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Abstract: Renewable and distributed power generation have been acknowledged as options for the
safe, secure, sustainable, and cost-effective production, delivery, and consumption of energy in future
low-carbon cities. This research introduces the Dynamic Coyote Search Algorithm (DCSA)-based
optimal scheduling of distributed energy systems for home energy management systems. According
to the heat storage properties of the building, a smart building energy model is established and
introduced into the optimal scheduling of the distributed energy system in order to optimize the
adjustment of the room temperature within the user’s acceptable room temperature range. The DCSA
algorithm used is to minimize the daily comprehensive operating cost, including environmental
factors. According to the simulation results, the impact of smart energy storage on scheduling
is analyzed, and the results show that the optimal scheduling of building smart energy storage
participating in the system reduces the total cost by about 3.8%. In addition, the DCSA has a
significantly faster convergence speed than the original coyote algorithm.

Keywords: distributed energy system; optimal dispatch; Coyote Optimization Algorithm

1. Introduction

As environmental degradation and the energy problem continue to worsen, the energy
system must be modified immediately. Distributed energy systems have the benefits of
cost-effectiveness, environmental friendliness, and long-term viability, and have gained
considerable interest, both domestically and internationally [1–3].

Rapid progress has been made in microgrid research as a result of the increasing use
of renewable energy technology and distributed energy. Numerous studies have offered
various approaches for addressing the unpredictability of renewable energy and load power.
In ref. [4], the author considers the multi-interval-uncertainty constraints and analyzes
the problem of microgrid robust scheduling analysis. In addition, the thermal insulation
effect of the building wall and the heat storage property of the air improve the building’s
thermal inertia. When the characteristic quantity of the electrical equipment changes,
there is a certain hysteresis phenomenon in the indoor temperature change [5]. Adjusting
the temperature change curve within the user-acceptable temperature range can improve
the flexibility of cooling (heating), which is of great significance for optimizing system
operating costs. In ref. [6,7], the authors carried out modeling research on the smart energy
storage of air-conditioning load, and the results showed the superiority and effectiveness
of the smart energy storage strategy. In ref. [8], the author integrates smart energy storage
into the combined heat and power energy system and proposes a strategy for stabilizing
power fluctuations in the tie-line, and shows the effectiveness of this strategy through case
studies. In ref. [9], the author established simultaneous smart energy storage models for
electric vehicles and buildings, introduced them into the optimal scheduling of regional
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integrated energy systems and established an economic optimal scheduling model with the
goal of minimizing the daily operating cost of the system. In ref. [10], the author analyzed
the optimal scheduling of smart energy storage for an electric refrigeration system and the
combined cooling heating and power (CCHP) system. In ref. [11], the author considered the
hybrid energy microgrids of four different buildings and conducted a dynamic economic
optimal dispatch and comparative analysis based on building smart energy storage.

Recently, with the continuous development of intelligent optimization algorithms,
choosing an appropriate optimization algorithm remains an important research topic in
array synthesis. In ref. [12], the authors present a quantum evolutionary algorithm for
optimizing the envelope layout of office buildings to the desired ENVLOAD (energy load
of building envelope) value. The total cost is reduced by 35.3%, compared to the original
design, and the construction cost per unit area of envelopes made from this paper is
cheaper. In ref. [13], a combination of four optimization techniques is presented in order to
optimally build a hybrid photovoltaic/diesel/battery nanogrid. The combined algorithms
are executed in parallel, and the resulting solutions are compiled. A desert settlement
in the Saudi Arabian city of Hafr Al-Batin serves as a test case. In ref. [14], the authors
demonstrate that the Based on Hybrid Shuffled Frog-Leaping and Local Search Algorithm
can lower system running expenses, and achieve the coordination and optimization of
economy and robustness. In ref. [15], the author presents an optimized energy storage
and distribution network model under the uncertainty of the power generation problem.
Hybrid IGSA-DSO used an adoptive speed-inertia coefficient to ensure global and local
searchability. Simulation shows interesting results for the proposed approach, which
comparatively reduces the investment cost by 0.248%. The Coyote Optimization Algorithm
(COA) [16] was proposed by Pierezan et al., in 2018, and shows strong optimization ability
in the process of solving optimization problems. The COA includes a novel algorithm
structure, fewer configurable parameters, and a simpler implementation compared to
earlier algorithms. It offers a novel method for a balanced exploration and development, as
well as improved convergence performance and optimization precision. However, when
solving complex array antenna synthesis problems, the coyote optimization algorithm
still has problems, for example, it has a slow convergence speed and falls easily into the
local optimum.

This research presents a dynamic coyote search-based optimal scheduling for dis-
tributed energy systems for home energy management systems. On the basis of previous
research, further research is now carried out to establish a smart energy storage model,
according to the heat balance equation, in order to describe the process of smart energy
storage participating in the optimal scheduling of the system. The objective function of
the optimal scheduling process takes into account both the environmental cost and the
comprehensive operation cost, and establishes a multi-objective optimal scheduling model
based on economics. On the basis of the coyote algorithm, a suboptimal individual muta-
tion approach and a global optimal intra-group guiding method are established in order to
increase the local search capability and accelerate the convergence speed. Finally, the effect
of smart energy storage on the dispatch outcomes is thoroughly examined in comparison
to the dispatch situation without smart energy storage.

2. System Model Description

Figure 1 shows the structure of a typical distributed energy system, which primarily
includes energy storage and conversion equipment such as batteries, absorption chillers,
micro-turbines, and fans.
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Figure 1. Typical distributed energy system for home energy management system.

The mathematical models for all of the equipment required in the home energy man-
agement system are as follows.

(1) Micro gas turbine model.

PMT = PfuelηMT (1)

where PMT, and Pfuel are the output electric power and natural gas consumption power of
the gas turbine, respectively, kW; ηMT are the power generation efficiency of the gas turbine.

(2) Absorption refrigerator model.

QAR = ηHEλMTPMTCOPAR (2)

where QAR is the output power of the absorption chiller, kW; ηHE are the efficiency of
the heat exchange device; λMT is the thermoelectric ratio of the gas turbine; COPAR is the
cooling coefficient of the absorption refrigerant.

(3) Battery model.
Introducing the state of charge (SC) of the battery, the model is obtained as [17]

SCt
BT = SCt−1

BT (1 − σBT) + (ηBT,chPt
BT,ch − Pt

BT,dis/ηBT,dis)∆t/EBT (3)

where σBT is the self-discharge coefficient of the battery; ηBT,ch, ηBT,dis, are the charge and
discharge efficiency of the battery, respectively; Pt

BT,ch, Pt
BT,dis are the charge and discharge

power of the battery, respectively; EBT is the rated capacity of the battery, kW·h; t is the time.
(4) Building smart energy storage model.
The basic description equation is

∆Q = CρV(dTin/dt) (4)

where C is the specific heat capacity of air, J/(kg ◦C); ρ is the air density, kg/m3; V is the
building volume capacity, m3; Tin is the indoor temperature, ◦C.

The factors that affect indoor heat primarily include temperature dissipation, caused
by indoor and outdoor temperature difference; indoor heat source change; solar radiation;
and output power of refrigeration equipment as

(KwallSwall + KwinSwin)(Tout − Tin) + GSwinSc + Qin − QAR = ρCV
dTin

dt
(5)
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where Kwall, Kwin are the heat transfer coefficients of walls and windows, respectively,
W/(m2·K); Swall, Swin are the areas of walls and windows, respectively, m2; Tout are the
outdoor temperature, ◦C; G is the light intensity on the outer surface of the window,
kW/m2; Sc is the shading coefficient, the value is 0.3; Qin is the heating power of the indoor
heat source, kW.

In order to better describe the smart energy storage, the smart energy storage charging
and discharging power and the smart state of charge (SOVC) are introduced. The main
parameters of the smart energy storage model are as follows.

P = CρV
(

Tt
in − Tt−1

in

)
/∆t

E = CρV
(
Tin,max − Tt

in
)

EB = CρV(Tin,max − Tin,min)

SOVC = E
EB

=
Tin,max−Tt

in
Tin,max−Tin,min

(6)

where P is the charging and discharging power, kW; E are EB the capacity and rated capacity
of the smart energy storage at a certain time, respectively, kW·h; Tin,max, Tin,min are the
maximum and minimum acceptable indoor temperatures, ◦C; the value of the air specific
heat capacity 1000 J/(kg ◦C), the air density is 1.2 kg/m3.

3. Proposed Optimization Scheduling Model
3.1. Problem Formulation

The objective function aims for the lowest daily comprehensive cost. The daily com-
prehensive cost is composed of environmental cost and comprehensive operating cost (gas
cost, electricity purchase and sales cost, and equipment maintenance cost). The specific
expression of the objective function is:

F = Ffuel + Fpu + Fom + Fen (7)

(1) Gas cost.
Ffuel = CfuelPfuel (8)

where Cfuel is the cost of natural gas $/(kW·h), and Pfuel is measured, kW.
(2) Grid interaction costs.

Fpu = ∑T
t=1 Ct

phPt
pg,buy − ∑T

t=1 Ct
sePt

pg,sell (9)

where Cph and Cse are the electricity purchase and electricity selling price; Ppg,sell and
Ppg,buy are the electricity selling and electricity purchasing power, kW.

(3) Equipment maintenance costs.

Fom = ∑
(

Pt
WTCom

WT +
∣∣Pt

BT
∣∣Com

BT + Pt
MTCom

MT + λMTPt
MTCom

AC
)

(10)

where Com
WT, Com

BT , Com
MT, Com

AC are the maintenance costs of fans, batteries, micro-turbines, and
absorption chillers, $/(kW·h); Pt

WT , Pt
BT , and Pt

MT are fans, batteries, and micro-turbines t
time output power, kW.

(4) Environmental costs from the grid and gas turbines.

Fen = W1C1 + W2C2 (11)

where W1 and W2 are the total purchased (generated) electricity of the power grid and the
micro-gas turbine, kW·h; C1 and C2 are the total treatment cost of the polluted gas brought
by the power grid and the micro-gas turbine per kW·h of electricity, $/(kW·h).

The constraints
(1) Power balance constraints.

Pex,t + PWT,t + PMT,t + PBT,t = Pel,t (12)
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where Pel,t is the electrical load demand of the building at time t, kW; Pex,t is the electrical
load interacting with the grid at time t, kW.

(2) Cooling load balance constraints.

QAR,t = QC,t (13)

where QC,t is the cooling load of the building at time t, kW.
(3) Micro gas turbine output constraints.

Pmin
MT ≤ Pt

MT ≤ Pmax
MT (14)

(4) Battery constraints. {
SCmin ≤ SC ≤ SCmax

Pmin
BT ≤ Pt

BT ≤ Pmax
BT

(15)

(5) Building thermal balance constraints.

∆t[KwallSwall(Ttout − Ttin) + KwinSwin(Ttout − Ttin) + GtSwinSc + Qtin − QtAR]
= ρCV(Tt+1in − Ttin)

(16)

(6) Indoor temperature constraints.

Tin,min ≤ Tin ≤ Tin,max (17)

3.2. Dynamic Coyote Search Algorithm (DCSA)

In the traditional coyote algorithm, the growth of the coyote is affected by the optimal
alpha δ1 and the cultural trend cultj in the group δ2. However, due to the initial random
grouping, the quality of each group of alpha and the group’s cultural orientation cultj
cannot be guaranteed, and it is easy to have insufficient guiding ability of the optimal
individuals in the group, falling into local optimum and a slow convergence speed. More-
over, the sub-optimal individual mutation strategy will inevitably increase the overall
calculation amount of the algorithm and reduce the convergence speed, while improving
the diversity of the population. In order to solve this problem, on the basis that the growth
of each coyote is affected by δ1 and δ2 in the traditional coyote algorithm, a new growth
method is constructed, and the intra-group guidance δ3 of the global optimal Galpha is
proposed. To guide the algorithm to approaching the global optimal solution faster, the
local optimal solution must be exited, and the convergence speed must be increased. The
updated Coyote algorithm is:

cultj =

{
x(Nc+1)2,j(

xNc/2,j + xNc/2+1,j

)
/2

Nc Odd No.
Nc Even No.

(18)

δ1 = alpha − soccr1, δ2 = alpha − soccr2, δ3 = alpha − soccr3 (19)

soci
c = soc0

c + (gen/Mgen)(r1·δ1 + r2·δ2) + (1 − gen/Mgen)(r3·δ3) (20)

where cultj is the cultural trend within the group (x is the social status distribution of
coyotes sorted in ascending order), obtained by calculating the median of all coyotes in
the group, and Nc is the number of coyotes in the group. cr1, cr2, cr3 are the coyotes
randomly selected in the group; Galpha is the global optimal; soc0

c , soci
c are the initial

and updated social status of the coyote; gen is the current number of iterations; Mgen is
the maximum number of iterations; r1, r2 and r3 represent the random weights of δ1, δ2
and δ3, respectively; and δ1, δ2 and δ3 are random numbers uniformly distributed in the
[0,1] interval.

The primary objective of the DCSA is to assign the ideal position update technique
to each particle to allow the optimal solutions to the optimization issue to be located
concurrently and more efficiently. The Galpha can be altered on a small scale by introducing
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a Gaussian disturbance, with the assumption that it will travel in the direction of its closest
peak, and the following status update is provided:

soct+1
i,Nc = Galphai,Nc(t) + Gaussian(0, σ) (21)

where Gaussian(0, σ) is the Gaussian distribution with mean zero and standard deviation σ.
The above cooperation can effectively avoid the waste of computing resources on

memes with a poor evolutionary quality, and make full use of the evolutionary advantages
of coyotes, thereby helping DCSA to fall into local optimal solutions and improving
search efficiency.

The main steps of DCSA are described as follows:
Step 1. Randomly generate an initial population soci

c, let r1, r2 and r3 = 0
Step 2. Divide the population into meme groups
Step 3. Perform coyotes with dynamic search
Step 4. Population reconstruction
Step 5. Run the self-learning process
Step 6. If the termination condition is satisfied, output the external file; otherwise go

to step 2.

4. Results and Discussion

Two scheduling modes are introduced: mode 1 considers building smart energy
storage and mode 2 does not consider building smart energy storage. When smart energy
storage is not considered, the indoor temperature is 24 ◦C during the working phase
(8:00–19:45) and remains unchanged. The indoor temperature can vary between (24 ± 2)
◦C when smart energy storage is taken into account. The building structure is 40 m long,
20 m wide, and each floor is 3 m high, with a total of 10 floors. As shown in Figure 2,
the battery capacity is 40 kW·h, the battery self-discharge coefficient is 0.01, the charging
and discharging efficiency is 0.95, the lower limit is in range of the charging power and
discharge power is 100 kW and 30 kW, respectively. Figure 3 shows the impact of the light
intensity as it reflects the light onto the outer surface of the window. Tables 1–3 show the
building-related information, the time-of-use price used in the optimal scheduling process,
and the values of the other main parameters.
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Table 1. Building parameter.

Kwall Swall Kwin Swin

0.908 W(m2·K)−1 3550 m2 2.750 W(m2·K)−1 650 m2

Table 2. Time-of-use electricity price.

Period Electricity Purchase ($) Electricity ($) Time

Peak time 1.34 1.24 11:00—13:45,
18:00—19:45

Valley time 0.31 0.21 23:00—8:45

Normal 0.81 0.71 others

Table 3. Main parameter information table.

Parameter Value

ηMT 0.3
λMT 1.5
ηHE 0.8

COPAR 1.2
SOCmin/SOCmax 0.1/0.95

Com
WT 0.11 $/(kW·h)

Com
BT 0.025 $/(kW·h)

Com
MT 0.03 $/(kW·h)

Com
AC 0.02 $/(kW·h)

The system optimization scheduling process in the two cases is shown in Figures 4
and 5. Figure 4a,b compares the two dispatching scenarios. In the gas-fired power gen-
eration without smart energy storage, the most significant variation is in the external
temperature and light intensity, which occurs when the system is operating in the mode of
constant heat and electricity. In the low electricity price period, in order to reduce the gas
cost when the smart energy storage participates in the scheduling, the gas turbine output
is relatively small. During the high electricity price period in the afternoon, both systems
will sell electricity to the grid to obtain benefits. However, after the smart energy storage
participates in the scheduling, the gas turbine can be further increased. This is because
the strong constraints on indoor temperature will be lifted when the smart energy storage
participates in scheduling.
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Figure 5 shows that the room temperature fluctuates significantly after the participa-
tion of smart energy storage, and the building cooling load curve is optimized. In the period
of high electricity price, which occurs at night due to the decrease of light intensity, the
system’s cooling load demand is greatly reduced, resulting in insufficient power generation
of gas turbines. Subsequently, the insufficient power needs to be purchased from the grid.
The cost of purchasing electricity decreased during this period.

The smart energy storage scheduling process is shown in Figure 6. It can be seen
that the state of charge of the building smart energy storage maintains a relatively low
level during the low electricity price period, the state of charge maintains a high level
which indicating that the charging and discharging process can better follow the change of
electricity price to achieve the purpose of reducing the overall cost of the system.
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Figure 7 show the electricity purchase, sale, and cooling of the system. It can be seen
that in the low electricity price period, due to the lower electricity purchase cost, there is no
significant difference between the two scheduling situations. In mode 2, the rate of drop is
approximately 13.93%, and the power purchase rate decreases by approximately 18.38%
for the full period of high electricity prices. The electricity sales peak at midday, when
prices are the highest. The electricity was 34.618 kW, an increase of approximately 136%.
In addition, the total cooling load demand of the building is approximately 452.68 kW,
without taking into consideration the building smart energy storage, and approximately
478.524 kW when considering it; the mode 1 increase is approximately 5.32%. From the
data results, it can be seen that the building cooling load demand increases slightly after
the participation of smart energy storage, but it brings great advantages to the purchase
and sale of electricity in the system. Table 4 details the costs of the two dispatching modes.
It can be seen that in the mode 1 dispatching scenario, the environmental cost is reduced
by approximately 6.87% compared to mode 2, and the total cost of the entire dispatching
process is reduced by approximately 3.74%, indicating that the participation of smart energy
storage in dispatching can reduce system operation costs and has a positive impact on the
control of environmental pollution.
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Table 4. Cost Statistics.

Cost Mode 1 Mode 2

Gas cost (USD) 63.43 61.02

Electricity cost (USD) 26.93 34.14

Electricity sales revenue (USD) 3.42 1.562

Operation and maintenance cost (USD) 11.73 12.37

Environmental cost (USD) 12.26 13.36

total cost (USD) 117.76 122.45

The DCSA algorithm parameters, following the population size of the algorithm, is
set to 10; the number of iterations is 100; the learning factor r1 = r2 = r3 = 0.15; and the
initial inertia weight is 0.2548. Figure 8 shows the DCSA of the algorithm solution results
in the two scheduling situations. It can be seen from the DCSA that the single pursuit
of the minimum operating cost will increase the environmental cost, therefore, it is more
practical to consider environmental factors in the actual process. At the same time, the
multi-objective optimization process provides a number of different solutions for decision
makers. The local environmental policy selects the most reasonable dispatch plan.
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Figure 8. Optimized Energy storage using DCSA.

The final comparison of the processing times and operating costs for the two modes of
the different algorithms is shown in Table 5. When the DCSA method is taken into account
for the modes, mode 1’s energy purchase price uncertainty is decreased by 4.013 USD
(3.8%) compared to mode 2’s. Additionally, for mode 1, the DCSA is reduced by 2.59 USD
(2.45%), 3.7 USD (3.5%), and 3.7 USD (3.5%), respectively, in opposition to the COA and
PSO. Therefore, it is evident that improving the mode’s robustness requires forgoing some
economic advantages after taking into account local and global optimal point issues of both
algorithms. In addition, the time for the execution of the DCSA algorithm is reduced by
2.09 s (1.84%), and 2.73 s (2.4%), compared to the COA and PSO, respectively. Despite the
fact that the DCSA algorithm significantly raises profit costs, the system is flexible enough
to be altered in accordance with the current market electricity price and operational costs.
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Table 5. Final comparison of operation mode with other optimization Algorithms.

Method Energy Purchase Price ($) Time (s)

Mode 1 Mode 2

DCSA 105.62 109.63 113.64
COA 108.21 116.26 115.73
PSO 109.32 117.82 116.37

5. Conclusions

In this paper, a model for intelligent energy storage in buildings is developed and
included in the optimal scheduling of distributed energy systems and the dynamic coyote
search algorithm (DCSA). Through scheduling analysis, the usefulness of the smart energy
storage plan participation is proven. The conclusions are as follows:

(1) The multi-objective optimization process shows that the single pursuit of the
reduction of comprehensive operating costs will lead to an increase in environmental costs.
Therefore, practically to take environmental factors in the optimal scheduling will will have
a positive effect on emissions and environmental protection.

(2) According to the purchase and sale of electricity, and the dispatching of gas turbines,
building smart energy storage can improve the flexibility of the system’s gas turbines and
reduce the system’s dependence on the power grid.

(3) In the process of participating in system optimization and scheduling, building
smart energy storage can optimize the cooling load curve of the building, according to the
electricity price, to reduce system operating costs, thereby improving the system economy.

(4) Based on Table 5, the proposed DCSA shows a better result, compared to both
COA and PSO, as the selection mechanism improves the selection of the neighborhood
size and distinguishes the particles in the neighborhood, between directly neighborhood-
reachable and neighborhood-reachable, simultaneously, and thus balances the algorithm’s
exploration and exploitation.

Author Contributions: Formal analysis, Y.D. and Y.Z.; Investigation, X.F.; Methodology, J.D.;
Writing—original draft, C.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is confidential.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hu, J.; Li, P. Energy-sharing method of smart buildings with distributed photovoltaic systems in area. Energy Rep. 2022, 8, 622–627.

[CrossRef]
2. Yan, Y.; Zhang, H.; Meng, J.; Long, Y.; Zhou, X.; Li, Z.; Wang, Y.; Liang, Y. Carbon foot-print in building distributed energy system:

An optimization-based feasibility analysis for potential emission reduction. J. Clean. Prod. 2019, 239, 117990. [CrossRef]
3. Liu, Z.; Fan, G.; Sun, D.; Wu, D.; Guo, J.; Zhang, S.; Yang, X.; Lin, X.; Ai, L. A novel distributed energy system combining hybrid

energy storage and a multi-objective optimization method for nearly ze-ro-energy communities and buildings. Energy 2022, 239,
122577. [CrossRef]

4. Levorato, M.; Figueiredo, R.; Frota, Y. Robust microgrid energy trading and scheduling under budgeted uncertainty. Expert Syst.
Appl. 2022, 203, 117471. [CrossRef]

5. Delfino, F.; Ferro, G.; Minciardi, R.; Robba, M.; Rossi, M.; Rossi, M. Identification and opti-mal control of an electrical storage
system for microgrids with renewables. Sustain. Energy Grids Netw. 2019, 17, 100183. [CrossRef]

6. Mishra, R.; Chaulya, S.; Prasad, G.; Mandal, S.; Banerjee, G. Design of a low cost, smart and stand-alone PV cold storage system
using a domestic split air conditioner. J. Stored Prod. Res. 2020, 89, 101720. [CrossRef]

7. Qi, N.; Cheng, L.; Xu, H.; Wu, K.; Li, X.; Wang, Y.; Liu, R. Smart meter data-driven evaluation of operational demand response
potential of residential air conditioning loads. Appl. Energy 2020, 279, 115708. [CrossRef]

http://doi.org/10.1016/j.egyr.2022.02.169
http://doi.org/10.1016/j.jclepro.2019.117990
http://doi.org/10.1016/j.energy.2021.122577
http://doi.org/10.1016/j.eswa.2022.117471
http://doi.org/10.1016/j.segan.2018.100183
http://doi.org/10.1016/j.jspr.2020.101720
http://doi.org/10.1016/j.apenergy.2020.115708


Sustainability 2022, 14, 14732 12 of 12

8. Shabgard, H.; Song, L.; Zhu, W. Heat transfer and exergy analysis of a novel solar-powered integrated heating, cooling, and hot
water system with latent heat thermal energy storage. Energy Convers. Manag. 2018, 175, 121–131. [CrossRef]

9. Calise, F.; Cappiello, F.L.; d’Accadia, M.D.; Vicidomini, M. A novel smart energy net-work paradigm integrating combined heat
and power, photovoltaic and electric vehicles. Energy Convers. Manag. 2022, 260, 115599. [CrossRef]

10. Abdalla, A.N.; Nazir, M.S.; Tiezhu, Z.; Bajaj, M.; Sanjeevikumar, P.; Yao, L. Optimized Economic Operation of Microgrid:
Combined Cooling and Heating Power and Hybrid Energy Storage Systems. J. Energy Resour. Technol. 2021, 143, 070906.
[CrossRef]

11. Nazir, M.S.; Abdalla, A.N.; Wang, Y.; Chu, Z.; Jie, J.; Tian, P.; Jiang, M.; Khan, I.; Sanjeevikumar, P.; Tang, Y. Optimization
configuration of energy storage capacity based on the microgrid reliable output power. J. Energy Storage 2020, 32, 101866.
[CrossRef]

12. Wang, Y.; Wei, C. Design optimization of office building envelope based on quantum genetic algorithm for energy conservation.
J. Build. Eng. 2020, 35, 102048. [CrossRef]

13. Bouchekara, H.R.E.H.; Shahriar, M.S.; Irshad, U.B.; Aban, Y.A.S.; Mahmud, M.A.P.; Javaid, M.S.; Ramli, M.A.M.; Farjana, S.H.
Optimal sizing of hybrid photovoltaic/diesel/battery nanogrid using a parallel multiobjec-tive PSO-based approach: Application
to desert camping in Hafr Al-Batin city in Saudi Arabia. Energy Rep. 2021, 7, 4360–4375. [CrossRef]

14. Abdalla, N.A.; Ju, Y.; Nazir, M.S.; Tao, H. A Robust Economic Framework for Integrated Energy Systems Based on Hybrid
Shuffled Frog-Leaping and Local Search Algorithm. Sustainability 2022, 14, 10660. [CrossRef]

15. Nazir, M.S.; Abdalla, A.N.; Zhao, H.; Chu, Z.; Nazir, H.M.J.; Bhutta, M.S.; Javed, M.S.; Sanjeevikumar, P. Optimized economic
operation of energy storage integration using improved gravitational search algorithm and dual stage optimization. J. Energy
Storage 2022, 50, 104591. [CrossRef]

16. Pierezan, J.; Coelho, L.D.S. Coyote Optimization Algorithm: A New Metaheuristic for Global Optimization Problems. In 2018
IEEE Congress on Evolutionary Computation (CEC); IEEE: Piscataway Township, NJ, USA, 2018; pp. 1–8.

17. Barbosa, V.; Nogueira, T.; Carati, E.; Felgueiras, C. Supercapacitor in battery charges of photovoltaic panel: Analysis of the
technical feasibility. Energy Procedia 2018, 153, 80–85. [CrossRef]

http://doi.org/10.1016/j.enconman.2018.08.105
http://doi.org/10.1016/j.enconman.2022.115599
http://doi.org/10.1115/1.4050971
http://doi.org/10.1016/j.est.2020.101866
http://doi.org/10.1016/j.jobe.2020.102048
http://doi.org/10.1016/j.egyr.2021.07.015
http://doi.org/10.3390/su141710660
http://doi.org/10.1016/j.est.2022.104591
http://doi.org/10.1016/j.egypro.2018.10.019

	Introduction 
	System Model Description 
	Proposed Optimization Scheduling Model 
	Problem Formulation 
	Dynamic Coyote Search Algorithm (DCSA) 

	Results and Discussion 
	Conclusions 
	References

