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Abstract: The perception of automatic generation control (AGC) has a massive part in delivering emi-
nence power in an interrelated structure. To acquire eminence power by monitoring the fluctuations
of frequency and tie-link power, an appropriate controller strategy is essential. This work explores
AGC learning under the traditional situation. In this study, we employ a cascade controller with
proportional amalgamation with a tilt-integral-derivative with a filter (TIDN) and fractional order
integral-derivative (FOID), named TIDN-FOID. In order to acquire the controller’s attributes, a meta-
heuristic optimization algorithm spotted hyena optimizer (SHO) is employed. Several investigations
express the excellency of the TIDN-FOID controller over other controllers from outlook regarding the
lessened level of peak_overshoot, peak_undershoot, and settling_time for the considered structure.
The structure comprises thermal, biodiesel units in area 1, thermal, and geothermal units in area-2,
and hydrothermal units in area-3. Both biodiesel and GPP have a better effect on system dynamics
even in the presence of time delay. Action in the redox flow battery is also examined, providing a
noteworthy outcome. Eigenvalue assessment is carried out to comment on the stability of the system.
TIDN-FOID parameter values at nominal conditions are appropriate for a higher disturbance value
without the need for optimization.

Keywords: automatic generation control; geothermal power plant; redox flow battery; biodiesel
plant; spotted hyena optimizer; particle swarm optimization; controller; time delay

1. Introduction

Proper coordination between the amounts of power generation and demand and losses
is essential for better power system performance. This balance may be disrupted during
periods of heavy load demand. If this balance is not maintained or observed at the right
time, it may lead to huge damage by providing huge aberration in frequency and tie-line
power from the base values. These disproportions were subdued by the conception of
AGC [1–3]. Elgerd et al. [4] provided the basic mathematical formulation of AGC in the case
of a two-area thermal system. In the past, works on AGC were mainly confined to a single
area system [5–7]. Later, studies included two-area [8,9], three-area [9–11], four-area [12],
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and five-area [13] systems with the inclusion of non-linearity, such as the generation rate
constraint, and also sometimes the governor dead band. Most of the works used thermal
as generating units. Nanda et al. [14] have performed an analysis for a system having
hydrothermal sources. Abraham et al. [15] assessed a two-area hydrothermal system.
Arya [16] considered the AGC system of varied generating sources, such as thermal power,
hydropower and diesel. Panwar et al. [17] analyzed a hydropower-dominating system.
Arya et al. [18] considered the AGC system of varied generating sources, such as thermal
power, hydropower, and gas. Very few papers in the literature [19] reflected on the usage of
non-linearity time delay along with other forms of non-linearity. The presence of time delay
in a three-area hydrothermal system has not yet been discussed in the literature. Hence, it
can be carried out for analysis.

Excessive use of one energy source for every purpose rigorously depletes resources.
Overall, besides depletion, it also releases toxic gases which are hazardous to the envi-
ronment. Thus, it is essential to combine conventional and renewable energy sources.
The utmost communal forms of readily available inexhaustible bases are solar and wind
energy. Numerous articles have described the contribution of solar and wind energy with
respect to AGC knowledge, both in a sole arena and with unified arrangements. Moreover,
geothermal and biodiesel energy sources have also been researched. Geothermal energy
is a kind of thermal energy which is stored in the earth. Consequently, this category of
energy can be extracted from the earth’s shell. Biodiesel plants employ biodiesel to drive
generators. Tasnin et al. [20] emphasized the practice of geothermal power plants (GPPt) in
AGC learning along with conventional sources. Sharma et al. [21] analyzed a photovoltaic-
incorporated thermal system. Biodiesel is formed from oil that has been pulled out from
varied plants, such as sunflower, palm, or soybean. Most commonly, palm oil is used for
biodiesel. Biodiesel is a type of renewable fuel. The authors in [22] reported the usage of
biodiesel in the case of an isolated scheme. The combination of GPPt and biodiesel plants
in AGC knowledge has not yet been replicated in literature. Thus, the hydrothermal system
incorporated with GPPt and biodiesel in time delay calls for further extensive assessments.

In a unified scheme, the arrangement can be steadied with diminished alteration in
glitches with the assistance of numerous energy storage devices (ESD), such as battery en-
ergy storage devices (BESDs) [23] and ultra-capacitors [24]. There are many types of BESDs,
such as lead-acid, lithium-ion, sodium sulfur, metal-air, and redox flow batteries (RFBs).
RFB can be employed when there is a need for large storage facilities. Among all these types
of BESDs, in light of AGC, RFBs show much potential [25,26]. It has a lengthier running
duration and enables great power capacity. Moreover, it even has guaranteed profits, such
as swift slight-interval surplus capability, huge effectiveness, exposure from own-expulsion
matters, low-priced, and not being cluttered up by unforeseen charging/discharging. As
RFBs have so many advantages, their application in a hydrothermal-biodiesel-GPPt system
with time delay needs elaborate assessments.

The proper selection of a secondary controller is of high importance in AGC learning
regarding control. Numerous forms of subsidiary controllers, such as integer-order (InOr),
fractional-order (FrOr), and cascade controllers (CaC), are stated in literature to be linked
to AGC. The usage of various InOr controllers, such as integral (I) [26], proportional-
integral (PI) [27], and proportional-integral-derivative with filter (PIDN) [28], is reflected
in the literature. Two [29] or three [30] higher degrees of freedom controllers have been
inspected in this ground of training, which were also of the InOr type. Limited FrOr
controllers that have found to be of use are FOPI [31], FOPIDN [32–34], and proportional
with TIDN [35–38]. The literature on AGC systems provides an argument about the training
of InOr amalgamated controllers (PD-PID) [39], FrOr amalgamated controllers (FOPI-
FOPD) [20], and the assemblage of InOr and FrOr controllers (PIDN-FOPD). Arya et al. [40]
analyzed a system with a cascade IλDµN controller. In addition to all these controllers,
various authors reported on fuzzy and intelligent controllers. Sharma et al. [41] worked on
an AGC system incorporating ANN controllers. Sharma et al. [42] have reported on the
usage of fuzzy PIDF controllers. However, the series cascade combination of TIDN with
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FrOr integral-derivative termed TIDN-FOID has not yet been quantified in AGC works.
Additionally, the function of the TIDN-FOID subsidiary controller in this trinity-arena
hydrothermal-biodiesel-GPPt arrangement has not yet been researched.

The enactment of any subordinate controllers is dominant solitary if the finest val-
ues of attributes are suitably selected. These could be prepared with the aid of tradi-
tional/optimization practices [43–60]. However, the traditional practice has moderate
difficulty to deliver suboptimum consequences. A few algorithms used for AGC are
bacterial foraging optimization (BFO) [10], whale optimization algorithm (WOA) [19],
sine-cosine algorithm (SCA) [20], cuckoo search (CS) [29], particle swarm optimization
(PSO) [33], coyote optimizer algorithm (COA) [37], bat algorithm (BA) [39], salp swarm
algorithm [50], grey wolf [51], firefly algorithm (FA) [53], flower pollination algorithm
(FPA) [54], differential evolution (DE) [55], and Jaya algorithm [56]. A newly established
bioinspired meta-heuristic procedure labeled as SHO has also been developed [57]. SHO
was recognized from spotted hyenas’ behavioral nature, which depicts the communal
promise amidst spotted hyena and their cooperative performances. To a great wonder,
SHO has not identified its implementation in AGC learning for obtaining premium values
of controller attributes, thus demanding advance examination.

With concern to overhead deliberations, the major persistence of the current artifact is
as follows:

(a) Construction of a trio-arena structure with thermal-thermal-biodiesel energy in arena-1,
thermal-thermal-GPPt energy in arena-2, and hydrothermal energy in arena-3.

(b) The attributes of PIDN/TIDN/TIDN-FOID are concurrently augmented separately
via the SHO algorithm so as to attain an outstanding controller.

(c) The impact of biodiesel and GPPt energy on system dynamics is studied with the best
obtained controller from (b).

(d) The impact of time delay on system dynamics is studied with the best obtained
controller from (b).

(e) The impact of RFB on system dynamics is studied with the best obtained controller
from (b).

(f) Eigenvalue assessment is performed to comment on the stability of the system.
(g) Sensitivity analysis is performed to examine the robustness of the best controller’s

gains with a higher value of step load disturbance.

1.1. Novelty of Work

In the view of above, the novelties of the article are as follows:

(a) The performance evaluation of RFB-biodiesel-GPPt-based interconnected AGC system
with time delay under conventional scenario are carried out for the first time;

(b) To design a new cascade TIDN-FOID controller in AGC studies;
(c) Application of RFB-based biodiesel and GPPt in AGC studies;
(d) A maiden effort was made to conduct the stability analysis considering eigenvalue

assessment and sensitivity analysis;
(e) Solicitation of SHO algorithms for the instantaneous optimization of the suggested

cascade controller.

1.2. Contribution

Thus, the main contributions of the article are as follows:

(a) Investigations are carried out with RFB considering biodiesel and GPPt plants in
conventional AGC systems;

(b) A new cascade TIDN-FOID is proposed and its performance is found to be better than
PIDN and TIDN controllers;

(c) Controller parameters are optimized by the SHO algorithm and the system dynamics
with SHO optimized TIDN-FOID enhances system dynamics over WOA, CS, FA, and
PSO techniques;
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(d) Studies on the selection of performance indices are carried out, and it is observed that
ISE outperforms ITSE, IAE, and ITAE;

(e) System dynamics with RFB considering biodiesel and GPPt are found to be better
than other combinations;

(f) Case studies on various values of time delays are carried out, and it is evident that
with time delay the system dynamics are degraded;

(g) Sensitivity analysis is carried out, and it is suggested that the obtained controller
parameters at nominal conditions are robust.

1.3. Organization of the Article

The entire article is divided into different sections. Section 1 provides an introduction,
Section 2 includes details related to system, Section 3 describes the controller details,
Section 4 details the spotted hyena optimizer, Section 5 discusses the results, and Section 6
involves the conclusion of the article, followed by an appendix and references.

2. Scheme Representation
2.1. Overall Representation of the Scheme

A trinity-arena structure of a non-identical kind is engaged with the interpretation
of analyses with an arena size ratio of 2:3:4. The structure includes thermal, thermal, and
biodiesel (T-T-Bd) resources as generating elements in arena-1. Similarly, thermal, thermal,
and geothermal power plants (GPPt) (T-T-GPPt) energy is used in arena-2 and thermal
and hydro (T-H) energy in arena-3. The traditional diesel plant is currently replaced with
biodiesel elements, since they are not contaminated as well recyclable and of somewhat
denser, lesser viscosity; furthermore, it results in a lower amount of carbon monoxide.
Consequently, it can be employed as a reserve for a power source. It entails a combustion
engine and valve controller. The primary order transfer function (Trfn) of the valve con-
troller and ignition appliance of biodiesel element is specified by Equations (1) and (2),
respectively [22]:

T fvalve regulatorBio−diesel
=

KVR
1 + sTVR

(1)

T fCombustion engineBio−diesel
=

KCE
1 + sTCE

(2)

Geothermal energy is a possible inexhaustible source of energy where underground
thermal energy is transmuted into electrical energy. The Trfn modeling of GPPt is compara-
ble to thermal elements but it does not have the cistern for warming condensation. The
initial order Trfn of the governor and turbine of GPPt are specified by Equations (3) and (4),
respectively [20]:

T fGGPP =
1

1 + sGGPP
(3)

T fTGPP =
1

1 + sTGPP
(4)

where GGPP and TGPP are the time constants of the governor and turbine of GPPt, respec-
tively. These standards are attained by augmentation procedure SHO, given the restrictions.

The systems that are associated with a generation rate constraint and governor dead
band display non-linearity. The contributing factors (cf ) of every generating unit of indi-
vidual arenas are cf 11 = 0.4, cf 12 = 0.4, and cf 13 = 0.2 in arena-1, cf 21 = 0.4, cf 22 = 0.39, and
cf 23 = 0.21 in arena-2, and cf 31 = 0.655 and cf 32 = 0.345 in arena-3. This makes up structure-1.
The system with only thermal energy in area-1 and 2 and thermal and hydro energy in
area-3 is considered structure-2. Consequently, structure-1 is integrated with time delay in
all areas in order to make the system more practical. This is treated as scheme-3. The energy
storage section, specifically RFB, is included in area-1. This is treated as structure-4. The
representation and Trfn prototypical of schemes are shown in Figure 1. The basic standards
of the scheme constraints are specified in Appendix A. The finest standards of controller
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attributes are attained by the assistance of spotted hyena optimizer procedure using the
integral squared error as the performance index (PIxISE) specified by Equation (5) [19]:

PIxISE =
∫ T

0

{
(∆ f1)

2 + (∆ f2)
2 + (∆ f3)

2 +
(
∆Ptie1−2

)2
+
(
∆Ptie2−3

)2
+
(
∆Ptie1−3

)2
}

dt (5)

2.2. Energy Stowing Device-RFB

RFB is a category of flow batteries, established on the base of immobile energy stowage
practices. There is a huge amount of demand for RFBs in the arena of AGC. In this
sort of battery, no sensitive material is used in its construction, and it is assisted by an
external establishment of stowing containers. Thus, complete energy competence is reliant
on the number of electrolytes in exterior stowage containers and production power is
associated with the group of electrodes. The electrolytes are a suspension of sulfuric acid in
amalgamation with vanadium ions. A duo of pumps is linked to stream the suspension
over cells of the battery. The chemical responses which arise internally in battery cells
throughout charging in conjunction with discharging are shown in Equations (6) and (7):

At the site of +ve electrical conductor:

V4+
Charge Discharge

� V5+ + e− (6)

At the site of −ve electrical conductor:

V3+ + e−
Charge Discharge

� V2+ (7)

RFB has characteristics of elongated operational duration and huge power capacity.
It has certain strengths, such as its quick small-span additional ability, huge efficiency,
exposure to autonomous discharge matters, being inexpensive, and not being cluttered by
unforeseen changes.
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3. Projected Controller

The projected controller is a collective of TIDN and FOID. The arrangement of TIDN-
FOID is authenticated in Figure 2. Part-1 (B1) and Part-2 (B2) are the layout of TIDN and
FOID, respectively. Rsi(s) is the predecessor impulse and Osi(s) is the consequent impulse
for the TIDN-FOID subordinate controller.
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The Riemann–Liouville FRO integral and derivative are shown in Equations (8) and (9) [60]:

αD−α
t f (t) =

1
Γ(n)

t∫
α

(t− τ)α−1 f (τ)dτ, n− 1 ≤ α < n, n is an integer (8)

αDα
t f (t) =

1
Γ(n− α)

dn

dtn

t∫
α

(t− τ)n−α−1 f (τ)dτ (9)

where αDα
t is the fractional operator and Γ(.) is the Euler’s gamma function. The amend-

ment of above equations in the Laplace domain is given by (10):

L{αDα
t f (t)} = sαF(s)−

n−1

∑
k=0

skαDα−k−1
t f (t)|t=0 (10)

The detriment of boundless computation of poles and zeros by the feature of absolute
semblance is demonstrated by Oustaloup et al. [61]. Here, a convenient Trfn is promulgated,
which can be approximated by FrO derivatives collected with integrators through the
indentation of recursive dispersal of poles and zeros, as shown in Equation (11):

sα = K
M

∏
n=1

1 + (s/ωZ,n)

1 +
(
s/ωp,n

) (11)

where K = 1, gain = 0 dB over 1 rad/s frequency, M is the total number of poles besides
zeros (obtained previously), and frequency option for poles and zeros are established by
Equations (12)–(16):

ωZ,l = ωl
√

n (12)

ωp,n = ωZ,nε n = 1, . . . . . . , M (13)

ωZ,n+1 = ωp,n
√

η (14)

ε =

(
ωh
ωl

) v
M

(15)

η =

(
ωn

ωl

) (1−v)
M

(16)

The TIDN controller is the modified form of the PIDN controller where the propor-
tional gain is associated with a tilted constituent in the form of s−(1/n) or 1/s(1/n). TIDN
is chosen as it facilitates hassle free tuning, an excellent ratio of disturbance rejection; it is
also the least affected by the alteration of system parameters.
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The Trfn of B1i(s) is calculated with Equation (17):

B1i(s) = {KPi/(s1/ni )}+ {KIi/(s)}+ KDi
Ni

1 + Ni/s
(17)

The Trfn of B2i(s) is caluculated with Equation (18).

B2i(s) =
KFIi

sλi
+ sµi KFDi (18)

where λ and µ is the non-integer parameter of the FOID integrator and derivative part
individually and KFIi and KFDi are the integral and derivative gain of FrO, respectively, of
the suggested area.

Henceforth:
Osi(s) = (B1i(s)B2i(s)) ∗ Rsi(s) (19)

The fine-tuning constraints of TIDN and FOID are obtained via SHO by JISE Equation (20):
KPi

minPi Pi
max

, KIi
minIi Ii

max
, KDi

minDi Di
max

,
Ni

mini i
max

, ni
mini i

max
, KFIi

minFIi FIi
max

,
KFDi

minFDi FDi
max

, λi
mini i

max
, µi

mini i
max

(20)

The specified limitations of frequency [ωl, ωh] replicated for valuation is [0.01, 50],
KPi, KIi, KDi, KFIi, KFDi, λi, and µi are surrounded by 0–2, values of ni are 1–12, and values
for Ni are 0–100. These restrictions are established by exercise and distinct numerary
of exploratory.

4. Optimization Approach—Spotted Hyena Optimizer (SHO)

Spotted Hyenas (SHy) are recognized as skilled pursuers, even though they are the
largest among the hyaena species. SHy are also well known as the “laughing hyena”, as
their vocalizations sound similar to human laughter. They are extremely complicated,
intelligent, and social creatures. The SHy trace victims using their highly developed sense
of sight, hearing, and smell. This behavior of SHy led Dhiman et al. [57] to develop a
meta-heuristic algorithm, i.e., SHO. The authors created an arithmetical strategy based on
SHy and mutual dexterity for optimization. The three actions associated with SHO are
catch, encircling, and noticeable catch.

i. Surrounding of catch: To evolve this mathematical archetype, it is expected that the
current premium challenger is the intended catch, provided that the pursuit field is
recognized formerly. In this pursuit, the catch will be introduced to a location familiar
to the pursuit mediator to gain an advantage. An arithmetical sample is demonstrated
by Equations (21) and (22):

→
Dh =

∣∣∣∣→B ·→Pp(x)−
→
P(x)

∣∣∣∣ (21)

→
P(x + 1) =

→
Pp(x)−

→
E ·
→
Dh (22)

where
→
Dh is the stretch between the prey and SHy, x is the present count,

→
B and

→
E are

vector coefficients,
→
P p is the spot vector of the hunt,

→
P is the locale vector of Shy, and

→
B

and
→
E are calculated by (23)–(25):

→
B = 2r

→
d1 (23)

→
E = 2

→
h r
→
d 2 −

→
h (24)
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→
h = 5− (t ∗ (5/tmax)) where t = 1, 2, 3 . . . , tmax (25)

where t is the number of iterations and tmax is the maximal number of iterations.

To explore instead of exploit,
→
h in the conventional contour deteriorated on or after 5

towards 0, and concluded towards the end of the maximum number of iterations. Further-
more, this implementation of sanctions increased the amount of exploitation as the total
value grew. Nevertheless,

→
r d1 besides

→
r d2 are random vectors inside [0, 1].

ii. Tricking: With the purpose to portray the demeanor of SHy arithmetically, it is
expected that the premium pursuit mediator has data concerning the location of the
hunt. The enduring pursuit mediator forms assemblages on the way to the premium
pursuit mediator, and stores the premium consequence to reestablish their location,
as calculated by Equations (26)–(28):

→
Dh = |

→
B ·
→
Ph −

→
P(x)| (26)

→
Pk =

→
Ph −

→
E ·
→
Dh (27)

→
Ch =

→
Pk +

→
Pk+1 + . . . . . . +

→
Pk+N (28)

where
→
Ph outlines the locale of preliminary premium SHy and

→
Pk describes the locale of

supplementary SHy. N describes the numeral of SHy as follows:

N = countnos

(→
Ph,
→
Ph+1,

→
Ph+2, . . . . . . ,

(→
Ph +

→
M
))

(29)

where
→
M is the arbitrary vector in [0.5, 1], nos is the framework of the number of con-

sequences and the entirety of the competitor results, afterwards adding
→
M, which are

comparable to the premium perfect consequence in a stated quest arena, and
→
Ch is an

assembly of N numerals of perfect consequence.

iii. Intruding quest (exploitation): In order to design the prototype on the basis of equa-

tions, so as to attack the prey,
→
h numerical measure is diminished. The discrepancy

in
→
E is likewise condensed from 5 to 0 with computation. |E| < 1 pressurizes the

assemblage of SHy to outbreak on the way to hunt. The mathematical strategy for
inflowing the prey is as follows:

→
P(x + 1) =

→
Ch
N

(30)

where
→
P(x + 1) stores the premium product and revises the location of the additional

pursuit mediators, consistent with the location of the premium pursuit mediators.

iv. Hunt for aim (exploration): SHy habitually pursues the prey, according to the location

of the SHy, which subsist in
→
Ch. They swing separately to pursue and hunt their prey.

Then,
→
E is utilized with random standards >1 or <−1 to coerce the pursuit mediators

to swing far away from the prey. This stratagem certificates the SHO algorithm to
pursue extensive attainment. SHO’s flow diagram is shown in Figure 3.
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5. Outcomes and Valuation

The optimization algorithms (WOA, CS, FA, and SHO) are programmed in MAT-
LAB2020a and MATLAB2022a (PSO) software, and the system is modeled in Simulink
using the FOMCON toolbox. The spotted hyena optimizer algorithm is used to optimize
the controller gain parameters.

5.1. Valuation of Potent Outcomes for the Choice of Superlative Controller (Including Biodiesel and
Geothermal Energy)

The scheme inspected here for valuation embraces T-T-Bd in arena-1, T-T-GPP in
arena-2, and T-H in arena-3 (Structure-1). This structure is adapted with PIDN/TIDN/TIDN-
FOID subordinate controllers of discrete origin. Valuation is accomplished by including
1% step load tolerances in arena-1. The superlative accessible values of the respective
controller’s attributes are attained via SHO, with PiISE. The structure is first and foremost
adapted with the PIDN subordinate controller to acquire its attributes as well as the at-
tributes of GPPt via SHO. The governor and turbine time constants gained is 0.1 s. The
standards of GGPPt and TGPPt are similar in the rest of the paper. After that, TIDN and
TIDN-FOID subordinate controllers are applied autonomously. The premium probable
values are manifested in Table 1, and with these, potential outcomes are acquired, as shown
in Figure 4. Extensive analysis of respective outcomes articulates the distinction of TIDN-
FOID over added controllers concerning the narrowed level of crowning_overshoot (C_O),
degree-of-fluctuations, and crowning_undershoot (C_U) in addition to the extent of settling
duration (S_D). In Table 2, the equivalent figures C_O, C_U, and S_D values are displayed,
showing the enhanced presentation of TIDN-FOID over PIDN and TIDN.
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Table 1. Premium values of attributes of PIDN, TIDN, and TIDN-FOID subordinate controllers for
the scheme including biodiesel and GPPt.

Name of
Controller

Corresponding Gains and
Parameters Area-1 Area-2 Area-3

PIDN

KPi * 0.0016 0.0025 0.0027
KIi * 0.3784 0.4651 0.5068
KDi * 0.4882 0.3788 0.3569
Ni * 12.11 13.01 15.00

TIDN

KPi * 0.1532 0.4706 0.3715
KIi * 0.4888 0.4426 0.5827
KDi * 0.8056 0.6795 0.5687
Ni * 45.01 56.11 38.21
ni * 1.4091 2.5088 2.1078

TIDN-FOID

KPi * 0.5470 0.7826 0.8511
KIi * 0.6584 0.7650 0.8756
KDi * 0.8033 0.8862 0.9617
Ni * 92.08 85.82 82.68
ni * 3.9977 2.8985 1.1748

KFIi * 0.4707 0.3868 0.4477
λi * 0.0020 0.0082 0.0021

KFDi * 0.7356 0.4747 0.5937
µi * 0.0722 0.0259 0.0473

* Signify the optimum values.
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Figure 4. Valuation of consequences of subsidiary controllers PIDN, TIDN, and TIDN-FOID for
structure-1 (including biodiesel and GPPt) for 1% step load tolerances disparity time: (a) arena-1
frequency anomaly, (b) arena-2 frequency anomaly, (c) anomaly in power interrelating arena-2 and -3,
and (d) anomaly in power interrelating arena-1 and -3.
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Table 2. C_O, C_U, and S_D for consequences in Figure 4 in circumstance of structure-1 using
SHO-augmented PIDN/TIDN/TIDN-FOID subordinate controllers.

Responses Name of
Controller C_O C_U S_D (In Seconds)

∆f 1
(Figure 4a)

PIDN 0.0008 0.0176 118.10
TIDN 0.0006 0.0161 98.72

TIDN-FOID 0.0004 0.0153 62.36

∆f 2
(Figure 4b)

PIDN 0.0007 0.0110 111.50
TIDN 0.0005 0.0103 89.71

TIDN-FOID 0.0003 0.0093 57.44

∆Ptie2–3
(Figure 4c)

PIDN 0.0024 0.0007 119.30
TIDN 0.0022 0.0006 100.81

TIDN-FOID 0.0021 0.0004 57.37

∆ptie1–3
(Figure 4d)

PIDN 0.0002 0.0051 109.11
TIDN 0.0001 0.0045 88.27

TIDN-FOID 0.00004 0.0042 56.69
Bold signifies best values.

5.2. Suggestion of Pix

The leading performance index (Pix) among the integral squared error (PIxISE), integral
absolute error (PIxIAE), integral time squared error (PIxITSE), and integral time absolute
error (PIxITAE) is acquired by facilitating structure-1, excluding these PIx on individual
terms via the TIDN-FOID controller. The finest values of the TIDN-FOID controller’s
attributes are accomplished via the SHO algorithmic procedure. The expression of PIxITSE,
PIxIAE, and PIxITAE are shown in Equations (31)–(33), respectively, while the expression of
PIISE was shown by Equation (5):

PIxITSE =
∫ T

0

{
(∆ f1)

2 + (∆ f2)
2 + (∆ f3)

2 +
(
∆Ptie1−2

)2
+
(
∆Ptie2−3

)2
+
(
∆Ptie1−3

)2
}

t d (31)

PIxIAE =
∫ T

0

{
|∆ f1 |+ |∆ f2|+ |∆ f3|+

∣∣∆Ptie1−2

∣∣+ ∣∣∆Ptie2−3

∣∣+ ∣∣∆Ptie1−3

∣∣} dt (32)

PIxITAE =
∫ T

0

{
|∆ f1 |+ |∆ f2|+ |∆ f3|+

∣∣∆Ptie1−2

∣∣+ ∣∣∆Ptie2−3

∣∣+ ∣∣∆Ptie1−3

∣∣}t dt (33)

Using the best values obtained for TIDN-FOID controller in individual circumstances,
the potent outcomes are distinguished in Figure 5a–c. In addition, the conforming C_O
and C_U, besides S_D standards, are shown in Table 3. An extensive understanding of the
outcomes shows that outcomes using PiISE, as per Pi, have a healthier presentation with
reference to diminished C_O, C_U, and S_D oscillations. Additionally, the standards of PIx
are PIxISE = 0.0007218, PIxITSE = 0.001793, PIxIAE = 0.1467, and PIxITAE = 1.3210, showing
that PIxISE improves the scheme. The merging features for structure-1 via dissimilar PIx are
shown in Figure 5d. It can be seen that merging features via ISE as PIx converges quicker
in fewer repetitions when more PIxs are added.
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Table 3. C_O, C_U, and S_D for the results in Figure 5a–c for structure-1 via an SHO-augmented
TIDN-FOID subordinate controller for different performance indices.

Outcomes Performance
Indices C_O C_U S_D

(In Seconds)

∆f 1
(Figure 5a)

IAE 0.0053 0.0176 72.97
ITAE 0.0041 0.0171 69.82
ITSE 0.0036 0.0175 68.85
ISE 0.0004 0.0153 62.36

∆Ptie2–3
(Figure 5b)

IAE 0.0023 0.0008 70.39
ITAE 0.0023 0.0005 70.05
ITSE 0.0024 0.0005 66.04
ISE 0.0021 0.0004 57.37

∆Ptie1–3
(Figure 5c)

IAE 0.0013 0.0048 66.89
ITAE 0.0008 0.0047 66.87
ITSE 0.0005 0.0046 64.67
ISE 0.00004 0.0042 56.69

Bold signifies best values.
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5.3. Suggestion of Optimization Procedure

For the algorithm, the structure-1 is furnished with dissimilar algorithms distinctly via
TIDN-FOID subordinate controllers. The optimization procedure adopted here are WOA,
PSO [50,51], CS [52], FA, and SHO. For WOA, the number of search individuals equals 51
and the number of iterations equals 100. In case of PSO, the adjusted constraints standards
remain at ω = 1.1, ωdampe = 0.98, c1 = 1.38, c2 = 1.97, population size equal 54, and the
extreme maximum number of iterations equals 100. In case of CS, nests amount = 51, rate of
detection = 0.51, exponent of levy = 1.49, supreme generation = 100, and sum of extents = 11.
The tuned values for FA are β0 = 0.29, α = 0.51, γ = 0.42, sum of fireflies = 51, and supreme
figure of iterations = 100. For every algorithm, the superlative values for the TIDN-FOID
subordinate controller are attained. The standards are not provided here. Through these
standards, the outcomes of the diverse algorithms are distinguished in Figure 6a–c. The
conforming outcomes C_O, C_U, and S_D standards are specified in Table 4, where it
can be realized that C_O, C_U, S_D, and computational values obtained by the SHO-
augmented TIDN-FOID subordinate controller are significantly improved compared to the
added algorithmic procedure. Additionally, the dominance is arbitrated by the conjunction
curvature shown in Figure 6d, where it is detected that outcomes with the SHO-augmented
TIDN-FOID subordinate controller converges quicker and have a minimum value of PIxISE.
Consequently, supplementary analysis is supported via the SHO algorithmic procedure.
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(a) arena-2 frequency anomaly, (b) anomaly in power interrelating arena-1 and -2, (c) anomaly in
power interrelating arena-1 and–3, and (d) convergence curve.
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Table 4. P_O, P_U, and S_T for dynamics in Figure 6 in case of structure-1 using a
WOA/PSO/CS/FA/SHO-augmented TIDN-FOID subordinate controller on an individual base.

Responses Name of
Algorithm C_O C_U S_D

(In Seconds)
Computational

Time (In Seconds)

∆f 3
(Figure 6a)

WOA 0.0021 0.0120 60.28 380
PSO 0.0026 0.0122 65.31 375
CS 0.0026 0.0121 66.39 378
FA 0.0028 0.0124 67.64 353

SHO 0.0002 0.0120 54.92 310

∆Ptie1–2
(Figure 6b)

WOA 0.0005 0.0042 62.32 380
PSO 0.0008 0.0042 71.01 375
CS 0.0009 0.0042 68.09 378
FA 0.0009 0.0042 66.87 353

SHO 0 0.0041 50.72 310

∆ptie1–3
(Figure 6c)

WOA 0.0005 0.0043 80.28 380
PSO 0.0005 0.0043 78.28 375
CS 0.0006 0.0043 80.68 378
FA 0.0006 0.0044 67.87 353

SHO 0.00004 0.0042 56.69 310
Bold signifies best values.

5.4. Valuation of the Influence of Biodiesel and GPPt on the Dynamics of the System

In Section 5.1, it was shown that the performance of the SHO-augmented TIDN-FOID
controller is better compared to PIDN/TIDN controllers. The system in Section 5.1 included
both biodiesel as well as GPP. Now, in order to analyze the impact of biodiesel and GPPt
on system dynamics, they are removed from structure-1, keeping the capacities of the
areas constant. Thus, the system now has thermal-thermal energy in area-1 and area-2
and hydrothermal energy in area-3 (structure-2). For structure-2, the best values of the
TIDN-FOID controller are shown in Table 5, obtained by using the SHO controller. With
these values, the responses for with and without both biodiesel and GPPt are contrasted in
Figure 7. It can be easily viewed that the system in presence of biodiesel and GPPt have a
large number of lessened values of peak_overshoot, peak_undershoot, settling_time, and
number of oscillations. Only four responses are provided here.

Table 5. Best values of attributes of TIDN-FOID controllers for structure-2 (hydrothermal system),
excluding biodiesel and GPPt.

Name of
Controller

Corresponding Gains and
Parameters Area-1 Area-2 Area-3

TIDN-FOID

KPi * 0.0762 0.0274 0.0385
KIi * 0. 3913 0.3850 0.3913
KDi * 0.7666 0.4598 0.1361
Ni * 66.72 84.07 95.12
ni * 1.8853 3.8440 2.5914

KFIi * 0.4189 0.8526 0.9492
λi * 0.0084 0.0058 0.0037

KFDi * 0.9043 0.8201 0.7264
µi * 0.0050 0.0065 0.0032

* Signify the optimum values.
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TIDN-FOID subordinate controller using 1% step load tolerances: (a) arena-2 frequency anomalies,
(b) arena-3 frequency anomalies, (c) anomaly in power interrelating arena-1 and -2, and (d) anomaly
in power interrelating arena-1 and -3.

5.5. Valuation of the Influence of Time Delay on the Potency of the Scheme including Biodiesel
and GPPt

In the above subsection, it is observed that the presence of biodiesel and GPPt in
the system has a noteworthy influence on the system dynamics. Now, the system with
biodiesel and GPPt is included with non-linearity time delay (τd) in all the areas. Here, τd
is considered varied in different areas, i.e., τd1 = 0.3 s in area-1, τd2 = 0.2 s in area-2, and
τd3 = 0.1 s in area-3. The superlative values of attributes of TIDN-FOID controller via SHO
is provided in Table 6. Through these standards, the outcomes are distinguished in Figure 8
for the system with and without time delay. As per our current understanding of each
outcome, the incorporation of time delay degrades the system. However, in order to make
the system reflect real-world conditions, the association of time delay is needed; hence, the
rest of the assessments are performed in the presence of time delay. Only four responses
are provided here.
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Table 6. Best values of attributes of TIDN-FOID subordinate controllers for structure-3 (i.e., including
biodiesel, GPPt, and time delay (τd)).

Name of
Controller

Corresponding Gains and
Parameters Area-1 Area-2 Area-3

TIDN-FOID

KPi * 0.7849 0.8416 0.9610
KIi * 0.2748 0.6100 0.2748
KDi * 0.8866 0.6639 0.6137
Ni * 64.66 45.11 70.88
ni * 4.5528 5.4326 6.5170

KFIi * 0.8555 0.4074 0.8386
λi * 0.9755 0.7028 0.2556

KFDi * 0.5163 0.3872 0.5575
µi * 0.9689 0.6345 0.6229

* Signify the optimum values.
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5.6. Valuation of the Influence of RFB on the Potency of the Scheme, including Biodiesel and GPP,
with Time Delay

In this subsection, the influence of redox flow battery (RFB) is inspected by associating
its outcomes with the outcomes of scheme-3 (i.e., a system with T-T-Bd in arena-1, T-T-GPPt
in arena-2, and T-H in arena-3, with time delay). TIDN-FOID is considered a subordinate
controller. The premium values of attributes of the TIDN-FOID subordinate controller for
the scheme in the existence of RFB are shown in Table 7. For these values, the outcomes
for the scheme with and without RFB are distinguished in Figure 9. Intensive clarification
of each outcome demonstrates the excellence of the scheme potency with the existence of
RFB, concerning the diminished level of C_O, C_U, and S_D via the TIDN-FOID controller
with 1% step load disturbance in the presence of time delay. Only four responses are
provided here.
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Table 7. Superlative values of attributes of TIDN-FOID subordinate controllers for structure-4 (i.e.,
including biodiesel, GPPt, time delay (τd), and RFB).

Name of
Controller

Corresponding Gains and
Parameters Area-1 Area-2 Area-3

TIDN-FOID

KPi * 0.6852 0.7387 0.7125
KIi * 0.7961 0.8147 0.8922
KDi * 0.3798 0.4698 0.5863
Ni * 60.25 65.23 59.11
ni * 1.9852 2.3481 3.1520

KFIi * 0.8513 0.8615 0.8789
λi * 0.0328 0.0385 0.0415

KFDi * 0.8147 0.8789 0.8459
µi * 0.1614 0.2078 0.2956

* Signify the optimum values.

5.7. Eigenvalue Assessment

In the present subsection, eigenvalue assessment is executed for stability assessment
of the system using TIDN-FOID as a secondary controller. Here, the analysis is performed
on an individual basis considering two systems: structure-2 (excluding biodiesel, GPPt,
time delay, and RFB) and structure-4 (including biodiesel, GPPt, time delay, and RFB). The
eigenvalues are shown in Table 8 (for structure-1) and Table 9 (for structure-4). For the
eigenvalues in Table 8, it can be seen that the few values marked in blue contain positive real
parts, which shows that the structure-2 is unstable. However, in Table 9, there are no positive
real parts, so structure-4 is stable compared to structure-2. In Table 10, it can be seen that
the minimum damping ratio (ξ) is ξ = 0.0085 for structure-1 and ξ = 0.0903 for structure-4.
Thus, structure-4 with the TIDN-FOID controller reaches a stable situation faster.

Table 8. Eigenvalues of the system in absence of biodiesel, GPPt, time delay, and RFB (structure-2).

System Condition Eigenvalues

Hydrothermal system excluding
biodiesel and GPPt, time delay, and

RFB

−0.1000 + 0.0000i −3.3333 + 0.0000i −0.1000 + 0.0000i −3.3333 + 0.0000i −0.1000 + 0.0000i
−3.3333 + 0.0000i −0.1000 + 0.0000i −3.3333 + 0.0000i −0.1000 + 0.0000i −3.3333 + 0.0000i
−12.5000 + 0.0000i −12.5000 + 0.0000i −12.5000 + 0.0000i −12.5000 + 0.0000i −50.0000 + 0.0000i
−0.0148 + 0.0000i −0.0320 + 0.0000i −0.0695 + 0.0000i −0.1507 + 0.0000i −0.3268 + 0.0000i
−0.7089 + 0.0000i −1.5377 + 0.0000i −3.3353 + 0.0000i −7.2344 + 0.0000i −15.6918 + 0.0000i
−34.0363 + 0.0000i −50.0000 + 0.0000i −0.0147 + 0.0000i −0.0319 + 0.0000i −0.0691 + 0.0000i
−0.1500 + 0.0000i −0.3253 + 0.0000i −0.7055 + 0.0000i −1.5303 + 0.0000i −3.3192 + 0.0000i
−7.1995 + 0.0000i −15.6161 + 0.0000i −33.8722 + 0.0000i −50.0000 + 0.0000i −0.0133 + 0.0000i
−0.0289 + 0.0000i −0.0627 + 0.0000i −0.1359 + 0.0000i −0.2948 + 0.0000i −0.6394 + 0.0000i
−1.3868 + 0.0000i −3.0080 + 0.0000i −6.5246 + 0.0000i −14.1522 + 0.0000i −30.6969 + 0.0000i
0.0000 + 0.0000i −84.0734 + 0.0000i −12.5000 + 0.0000i −50.0000 + 0.0000i −0.0148 + 0.0000i −0.0320 +
0.0000i −0.0694 + 0.0000i −0.1506 + 0.0000i −0.3266 + 0.0000i −0.7085 + 0.0000i −1.5367 + 0.0000i
−3.3333 + 0.0000i −7.2301 + 0.0000i −15.6824 + 0.0000i −34.0160 + 0.0000i −50.0000 + 0.0000i −0.0147 +
0.0000i −0.0318 + 0.0000i −0.0691 + 0.0000i −0.1498 + 0.0000i −0.3249 + 0.0000i −0.7048 + 0.0000i
−1.5288 + 0.0000i −3.3160 + 0.0000i −7.1925 + 0.0000i −15.6009 + 0.0000i −33.8392 + 0.0000i 0.0000 +
0.0000i −50.0000 + 0.0000i −66.7220 + 0.0000i
−0.0120 + 0.0000i −0.0260 + 0.0000i −0.0564 + 0.0000i −0.1224 + 0.0000i −0.2655 + 0.0000i
−0.5758 + 0.0000i −1.2490 + 0.0000i −2.7092 + 0.0000i −5.8764 + 0.0000i −12.7463 + 0.0000i
−27.6473 + 0.0000i −95.0002 + 0.0000i −50.2462 + 0.0000i −49.9885 + 0.0000i −33.9013 + 0.0000i
−33.9915 + 0.0000i −50.0000 + 0.0000i −29.2381 + 0.0000i −13.4794 + 0.0000i −15.6295 + 0.0000i
−15.6712 + 0.0000i −6.2134 + 0.0000i −7.2248 + 0.0000i −7.2059 + 0.0000i 0.0603 + 2.7150i
0.0603 − 2.7150i −2.8395 + 0.0634i −2.8395 − 0.0634i −3.3236 + 0.0000i −3.3298 + 0.0000i
−1.3369 + 0.0000i −1.1466 + 0.0000i −1.5306 + 0.0000i −1.5362 + 0.0000i −0.0250 + 2.9529i
−0.0250 − 2.9529i −0.7076 + 0.0000i −0.6062 + 0.0000i −0.7066 + 0.0000i 0.0165 + 0.2488i
0.0165 − 0.2488i −0.3263 + 0.0000i −0.2800 + 0.0000i −0.3257 + 0.0000i −0.1260 + 0.0000i
−0.1409 + 0.0000i −0.1507 + 0.0000i −0.1496 + 0.0000i −0.0594 + 0.0000i −0.0693 + 0.0001i
−0.0693 − 0.0001i −0.0274 + 0.0000i −0.0126 + 0.0000i −0.0320 + 0.0000i −0.0320 − 0.0000i
−0.0147 + 0.0000i −0.0147 − 0.0000i − 0.0000 + 0.0000i − 0.0000 + 0.0000i − 0.0000 + 0.0000i
−0.0000 + 0.0000i − 0.0000 + 0.0000i − 0.0000 + 0.0000i
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Table 9. Eigenvalues of the system in presence of biodiesel, GPPt, time delay, and RFB (structure-4).

System Condition Eigenvalue

Hydrothermal system
including biodiesel and GPPt,

time delay, and RFB

−0.1000 + 0.0000i −3.3333 + 0.0000i −0.1000 + 0.0000i −3.3333 + 0.0000i −0.1000 + 0.0000i
−3.3333 + 0.0000i −0.1000 + 0.0000i −3.3333 + 0.0000i −0.1000 + 0.0000i −3.3333 + 0.0000i
−12.5000 + 0.0000i −12.5000 + 0.0000i −12.5000 + 0.0000i −12.5000 + 0.0000i −12.5000 + 0.0000i
−59.9198 + 6.5359i −59.9198 − 6.5359i −56.2001 + 3.4843i −56.2001 − 3.4843i −55.8472 + 7.2876i
−55.8472 − 7.2876i −49.9874 + 0.0000i −49.9739 + 0.0000i −49.9747 + 0.0000i −36.4359 + 0.0000i
−35.1881 + 0.0000i −34.7088 + 0.0000i −33.4630 + 0.0000i −33.6403 + 0.0000i −33.7199 + 0.0000i
−50.0000 + 0.0000i −30.0215 + 0.0000i −28.7628 + 0.0000i −27.9137 + 0.0000i −50.0000 + 0.0000i
−50.0000 + 0.0000i −16.8387 + 3.1713i −16.8387 − 3.1713i −17.2647 + 0.0000i −15.2569 + 0.0000i
−15.4193 + 0.0000i −15.4773 + 0.4694i −15.4773 − 0.4694i −13.8376 + 0.0000i −13.6473 + 0.0000i
−8.3891 + 6.2010i −8.3891 − 6.2010i −12.4523 + 0.0000i −13.1265 + 0.0000i −7.9307 + 0.0000i
−7.5106 + 0.0000i −7.1518 + 0.0000i −7.1170 + 0.0000i −6.8575 + 0.1307i −6.8575 − 0.1307i
−6.3711 + 0.0000i −5.9147 + 0.0000i −5.5548 + 0.0000i −1.9044 + 2.1300i −1.9044 − 2.1300i
−0.1910 + 2.1081i −0.1910 − 2.1081i −3.5930 + 0.0000i −3.5387 + 0.0000i −3.2840 + 0.0000i
−3.2919 + 0.0000i −3.2353 + 0.1174i −3.2353 − 0.1174i −2.9165 + 0.0000i −2.7281 + 0.0111i
−2.7281 − 0.0111i −2.1935 + 0.0000i −2.0714 + 0.1040i −2.0714 − 0.1040i −1.5607 + 0.5131i
−1.5607 − 0.5131i −1.1884 + 0.1830i −1.1884 − 0.1830i −1.5489 + 0.0392i −1.5489 − 0.0392i
−1.4783 + 0.0575i −1.4783 − 0.0575i −1.4719 + 0.0000i −1.4191 + 0.0000i −0.8067 + 0.0561i
−0.8067 − 0.0561i −0.8258 + 0.0000i −0.6371 + 0.0291i −0.6371 − 0.0291i −0.6895 + 0.0092i
−0.6895 − 0.0092i −0.6800 + 0.0000i −0.6539 + 0.0000i −0.3959 + 0.0000i −0.3713 + 0.0117i
−0.3713 − 0.0117i −0.2945 + 0.0065i −0.2945 − 0.0065i −0.3172 + 0.0023i −0.3172 − 0.0023i
−0.3128 + 0.0125i −0.3128 − 0.0125i −0.0664 + 0.1304i −0.0664 − 0.1304i −0.2095 + 0.0000i
−0.1856 + 0.0000i −0.1660 + 0.0000i −0.1305 + 0.0000i −0.1492 + 0.0000i −0.1485 + 0.0076i
−0.1485 − 0.0076i −0.1460 + 0.0066i −0.1460 − 0.0066i −0.1035 + 0.0000i −0.1124 + 0.0000i
−0.0526 + 0.0000i −0.0552 + 0.0000i −0.0598 + 0.0000i −0.0717 + 0.0006i −0.0717 − 0.0006i
−0.0693 + 0.0029i −0.0693 − 0.0029i −0.0698 + 0.0030i −0.0698 − 0.0030i −0.0250 + 0.0000i
−0.0278 + 0.0000i −0.0332 + 0.0006i −0.0332 − 0.0006i −0.0323 + 0.0010i −0.0323 − 0.0010i
−0.0114 + 0.0000i −0.0129 + 0.0000i −0.0261 + 0.0000i −0.0157 + 0.0000i −0.0000 + 0.0000i
−0.0325 + 0.0011i −0.0325 − 0.0011i −0.0121 + 0.0000i −0.0150 + 0.0004i −0.0150 − 0.0004i
−0.0152 + 0.0000i −0.0151 + 0.0004i −0.0151 − 0.0004i − 0.0000 + 0.0000i − 0.0000 + 0.0000i
−0.0000 + 0.0000i − 0.0000 + 0.0000i − 0.0000 + 0.0000i

Table 10. Value of the damping ratio for different conditions of the system using the TIDN-FOID
controller.

System Condition Damping Ratio (ξ)

Hydrothermal system excluding biodiesel and
GPPt, time delay, and RFB 0.0085

Hydrothermal system including biodiesel and
GPPt, time delay, and RFB 0.0903

Bold signifies best values.

5.8. Sensitivity Assessment for a Higher Value of Disturbance

An examination of sensitivity is performed to detect the robustness of the SHO-
augmented TIDN-FOID subordinate controller attributes, focusing on the core character-
istics and wide-ranging amendments of the scheme circumstances in T-T-Bd in arena-1,
T-T-GPPt in arena-2, and T-H in arena-3 scheme, as well as with RFB and time delay. The
inspected scheme was unveiled with 3% step load agitation in arena-1. The optimized
attributes of the TIDN-FOID controller shown in Table 11 were obtained by engaging
SHO. The results for the premium values similar to basic and wide-ranging outcomes are
shown in Figure 10. The outcomes are somewhat comparable, which shows that there is no
supplementary rearranging of unsurpassed values when circumstances are altered.
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Table 11. Related attributes of TIDN-FOID subordinate controllers for structure-4 (i.e., including
biodiesel, GPPt, time delay (τd), and RFB) at 3% step load disturbance.

Name of
Controller

Corresponding Gains and
Parameters Area-1 Area-2 Area-3

TIDN-FOID

KPi * 0.7016 0.6892 0.6895
KIi * 0.6985 0.7985 0.8789
KDi * 0.4016 0.5014 0.6014
Ni * 62.25 61.28 62.36
ni * 2.1111 2.1875 2.8955

KFIi * 0.8111 0.7895 0.7884
λi * 0.0216 0.0356 0.0389

KFDi * 0.7896 0.7989 0.7954
µi * 0.1589 0.1586 0.2478

* Signify the optimum values.
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6. Discussion

According to the results acquired in the preceding subsections, the remarks are as follows:

(a) The proposed TIDN-FOID controller provides the best results compared to PIDN and
TIDN for structure-1, including thermal-thermal-biodiesel energy in area-1, thermal-
thermal-GPPt energy in area-2, and hydrothermal energy in area-3. The results
in Figure 4 show the superiority of TIDN-FOID compared to PIDN/TIDN, con-
cerning the diminished level of peak overshoot (∆f 1 = 0.0004 Hz, ∆f 2 = 0.0003 Hz,
∆Ptie2–3 = 0.0021 p.u. MW, ∆Ptie1–3 = 0.0004 p.u. MW), extent of oscillations, peak under-
shoot (∆f1 = 0.0153 Hz, ∆f2 = 0.0093 Hz, ∆Ptie2–3 = 0.0004 p.u. MW, ∆Ptie1–3= 0.0042 p.u. MW),
and settling time (∆f 1 = 62.36 s, ∆f 2= 57.44 s, ∆Ptie2–3 = 57.37 s, ∆Ptie1–3 = 56.69 s).

(b) The results in Figure 5 show the superiority of system dynamics, using performance
index ISE, compared to IAE/ITAE/ITSE, concerning the diminished level of peak
overshoot (∆f 1 = 0.0004 Hz, ∆Ptie2–3 = 0.0021 p.u. MW, ∆Ptie1–3 = 0.0004 p.u. MW),
extent of oscillations, peak undershoot (∆f 1 = 0.0153 Hz, ∆Ptie2–3 = 0.0004 p.u. MW,
∆Ptie1–3= 0.0042 p.u. MW), and settling time (∆f 1 = 62.36 s, ∆Ptie2–3 = 57.37 s,
∆Ptie1–3 = 56.69 s).

(c) In Figure 6, it is observed that the SHO-augmented TIDN-FOID controller provides
the lowest value of PIxISE, i.e., 0.00071; PIxISE values for WOA, PSO, CS, and FA are
0.00077, 0.00078, 0.00081, and 0.00083, respectively. Additionally, SHO provides the
lowest computational time value.

(d) In Figure 7, responses of the systems with and without biodiesel and GPPt are com-
pared. The results in Figure 7 show the superiority of the system with biodiesel and
GPP, concerning the diminished level of peak overshoot (∆f 2 = 0 Hz, ∆f 3 = 0 Hz,
∆Ptie1–2 = 0 p.u. MW, ∆Ptie1–3 = 0 p.u. MW), extent of oscillations, peak undershoot
(∆f 2 = 0.009 Hz, ∆f 3 = 0.0012 Hz, ∆Ptie1–2 = 0.0042 p.u. MW, ∆Ptie1–3= 0.0041 p.u. MW),
and settling time (∆f 2 = 52.11 s, ∆f 3= 53.42 s, ∆Ptie1–2 = 53.81 s, ∆Ptie1–3 = 53.22 s).

(e) In Figure 8, it is shown that the incorporation of time delay degrades the system.
However, in order to make the system reflect real-world conditions, an association of
time delay is needed; hence, the rest of the assessments were performed with time
delay. With time delay, the level of peak overshoot (∆f 1 = 0.0005 Hz, ∆f 2 = 0.00046 Hz,
∆Ptie1–2 = 0.0018 p.u. MW, ∆Ptie1–3 = 0.0011 p.u. MW), peak undershoot (∆f1 = 0.015 Hz,
∆f2 = 0.011 Hz, ∆Ptie1–2 = 0.0043 p.u. MW, ∆Ptie1–3 = 0.0045 p.u. MW), and settling time
(∆f 1 = 68.11 s, ∆f 2 = 67.72, ∆Ptie1–2 = 63.42 s, ∆Ptie1–3 = 54.56 s) were much increased.

(f) In Figure 9, it is shown that the system with RFB with time delay has a great impact
in terms of the diminished level of peak overshoot (∆f 1 = 0.00001 Hz, ∆f 3 = 0.00001
Hz, ∆Ptie1–2= 0 p.u. MW, ∆Ptie1–3 = 0.000001 p.u. MW), extent of oscillations, peak
undershoot overshoot (∆f 1 = 0.0141 Hz, ∆f 3 = 0.0061 Hz, ∆Ptie1–2= 0.0021 p.u. MW,
∆Ptie1–3 = 0.0019 p.u. MW), and settling time overshoot (∆f 1 = 50.11 s, ∆f 3 = 50.21 s,
∆Ptie1–2= 49.81 s, ∆Ptie1–2 = 51.42 s).

(g) Eigenvalue assessment was performed to comment on the stability of the system. It is
observed that the systems with renewable sources, time delay, and RFB are stable, as
they all have eigenvalues with negative real parts and the highest damping ratio.

(h) In Figure 10, the sensitivity assessment shows that the controllers gains and parame-
ters obtained at the nominal condition for 1% SLP is healthy enough. The values with
1% SLP provide similar responses to those obtained with optimized controller gains
and parameters obtained at 3% SLP. Thus, the values should be altered.

7. Conclusions

In the current work, biodiesel, along with GPPt, has been unified foremost in the arena
of AGC under old-style circumstances. The collective accomplishment of biodiesel and
GPP in the contemplated scheme (hydrothermal) offers diminished level of anomalies in
peak values (C_O and C_U) and duration of settling (S_D). A unique structure has been
determined for a dual-step controller with the unification of TIDN and FOID in AGC. A
recent, well-known biologically enhanced meta-heuristic procedure expressed as SHO
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is competently used to analyze the attributes of varied controllers. The dominance of
TIDN-FOID is perceived over extra controllers, such as the proportional-integral-derivative
controller with filter and TIDN. The numerical values of C_O, C_U, and S_D with the
proposed cascade TIDN-FOID for ∆f 1 are 0.0004, 0.0010, and 62.36 s, respectively, whereas
the values of PIDN and TIDN are 0.0008, 0.0176, and 118.10 s and 0.0006, 0.0161, and
98.72 s, respectively. Similarly, for other responses, the proposed cascade TIDN-FOID
has also shown a significant improvement in C_O, C_U, and S_D. The impact of non-
linearity in the form of time delay was assessed. Even the impact of redox flow battery
was analyzed using the TIDN-FOID controller for the system with biodiesel and GPP with
time delay. With RFB integration, the standards of ∆f 1 with C_O, C_U, and S_D have
shown improvements from 0.0005 to 0.00001, 0.015 to 0.014, and 68 s to 50 s, respectively.
Furthermore, eigenvalue assessment was performed to judge the systems’ stability. The
toughness of TIDN-FOID subordinate controller was evaluated by inspecting it with a
higher step load value, which shows that the values attained for TIDN-FOID attributes are
sufficiently acceptable, and the varying step load disturbance does not need to be altered.
The proposed method of frequency control can be applied in the combined control of
voltage and frequency in the future. Moreover, it can be applied with a combination of
other artificial intelligence techniques.
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Appendix A

i. Nominal scheme parameters: f = 60 Hz, Tjk,AC = 0.086 pu MW/rad, Hj = 5 s,
Kpj = 120 Hz/MW pu, Dj = 8.33 × 10−3 pu MW/Hz, Bj = 0.425 pu MW/Hz,
Rj = 2.4 pu MW/Hz.

ii. Thermal component: Trk = 10 s, Krk = 5, Ttk= 0.3 s, Tgk= 0.08 s.
iii. RFB: Kr =1, Td = 0, Tr = 0.78 s, KRFB = 1.8.
iv. Hydro: TRH = 48.7 s, TR1 = 5 s, TGH1 = 0.513 s, Tw1 = 1 s.
v. Biodiesel component: Kvrk = 1, Tvrk =0.05 s, Kcek = 1, Tcek = 0.5 s.
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