devel-
oped a new CDI system that can simultaneously and accurately extract Li+ and B(OH)4

−

ions from salt-lake brine with high Mg/Li ratio [244]. The adsorption and desorption
processes are shown in Figure 10e. The oxygen vacancy-rich CoP/Co3O4

− graphene
aerogel (GA/CoP/Co3O4) bifunctional electrode was used as the positive and negative
electrode of the system. When the ratio of Mg/Li in the feed solution was 24:1 and the
ratio of Cl/B was 70:1, the effective adsorption amounts of Li+ and B(OH)4

− ions reached
37 mg·g−1 and 70 mg·g−1, respectively. The CDI system had good electrochemical adsorp-
tion/desorption stability, and the recovery rate could reach 90% after 10 cycles. Although a
series of studies have focused on improving the economic feasibility and lithium recovery
performance of CDI systems, the comparison of the performance is not clear due to the
various performance parameters and experimental conditions of the current research. In
addition to continuing to focus on improving lithium recovery performance, reducing
energy consumption, investigating novel Li+ selective electrode materials, and optimizing
system configuration, researchers need to develop a standardized method to evaluate
the performance of electrochemical lithium recovery systems, which will allow for more
accurate performance comparisons, and further advance the field.
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4.2.2. Biological Nutrient Removal

The overuse of chemical fertilizers and the discharge of municipal and industrial
effluents have resulted in the accumulation of nutrients in natural water, which has in
turn led to environmental problems and serious damage to aquatic ecosystems. The
content of nitrogen and phosphorus is an important indicator of water eutrophication.
Traditional nutrient removal techniques include chemical precipitation, activated sludge,
and adsorption. These processes often generate additional waste and cannot recover
valuable nutrients, resulting in lower overall economic value [248–250]. Since most of the
nutrients exist in water are in their ionic state, the CDI system can be used to selectively
remove and recover the nutrients dissolved in the water, which has gradually attracted the
attention of researchers [251–253].

Soluble nitrogen sources mainly exist in water in the form of NO3
−/NO2

− and NH4
+.

Researchers used FCDI technology to achieve efficient recovery of cationic NH4
+ in low-

concentration urban wastewater [83]. The effective ammonia nitrogen concentration can be
increased by 20 times under the optimized operation condition, and the concentration of
the brine stream can be as high as 322 mg·L−1. The selective separation of cations by CEM
is a key factor affecting the performance of FCDI system for ammonia nitrogen recovery.
Fang et al. developed a novel stacked FCDI system using a monovalent cation selective
exchange membrane (M-CEM) with K2SO4 as an additive for ammonia recovery [254]. The
purity of the recovered product was increased from 50% to 80%, and the ammonia recovery
rate was twice that of standard CEM (S-CEM). Kim et al. used two copper ferricyanide
(CuHCF) electrodes with a large cubic crystal structure to construct a symmetric cell de-
salination system, and it exhibited 4.2 times higher selectivity for NH4

+ than Na+ [255].
Since the cell voltage is lower than 0.3 V, the system can achieve high-efficiency ammonia
nitrogen recovery with low energy consumption (1.5 kWh·kg N−1). The research results
showed that CDI systems are a promising alternative technology for ammonia recovery,
especially suitable for the enrichment and concentration of low-ammonia-containing in-
fluents. CDI also showed a good treatment effect in the removal of anionic NO3

−/NO2
−.

In aqueous solutions where multiple ions coexist, achieving high-efficiency ion-selective
separation is the core requirement of technological development. The study of CDI ion
separation system by Lee et al. showed that the introduction of selective ion exchange resin
can effectively enhance the affinity of CDI electrode for NO3

− [256]. A novel resin rich in
amino groups, BHP55, was coated on the surface of carbon electrodes to provide anion
exchange function and higher selectivity for NO3

− [257]. In addition, the flowing carbon
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electrode can be used in CDI devices to recover ammonia resources from low-concentration
wastewater. The dissolved ammonia salt (NH4)2SO2 is first separated by the FCDI device
under an electric field, and then gaseous ammonia is recovered in an acidic solution [258].
Although CDI exhibits a stronger effect for high-valence ions, studies have shown that,
among monovalent anions (NO3

−, Cl−, F−, Br−) and cations (Na+, K+, NH4
+), carbon

electrodes are the most efficient for capturing NO3
− and NH4

+. The preference is due
to the smaller hydration ratio (ratio of hydration radius to ionic radius) of NO3

− and
NH4

+, which results in unique technical advantages of the CDI system in the application of
nitrogen source recovery [259,260].

Phosphorus is another important nutrient element in water, which mainly exists in the
form of phosphate. Eutrophication occurs when phosphate concentrations in natural water
bodies exceed 0.1 mg·L−1 [261]. Recent studies have shown that FCDI can be applied for
the removal and recovery of phosphorus from wastewater. When treating the phosphate
feed stream with an initial concentration of 10 mg·L−1, the removal rate was as high as
97% under the voltage of 0–1.2 V [262]. As an important functional component of the
FCDI phosphorus recovery system, the adsorption capacity of flow electrode particles
for phosphate ions and the feasibility of recovery operations have become the research
focus. David’s group prepared a magnetic (Fe3O4) activated carbon particle and used
it as an electrode for FCDI [263]. The magnetic carbon electrode could achieve selective
adsorption of phosphate ions through a ligand exchange mechanism. In addition to
electrode materials, the research group also conducted further product research on the
phosphorus concentrate recovered from the FCDI system [264]. The FCDI system was
coupled with the fluidized bed crystallization (FBC) system, such that the phosphorus
concentrate was fixed in the crystallization column in the form of rhombohedron. FCDI
was able to remove and concentrate 63% of the phosphorus, while the FBC system could
fix 80% of the phosphorus as triangular or quadrilateral pellets under the optimized
operating conditions. The research provides a worthy reference for the efficient recovery
and productization of phosphorus from phosphorus-rich wastewater.

Since the actual phosphorus-containing wastewater usually contains many types
of interfering ions, eliminating the interference of coexisting anions and realizing high-
selective phosphorus recovery are essential for practical application. Xu et al. constructed
a novel FCDI system with an integrated liquid membrane chamber and a pair of AEMs,
which could selectively extract phosphorus and nitrogen from fresh human urine [265].
Negatively charged phosphorus ions (such as HPO4

2− and H2PO4
−) can be captured

by acidic extractants (such as HCl, HNO3, and H2SO4) and converted into uncharged
H3PO4, while other interfering ions such as Cl− and SO4

2− are excreted. Utilizing the
competitive migration and protonation of ions, the system realized the highly selective
recovery of phosphoric acid and nutrient salts. This research has reference significance for
the application of FCDI in the field of nutrient salt recovery.

In general, some progress has been achieved within the research of CDI systems for
biological nutrient recovery. Several recent studies have proven that CDI has a removal
effect on ammonia and phosphate in water. Although vital analysis progress has been made,
the study in this field remains in its initial stage, and more in-depth research is required
to boost the selectivity and overall removal capability of CDI for nutrient salts [256].
Furthermore, the optimization of separation performance (i.e., ion selectivity, salt removal
rate, and electrode adsorption capacity), system design (i.e., electrode, IEM, and cell
configuration), and long-term stability (i.e., electrode–electrolyte separation, membrane
fouling, and electrode capacity fading) is an issue that researchers need to further address
in future studies. In addition, appropriate modeling techniques should be developed to
predict the diffusion of nutrient ions in electric fields. The application of CDI for nutrient
removal can be significantly improved by developing novel electrodes embedded, chelated,
and redox-active materials.



Sustainability 2022, 14, 14429 28 of 41

4.3. Coupling System and Application

Although the low operating voltage of the CDI system enables its high energy effi-
ciency, it also limits its ability to treat nonionic pollutants in practical applications. For
complex water quality with various components, CDI can be coupled with other technolo-
gies to make up for each other’s technical defects, so as to achieve the effect of surpassing
the two technologies alone. Combining the inherent defects of the CDI system with the
advantages of other existing technologies, several typical CDI coupling systems have
been developed. The coupled CDI systems such as membrane separation [266], photo-
catalysis [267], and bioelectrochemistry [268] have synergistic effects between the two
technologies. The performance in ion selective separation, wastewater treatment, energy
recovery, etc. has been greatly improved.

RO is a pressure-driven membrane separation technology. By applying a pressure
higher than the osmotic pressure to the solution on one side of the membrane, the solvent
will reverse osmose against the direction of natural osmosis. The RO process needs to
remove a larger proportion of water molecules from wastewater containing a small number
of pollutants; although its ion removal rate is high and the effluent quality is good, it has dis-
advantages such as high energy consumption, low water recovery rate, and vulnerability to
membrane pollution [269,270]. The use of the CDI system to further recover the brine after
RO treatment can accurately combine the technical advantages of the two and achieve more
efficient ion separation. Tao et al. developed an RO–CDI stage system (Figure 11a) [266].
When the feed stream was industrial brine without organic carbon (TOC), the fresh water
was directly recovered by the RO module as product water, and the concentrated stream
was further processed by the CDI module to obtain secondary recovery. However, when
the TOC content in the feed stream was high (>20 mg·L−1), the removal rate of TOC by the
RO-CDI stage system was low, which led to membrane fouling of the IEMs and a decrease
in the overall performance in the CDI system [271]. Therefore, the RO–CDI stage system
is only suitable for the recovery of water from industrial and domestic wastewater. To
overcome this limitation, a biologically activated carbon (BAC) pretreatment unit can be
added between the RO-enriched brine and CDI. The researchers suggested setting up pre-
treatment technologies such as chemical precipitation and filtration before the CDI module,
and developing organic removal methods, fouling control and cleaning methods, etc., so
as to realize the continuous operation of the CDI coupling system.

Recent investigations on RO–CDI have shown its convincing and robust applicability
for ultrapure water (UPW) production along with freshwater production. Minhas et al. [272]
integrated RO and CDI technology for energy-efficient production of UPW and potable
water from seawater. Under optimum feed conditions, the performance of the RO–CDI
system was improved by operating a CDI module under the constant-current condition,
allowing the production of a high quality and quantity of UPW. The reason for the raised
UPW quantity is constant electronic flux bombarding the module, which results in continu-
ous ions removal from saline water until the desired voltage is attained [47]. Chung et al.
used FCDI technology to replace brackish water reverse osmosis (BWRO) system in the
two-pass RO system, and investigated the feasibility of integration FCDI with RO [273]. In
short, the study showed that, through the great removal efficiency of CDI technology, it
can be used in UPW and freshwater production without remineralization. However, the
energy efficiency of CDI technology compared with BWRO remains to be verified.

Photocatalysis is an advanced technology that directly utilizes solar energy to effi-
ciently degrade organic pollutants in water. Since the system does not require additional
energy, the development of photocatalysis has received extensive attention. However, the
main target pollutants of photocatalysis are organic substances, and the process usually can
only convert the forms of pollutants instead of completely removing the degradation prod-
ucts from water [274,275]. In contrast, CDI technology is mainly aimed at ionic impurities in
water, which can completely remove charged pollutants from water, but cannot degrade the
toxicity of organic pollutants. Therefore, coupling the two technologies can effectively over-
come the restriction of every difference, while degrading and removing organic/inorganic
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pollutants in water. Ye et al. coupled CDI with photocatalytic technology for simultaneous
removal of organic pollutants and inorganic salts from wastewater (Figure 11b) [267]. A
ternary film composed of g-C3N4 nanoparticles, self-assembled carbon nanotubes, and PVF
foam was prepared. The assembled coupled system had a stable removal effect on both
inorganic pollutants (55–81% and 32–65% for Na2SO4 and NaCl, respectively) and organic
pollutants (100% for methylene blue dye).

A microbial fuel cell (MFC) is a complicated and advanced bioelectrochemical system,
which uses electrons generated by electrogenic microorganisms to catalyze biochemical
reactions during wastewater treatment to generate electricity [276]. Due to the low output
voltage of MFC (0.5–0.8 V), the generated energy is difficult to be utilized directly [277].
Recent research has shown that MFCs can be used as energy supply systems to directly
power other technologies that require low voltage. As a typical electrochemical system
operating at low voltage, CDI is especially suitable for coupling with MFC. The electrical
energy generated by MFC can supply energy for the CDI system, and the coupled system
can effectively overcome the shortcomings of low degradation of organic in the CDI
system [267]. The earliest reported MFC–CDI coupling system is the microbial desalination
pond (MDC), where the electrolytic cell is divided into three compartments by a pair of
IEMs. However, the technical drawbacks of MDC are its pH imbalance, low desalination
efficiency, and easy accumulation of chloride ions in the anode compartment [276].

In response to the above problems, Forrestal et al. developed a microbial capacitive de-
salination cell (MCDC) for simultaneous production of energy from desalination [278]. The
MCDC consisted of two CEMs, a current collector fabricated from nickel or copper mesh,
and an activated carbon cloth for microorganism biofilm formation and ion adsorption, as
shown in Figure 11c [279]. The desalination efficiency of MCDC was 7–25 times higher than
that of CDI due to the potential generated in situ by microorganisms, and the salt removal
rate was as high as about 69.4%. The study compared the MCDC and MDC systems.
The pH of the MCDC cathode compartment was stable at 8.5, while the pH of the MDC
increased from 7 to 11.4. In the desalination chamber, the pollutant removal rate of MCDC
was higher than that of MDC (eighteen times TDS, five times COD). Although MFC–CDI
coupling technology has significant advantages in ion removal, pollutant degradation, and
electrical energy recovery, it is still limited to laboratory-scale studies [42]. Scale-up results
in the high internal resistance of the MFC, which reduces the overall voltage output. To
reduce the inner resistance of the MFC, miniature cells may be chosen, where the proximity
between electrodes is reduced. Additionally, massive capacitors and reversible batteries can
be used to store energy for future applications. To further advance the practical application
of MFC–CDI coupling technology, parameters such as electrode material, reactor design,
microbial community, and biofilm should be further optimized.

Benefiting from the synergy between different technologies, various CDI coupling
systems effectively overcome the limitations of traditional CDI. It should be noted that,
although some progress has been made in the research of coupled systems, there are
still deficiencies in the practical application process, and most of them are limited to the
laboratory scale. In the process of technical application, the actual water composition is
complex, and there are certain fluctuations, which are very likely to affect the treatment
effect of the coupled system. Therefore, further in-depth research and development of
the CDI coupling system is required, which principally specializes in changes of the
actual effluent, with special emphasis on the optimization of operating parameters and
improvement of system performance and stability. In general, synchronously coupling CDI
technology with other technologies to address each other’s limitations is anticipated to
utterly solve the issues in industrial water treatment systems.
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Figure 11. (a) Brackish water RO–CDI stage system without TOC concentration and schematic
illustration of domestic wastewater RO–CDI hybrid system with TOC >20 mg·L−1. Adapted with
permission from Ref. [277]. 2019, Yamashita T; (b) integration of photocatalysis and CDI degradation
of organic pollutants. Adapted with permission from Ref. [262]. 2020, Zhang J; (c) configuration of
MDC (left) and MCDC (right). Adapted with permission from Ref. [276]. 2019, Zhang Y.
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5. Conclusions and Outlook

CDI is an attractive electrically driven desalination technology with significant advan-
tages over the existing desalination technologies; (i) ion removal at low voltage with mild
operating conditions; (ii) the desalination process targets small amounts of ions in solution
rather than large amounts of water, which leads to the higher overall energy efficiency; (iii)
the potential application fields are broad. In this review, we comprehensively summarized
the research progress of this advanced technology, with a specific focus on CDI desalina-
tion performance optimization strategies, system technoeconomic analysis, and existing
and emerging application areas. Although CDI and its derived systems have made great
progress in research in recent years, the development of this technology is still in its infancy,
and there is still a large room for improvement. In order to further promote the practical
application and transformation of CDI in various fields, we outline the current research
challenges in this field and proposed directions for future research development.

First, the selective removal ability of CDI for specific target ions should be further
improved. Although researchers have made significant progress in the development of
CDI electrodes, the current performance evaluations of CDI electrodes are mostly limited
to their salt removal efficiency, ion storage capacity, and long-term cycling stability, while
few studies have been conducted on their selectivity. In the application of traditional
CDI systems for desalination, the co-ion repulsion produces energy consumption. MCDI
realizes the selective diffusion of ions in the system through the introduction of IEM,
but problems such as IEM inherent resistance and interface contact resistance also cause
unnecessary energy loss. Therefore, the development of electrodes with specific ion capture
ability can effectively improve the energy efficiency of CDI desalination systems. In
addition, the applications of specific ion selective removal and target ion recovery call
for IEMs or electrodes with high ion selectivity, which is significant to further broaden
the CDI application range. By constructing CDI systems with ion-selective capabilities,
it is possible to preferentially eliminate highly toxic pollutants (such as heavy metals) in
water/wastewater, or efficiently recover high-value resources (such as ammonia, phosphate,
lithium, and other metals) from seawater or mining wastewater. Hence, ion-selective
materials (including electrode materials and ion-exchange membranes) should be further
investigated in the future.

Second, research on the energy efficiency of CDI desalination systems should be
further focused. Since the ion removal mechanism is crucial for the energy efficiency of CDI
systems, this review provided an overview of the adsorption mechanisms of CDI systems
based on the GCS model and the modified Donnan model, as well as the ion intercalation
or redox reaction mechanism based on the Faraday electrode. Since the energy efficiency
of the CDI system is closely related to the concentration of the feed stream and the water
quality requirements of the effluent, researchers have carried out systematic research on
the control of applied current, battery voltage, feed stream concentration, pH value, etc.
Further large-scale and long-term studies are required to obtain the feasibility of using
CDI technology in practical applications. In addition, research on energy recovery is also
beneficial to improve the competitiveness of the CDI system. It has been demonstrated that
CDI systems can store energy during the ions adsorption process, as well as partly perform
energy recovery during the regeneration process. However, the related research is only
limited to the theoretical stage of laboratory scale, and it is necessary to further explore
energy recovery systems to achieve improved energy efficiency desalination. Further
research should also be focus on evaluation of economic cost of CDI technology.

Third, the application of CDI technology in different fields should be further explored.
Early research on CDI technology mainly focused on the desalination of seawater or
brackish water. In recent years, studies have turned to its application in the selective
removal or recovery of specific ions. However, most CDI systems suffer from the limitation
that they are only suitable for ionic substances. The research on CO2 capture provided us
with new ideas that the ionized gases in water can also be treated by CDI technology. In
addition, this review summarized coupled systems of CDI combined with systems such
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as membrane filtration, photocatalysis, and bioelectrochemistry. Due to the synergistic
effect between the two processes, their limitations are avoided, so as to achieve the ideal
water treatment effect. At present, the practical application of CDI is still in its initial
stage. Future research should focus on the water quality diversity of the actual feed
stream, as well as improving the performance and stability of the system under long-term
operating conditions.
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