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Abstract: Agriculture is directly linked to human life, providing food for survival and health. It
is threatened by a number of challenges, such as climate change, resource depletion, and abiotic
stresses, including heavy metals (HMs), salinity, drought, etc. Various strategies have been employed
to palliate the phytotoxic effects of these stressors from the soil–plant system. Nanotechnological
approaches have emerged as a promising tool for increasing crop productivity and promoting
sustainable agriculture. Interestingly, the seed nano-priming approach has shown potential against
all of the above-mentioned abiotic stress factors and has improved crop productivity. The application
of nanoparticles (NPs) via seed priming is an innovative and cost-effective approach that improves
seed germination and subsequent plant growth by activating plant physiological processes and
providing tolerance against various stresses. The seed priming with NPs induces electron exchange
and increases surface reaction capabilities related to plant cell and tissue components. This review
aims to provide an overview of recent advances and research findings on seed nano-priming and the
possible mechanism of plant stress-tolerance augmentation against various stresses. Furthermore,
we also shed light on gaps in studies conducted in previous years, which will open new avenues for
future research.

Keywords: seed priming; nanoparticles; abiotic stress; germination; plant growth; sustainability

1. Introduction

The global population is increasing rapidly, and estimates suggest it will reach nearly
9.6 billion by 2050. Therefore, agricultural production needs to rise by 70–100% to feed
the growing population [1–3]. In the present state of affairs, agriculture is facing several
challenges in terms of biotic and abiotic factors that limit its productivity. Shortage of
freshwater resources, climate change, and the low use-efficiency of existing agrochemicals
further aggravate these stresses on crops, resulting in lower yields [4,5]. Around 70% of
global water is utilized for food production, and this figure is likely to reach 83% by 2050
to meet the expanding global demand for food [6]. Salinity and drought cause billions
of dollars in crop loss [7–9]. Agrochemical use is an increasingly prominent aspect of
modern agriculture. A large portion of the 2.5 million tons of pesticides applied annually is
either lost to the air and run-off or unable to reach the target effectively [2,10,11]. Heavy-
metals contamination is another widespread and severe problem for the environment,
crop productivity, and food safety [12,13]. It has been reported that around 70% of HMs
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and their amalgams that enter the human body come from food [14]. Moreover, the
continuous release of metallic waste material in agricultural soil induces adverse effects
on the soil’s pH, salinity, and fertility. Global climatic conditions have further worsened
the problem, imposing extra encumbrance on crop production and food security. Plants at
early growth stages such as seed germination and seedling development are more prone to
these environmental constraints, leading to poor growth and limited yield [15]. Innovative
technologies are needed in modern agriculture to achieve crop sustainability and higher
yield production. Figure 1 visualizes an overview of emerging pollutants and other abiotic
stress factors inducing stress in plants and their possible counteraction with the application
of different NPs.
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Figure 1. A schematic diagram shows different abiotic stress factors inducing stress and the potential
of NPs to alleviate stress and promote plant growth.

2. Nanotechnology and Agriculture

Nanotechnology is an emerging field that has taken root in all aspects of life and has
led to a new scientific revolution. Particles synthesized at the nanoscale having at least a
one-dimension size of less than 100 nm form the building block of nanotechnology [16].
Nanotechnology likely provides a novel platform to achieve a dynamic balance between
agricultural production and environmental sustainability. It has successfully aided the agro-
technological insurgency by surveilling a critical agricultural control process in the wake
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of its miniature size. Furthermore, it has attracted scientists based on its many potential
benefits, such as augmented stress tolerance and increased crop production, upgraded food
safety and subsequent quality, absorption of enriched nutrients from the soil, depletion in
agricultural inputs, and so on. The main objective of nanotechnology in agriculture is to
curtail the use of chemicals, minimize the loss of nutrients during fertilization, and augment
crop tolerance against biotic and abiotic stress, leading to escalated yield [17]. Nanotechnol-
ogy can potentially improve the agriculture and food industries by developing innovative
nanotools to improve crop stress tolerance and uplift plants’ nutritional absorption [18].
These nanotools are none other than nanoparticles in the form of nanofertilizers, nanopesti-
cides, and nanosensors to track products and nutrient levels to increase productivity as well
as provide protection against biotic and abiotic stress factors [19,20]. Thus, the objective
of this review lies in the domains mentioned above to aid researchers in knowing about
the recent advances concerning seed nano-priming techniques and the current research
progress in this field that can help shape modern-era sustainable agriculture strategies.

Nanofertilizers increase crop yield and quality by proliferating the uptake of nutrients
while lowering production costs, contributing to agricultural perseverance. Many scientists
are still working on nanofertilizers to know more about their underlying mechanisms.
Plants absorb nanomaterials (NMs) via seed as seed priming, stomata as a foliar spray,
and root as exogenously applied. Kah et al. [21] demonstrated that nanofertilizers were
18–29% more efficient than conventional fertilizers. Similarly, Liu and Lal [22] used calcium
and phosphorus hydroxyapatite NPs which increased Glycine max productivity by 20–33%
more than traditional phosphorus. Another researcher reported a 10% increase in leaf
chlorophyll content by applying iron, phosphorus, and nitrogen in the southern pea
plant [23]. Besides these, there are many other NPs reported, including zinc oxide (ZnO),
cerium oxide (CeO2), silicon oxide (SiO2), CNTs (carbon nanotubes), and titanium oxide
(TiO2), which have resulted in improved plant growth and stress tolerance. SiO2 and
TiO2 have ameliorated seed germination and nitrogen fixation and enhanced Glycine
max growth [24,25]. Similarly, CNTs are widely used for inducing stress tolerance and
improving plant growth in vegetables (i.e., cucumber, rape, tomato, etc.) as well as in
crops (i.e., corn and soybean) as fertilizer [26,27]. Nanoparticles are widely used as a
pesticide against biotic stress in agriculture. They are a savior of water and energy since
they are utilized in lesser amounts and more infrequently than conventional pesticides [28].
Studies have suggested that silver (Ag) NPs can control Fusarium culmorum, Botrytis cinerea,
Biploaris sorokinniana, and Megnaporthe grisea [29–31]. Other nanopesticides include copper
(Cu) NPs, silica NMs, and Si–Ag NPs, reported to control pest diseases such as powdery
mildew [32,33]. Furthermore, it is reported that gold (Au) NPs, nanodots, magnetic NPs,
and carbon nanostructures are being used as nanobiosensors. Nanobiosensors are defined
by their biological receptors with unique specialties towards correspondent analysts such
as DNA or protein [34]. Nanobiosensors are made up of nano-sized components that
act as bio-receptors on a sensor and send signals to recognition elements to recognize
single or maybe multiplex solutes. The fascinating characteristics of nanobiosensors are
fictionalization, miniaturization, and immobilization, which incorporate bio-components
of the transduction framework into a complicated structure to enhance NM analytical
performance [35].

3. Seed Nano-Priming

Seed nano-priming is one of the effective methods that alter the metabolism of seeds
along with their signaling pathways, influencing germination, establishment, and plant
lifecycle. Several studies have demonstrated that seed nano-priming has a variety of advan-
tages, including enhanced plant growth and development, and higher nutritional quality.
Nano-priming can regulate biochemical processes while maintaining the balance among
growth hormones of plants and reactive oxygen molecules [36]. It is used to boost plant
growth and metabolism, regulate physiology under abiotic stress, and improve germination
synchronization. It also increases crop resistance to biotic or abiotic stress environments,
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which assists in minimizing the use of pesticides and fertilizers [37]. According to the latest
research, seed nano-priming can stimulate various genes during germination, particularly
those attributed to plant stress tolerance [38–40]. The application of nanoparticles via seed
priming is an innovative area of study, and the preliminary results have been promis-
ing [41–43]. It can also be utilized for seed protection since many NPs have antimicrobial
properties via antimicrobial compounds [44]. Furthermore, nano-priming can potentially
target the bio-fortification of seeds to promote food production and quality [45]. After
priming, nanoparticles find their way to the seed tissues and remain there. Images of
confocal microscopic observation show the localization of NPs in seed tissues after 24 h
priming, as shown in Figure 2 [46].
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4. Effect on Seed Germination

Plant life begins with the germination of seed, and productive germination is critical
to the survival and conservation of plant species [47]. Plant establishment is subjected to
quick and uniform seed germination, whereas poor germination makes plants vulnerable
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to environmental stress [48]. Consequently, knowledge about the germination and then the
development of the primed seeds has great value. Seed priming is an efficient approach that
leads to instant and reconcilable germination, resulting in increased plant growth [49–51].
Several studies have demonstrated that it minimizes the seedling time of emergence and
produces vigorous plants that are tolerant to various abiotic and biotic stresses [52]. Current
advances in seed priming, particularly the use of NPs, have been proven to be extremely
promising approaches for the germination of seeds and plant development compared
to traditional seed-priming methods [41,53]. Mohanlall et al. [54] reported that carbon
NPs improved the growth of the root and shoot of Vigna radiata and Trichilia dregeana to a
remarkable extent. In another study, rapeseed germination was up 20.2–32.5% and 91–93%
during 24 and 48 h, respectively, after being primed with nanotubes, i.e., “Taunit-M,”
graphene, and “Taunit-MD” in comparison with non-primed seeds [55]. Similarly, some
scientists found faster seed germination in cell cultures of maize, rice, tobacco, barley,
switchgrass, and soybean with the application of graphene nanotubes or single-walled
carbon nanohorns (SWCNHs). In 2014, Aslani et al. reported that the germination of
tomato seeds was boosted by 90% using multi-walled carbon nanotubes (MWCNTs) [56].

Moreover, Das et al. [57] reported a quickened seed germination of Swiss chard by
treating it with iron pyrite (FeS2) NPs. Other researchers reported that seed priming with
FeS2 NPs enhanced seed germination and improved production of spinach, mustard, alfalfa,
fenugreek, chickpea, carrot, and sesamum plants [58,59]. Some recent progress on the posi-
tive role of nano-priming as a plant growth regulator for plant growth and development
is presented in Table 1. Despite all these positive outcomes of seed germination, there are
also downsides to seed nano-priming, as the effect of NPs is mainly dependent on the con-
centration and duration of plant exposure to them. Mohanlall et al. [54] demonstrated that
the application of silver and gold NPs subdued germination of orthodox seeds. Similarly,
CNTs inhibited the development of the roots in Solanum lycopersicum L. [56]. Furthermore,
seed priming with nano-CuO led to a significant reduction in seed germination of rice, and
caused seed germination inhibition in soybean and chickpea [60,61]. The concentration of
NPs is a key factor, and this should be carefully considered during the formulation of seed
priming, as it is well known that metal-based NPs are toxic at high concentrations to all
living organisms [62–64].

Table 1. Seed priming with NPs and their subsequent effect on plant growth and development.

S No. Priming Agent Concentration/Size Priming Duration Target Plant Effect on Plant Growth
and Development Ref.

1 TiO2 NPs, ZnO NPs,
and Ag NPs

750, 1000, 1250 mg kg−1/35–40 nm
750, 1000, 1250 mg kg−1/100 nm
750, 1000, 1250 mg kg−1/85 nm

3 min/5 times Capsicum annum L.

Increased seed
germination rate, seedling

vigor index, root, shoot
length, and CAT activity in

aged chili seeds.

[65]

2 ZnO NPs 5, 10, 25, 50, 100 and
200 mg L−1/15 nm 12 h Oryza sativa L.

Enhanced plant Zn
contents, improved seed

germination, overall
growth, and agronomical

characteristics.

[66]

3 ZnO NPs 1, 10, 100, 1000,
5000 mg L−1/20, 40, 60 nm 20 min Phaseolus vulgaris L.

None of the concentrations
and sizes harmed the seeds.
NPs mostly detected in the
seed coat, while 10 mg L−1

entered the inner seed and
increased plant weight.

[67]

4 SiO2 NPs and
MWCNTs

25, 50, 75, 100, 125 µg mL−1/80.75 nm,
54.64 nm 6 h Brassica juncea L.

Increased agronomic traits,
silique length, and yield

per silique.
[68]
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Table 1. Cont.

S No. Priming Agent Concentration/Size Priming Duration Target Plant Effect on Plant Growth
and Development Ref.

5 Ag NPs and TiO2
NPs

25, 50, 100, 200,
400 µg mL−1/50–100 nm 24 h Solanum

lycopersicum L.

Ag NPs at 25 and 50 µg
mL−1 increased seed

germination and seedling
vigor index, whereas TiO2

NPs reduced seed
germination and seedling

vigor and increased
antioxidant activity.

[69]

6 MnO NPs 10, 20, 40, 80 mg L−1/22–39 nm 14 h Citrullus lanatus L.
Improved chlorophyll

contents, phenolic acids,
and phytohormones.

[70]

7 Lignin NPs 80, 312, 1250, 5000,
20,000 mg L−1/50 nm 8 h Zea mays L.

Induced beneficial effects
on root and shoot growth,

increased chlorophyll,
carotenoids, and

anthocyanin contents.

[71]

8 Cu-chitosan NPs 0.01, 0.04, 0.08, 0.012, and 0.16%
(w/v)/150 ± 12.4 nm 4 h Zea mays L.

Increased α-amylase and
protease enzymes also

increased the total protein
content in

germinating seeds.

[72]

9 Cu-chitosan NPs 0.0625 mmol L−1/174.2 ± 1.5 nm N/A Zea mays L.
Increased root shoot length,

dry mass, leaf area, and
gas exchange attributes.

[73]

10 Fe3O4 NPs 0, 20, 40, 80, 160 mg L−1/30 nm 8 h Zea mays L.
Increased seed

germination and vigor,
plant length, and biomass.

[74]

11 Fe2O3 NPs 50, 100, 150 mg L−1/23 nm 14 h Citrullus lanatus T.

Increased root and shoot
length as well as
non-enzymatic
antioxidants.

[43]

12 nanoCS/TPP-GA3,
nanoALG/CS-GA3

0.005 mg mL−1 and
0.0005 mg mL−1/195, 450 nm

12 h Solanum
lycopersicum L.

Increased fruit production
and overall productivity

up to 4 fold.
[75]

13 Lignin NCs with
GA3 0.5, 1, and 1.5 mg mL−1/200–250 nm 30 Min

Eruca vesicaria and
Solanum

lycopersicum L.

Improved germination
percentage, increased stem
and root length as well as
their fresh and dry weight

both under in-vitro and
in-vivo conditions.

[76]

14 Fe2O3 NPs 0 ppm to 600 ppm/80 nm 12 h Triticum aestivum L.

Increased grain iron
content, germination

percentage, seed vigor
index I, II and shoot length.

[77]

15 Co and MoO3 NPs 1 L for 40 kg seeds,
0.5 mL/20 g seed/60–80 nm 2 h Glycin max L.

Improved seed vigor
indices and plant growth

as well as biomass
[78]

N/A: data not available.

5. Effects on Plant Growth and Physiology under Abiotic Stress

Besides modulating seed germination, nano-priming has also been proven to impact
other characteristics of plants, such as stability, growth, and physiology, by protecting
them from abiotic stress [79–81]. This is achieved by escalating plant tolerance against
abiotic stress and altering nutrient uptakes, biochemical mechanisms, cellular antioxidants,
photosynthetic efficacy, and molecular mechanism [82]. Many scientists intend to learn
about nano-priming effects on plant growth and physiology under abiotic stress. In 2021,
Rai-Kalal et al. [83] demonstrated that, in contrast to non-primed seeds, there was more
proline and catalase in SiO2-treated Purna HI 1544 (wheat cultivar), resulting in increased
tolerance against drought stress by better maintenance of biochemical balance and photo-
synthetic parameters. A study highlighted improved root and shoot length by applying
MWCNTs on Dodonaea viscosa L. and Alnus subcordata under drought stress by increasing
nutrient uptake and photosynthetic efficiency [84,85]. Another study reported that wheat
nano-priming with ZnO NPs increased shoot height and improved overall plant physiology,
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including growth under salinity stress [86]. Similarly, nano-priming of Brassica napus with
ZnO NPs increased shoot and root length by 25.63% and 48.17%, respectively, resulting in
a significant increase in seedling growth [87]. Moreover, some researchers reported aug-
mentation in plant growth of maize and tomatoes owing to increased chlorophyll content
and anti-oxidative enzymes by priming with TiO2 NPs, inducing resistance against salt
stress [88,89]. There was also an interpretation of enhanced plant growth against tempera-
ture stress when maize seeds were nano-primed with NO NPs, as it is efficient in boosting
CAT (catalase) and SOD (superoxide dismutase) activities in the plant [90]. Furthermore,
Ivani et al. [91] and Hojjat and Kamyab [92] examined the nano-priming effects of SiO2
NPs and Ag NPs on fenugreek plants under salt stress. They concluded that these NPs had
increased various plant defense mechanisms (i.e., alteration in turgor pressure, opening or
closing of stomata, etc.), resulting in enhanced growth characteristics. Konate et al. [93]
studied the effect of magnetic NPs, particularly Fe3O4, on wheat seedlings and reported
a positive influence on plant growth as it inhibits the uptake of HMs (Cu, Cd, and Zn),
subsequently reducing toxicity in the wheat plant.

6. Effects on Plant Metabolism under Abiotic Stress

Nanoparticles can directly alter plant and seed metabolism and interrupt hormonal
production, thus making plants more resistant to environmental stresses. The production
of reactive oxygen species (ROS), which is involved in various metabolic pathways, is
enhanced along with an increase in the mobilization of storage proteins and the level
of phytohormones [94]. Moreover, NPs can increase the seed’s water uptake potential,
resulting in increased activity of enzymes [95,96]. Furthermore, NPs reduce the level of
over-produced ROS under stress in the seed under abiotic stress conditions because of the
increased activity of enzymes such as guaiacol-peroxidase, CAT, and SOD to minimize
seed cell damage [97]. When seeds are stored at low temperatures for extended periods,
they tend to be aged, decreasing their germination rate, producing ROS and decreasing
their antioxidant level, and negatively impacting the seeds’ metabolic potential [98]. The
application of NPs can optimize the ROS level in seeds and enhance their germination
even at late ages. Several compounds can be used to coat the biogenic NPs to reduce the
level of ROS in seeds [39]. Table 2 summarizes different nanoparticles used for abiotic
stress mitigation.
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Table 2. Application of NPs via seed priming for mitigation of abiotic stresses and their mechanism of action.

S No. Stress Factor Priming Agent Concentration/Size Priming Duration Target Plant Stress Mitigation Mechanism Ref.

1 Cobalt ZnO NPs 500 mg L−1/20 nm 24 h Zea mays L.

Increased seed zinc content, decreased
oxidative damage, improved

antioxidant activity, photosynthetic
apparatus, and ultrastructure.

[46]

2 Cadmium ZnO NPs and Fe NPs
25, 50, 75,

100 mg L−1/20–30 nm, 5, 10,
15, 20 mg L−1/50–100 nm

20 h Triticum aestivum L.

Increased Zn and Fe content,
respectively. The NPs increased plant
growth and nutrient contents while

decreasing Cd uptake and,
consequently, Cd toxicity.

[99]

3 Lead ZnO and Fe3O4 NPs 0, 50, 100, 200, 300 and
500 mg L−1/70 nm, 55 nm 16 h Basella alba L.

At 200 mg L−1, both NPs decreased
lead uptake and reduced toxicity by

reducing H2O2 and MDA content and
increasing SOD, POD, CAT, and

proline activity.

[100]

4 Manganese SNPs 12.5, 25, 50, 100,
200 µM/23 nm 18 h Helianthus annuus L.

Improved antioxidants and phenolic
compounds while reducing oxidative

damage and lipid peroxidation.
[101]

5 Chromium Nitric oxide NPs 100 µM/N/A 24 h Oryza sativa L.

Together with spermidine, nitric oxide
reduced chromium accumulation in

plants leading to reduce oxidative stress
and increased carbon assimilation

[102]

6 Salt CeO2 NPs 500 mg L−1/1.8 nm 24 h Gossypium hirsutum L.

NPs localized in cotyledon and root
apical meristem. Enhanced nutrient
uptake, reduced ROS accumulation,

and up-regulated terpene
synthase genes.

[38]

7 Salt TiO2 NPs 40, 60, 80 ppm/25 nm 24 h Zea mays L.

Enhanced phenylalanine ammonia
lyase, potassium ions, and antioxidants
while reducing sodium ions, MDA, and

electrolyte leakage.

[89]
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Table 2. Cont.

S No. Stress Factor Priming Agent Concentration/Size Priming Duration Target Plant Stress Mitigation Mechanism Ref.

8 Salt ZnO NPs 50, 100 and
500 mg L−1/12–21.0 nm 24 h Triticum aestivum L.

Changed polypeptide patterns which
resulted in improved plant growth,
photosynthetic pigments, overall

photosynthetic efficacy, and
leaf ultrastructure.

[86]

9 Salt ZnO NPs 0.1%, 0.2%, 0.3%/N/A 12 h Spinacia oleracea L.
Reversed salt stress-induced reduction
in biochemical and growth attributes,
improved antioxidant defense system.

[103]

10 Salt CeO2 NPs 100 µMol/4.1 nm 8 h Brassica napus L.
Improved ROS scavenging ability and

up-regulated salicylic
acid-related genes.

[104]

11 Salt CeO2 NPs 100 µMol/8.5 nm 1, 3, 8 h Brassica napus L.

Increased seed waster and NPs uptake
capacity, increased α-amylase activity of
seed, and consequently improved plant

nutrient content.

[105]

12 Drought zero-valent Cu NPs 5.556 mg L−1/30–40 nm 8 h Zea mays L.

It decreased drought-induced damage
by enhancing ROS-scavenging

enzymatic activity, and
light-harvesting pigments.

[106]

13 Drought ZnO NPs 5, 10, 15, 25,
50 ppm/20–30 nm 24 h Oryza sativa L.

Increased plant growth attributes,
biomass, proline, SOD, POD, and CAT
levels while reducing MDA content.

[107]

14 Drought Fe2O3 NPs 0, 25, 50, 75, and
100 ppm/N/A 24 h Linum usitatissimum L.

Increased plant growth, biomass, and
yield attributes improved antioxidant
enzymatic activity while decreasing

oxidative damage.

[108]

15 Drought Si NPs 0, 100, 200,
500 mg L−1/25 nm N/A Calendula Officinalis L.

Si NPs at higher levels deposited in root
cell walls after priming which resulted
in enhanced germination indices and
subsequent growth attributes under

drought stress.

[109]

N/A: data not available.



Sustainability 2022, 14, 14880 10 of 24

As seed nano-priming is a water-based technique, where seeds are first hydrated
properly and later dried, or some physical method can be used such as ultraviolet light
(UV) [110], it follows that adequate water must be provided to induce the metabolic path-
ways for pre-germination without fear of radicle emergence. This process affects seed
metabolism at the cellular and molecular levels (e.g., enhanced capability for protein
synthesis, post-translational modifications, cell wall loosening, reserve mobilization, and
reprogramming of transcriptome). The seed’s germination and vigor are speeded up by
nano-priming [111,112]. Stress-related responses such as heat-shock proteins and antioxi-
dant mechanisms are activated in response to the hydration and drying process, improving
cross-resistance against other abiotic stresses. In addition, the period of exposure of germi-
nating seeds under unfavorable soil conditions is shortened by aggravated germination.

The primary metabolites synthesized in primary metabolic pathways are directly
involved in plant metabolism and growth. ROS-induced signaling events primarily regulate
the activation of secondary metabolism. In addition, ROS serves as a signal for other
messengers such as brassinosteroids (BRs), nitric oxide (NO), ethylene (ET), salicylic acid
(SA), and jasmonic acid (JA). These messengers can directly or indirectly regulate secondary
metabolism [113]. Nanoparticles can induce mitogen-activated protein kinase (MAPK)
cascades, enhanced cytoplasmic Ca2+, and ROS as signaling transduction cascades. For
instance, in CeO2-primed cotton seeds, the ROS induction genes and conserved Ca2+

transduction cascade genes were expressed in root transcripts [38]. In Arabidopsis, Ag NPs
stimulate ROS induction and Ca2+ bursts by modifying the physiology of the plant [114].
Calcium levels and signaling pathway proteins have been shown to boost rice growth
primed with Ag NPs [115]. These studies also concluded that Ag NPs or free ions resemble
Ca2+ or signaling molecules. They may bind with the Ca2+/Na+ ATPases, Ca2+ channels,
and Ca2+ receptors [116].

Different NPs perform diverse roles in plant metabolism when seeds are primed with
them. Khodakovskaya et al. [117] reported the uptake of CNTs by tomato seeds, which
increased their water uptake capacity and doubled the number of flowers in tomato plants.
Several studies have supported the positive effects of CNTs on the metabolism of plant
seeds such as maize, soybean, barley, and tomatoes, by enhancing the gene expression
of different water channel proteins [118,119]. Seeds of Vigna radiate L. primed with a
low concentration of Cu NPs improved seed germination and metabolism [120]. The
metabolic activity of plants is also reported to be positively affected by Si NPs [121]. ZnO
NPs also play a key role in plant metabolism as they are necessary for various enzyme
activities such as SOD and dehydrogenases [122]. The nitrogen metabolism enzymes
(glutamate dehydrogenase, nitrate reductase, and glutamine synthase) help absorb nitrates
and can transform the inorganic nitrogen into organic nitrogen. The activities of these
enzymes were enhanced with Ti NPs, resulting in the plants’ improved fresh and dry
weight [123]. Nanoparticles also affect the synthesis of secondary metabolites in medicinal
plants. For instance, the essential oils of Thymus vulgaris were affected adversely by water
stress, while the application of TiO2 NPs reversed drought- stress-induced changes and
improved essential-oil content. This could be attributed to the unique chemical and physical
properties of NPs in favor of plant metabolism [124].

7. Priming-Induced Molecular Responses against Abiotic Stresses

Nanoparticles can interact with plant cells and settle in different cell compartments.
The seed nano-priming alters biochemical pathways and gene expression profiles during or
after seed germination [125]. The first stage of seed germination is the imbibition phase, in
which the seed takes up water. Seed priming with NPs at this stage can cause the activation
of seed-located water channel genes, i.e., aquaporin (AQP) genes that enhance the water
uptake capacity of the seeds [39,126]. When seeds of different crops such as soybean, corn,
and barley are sprayed with MWCNTs, the expression of AQP genes is induced [126]. When
rice seeds (Oryza sativa L. cv. KDML 105) were primed with Ag NPs, overexpression of AQP
genes was observed [39]. AQP genes enable water transport across biological membranes
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and aid in transferring ROS (such as H2O2), nutrients, and gases (NH3 and CO2), eventually
resulting in enhanced germination rates and subsequent growth. An et al. [38] analyzed
the transcriptome profile of CeO2 NPs-primed cotton seeds coated with polyacrylic acid
under saline and non-saline conditions. Under no salinity stress, 7799 variable genes were
expressed in the seeds primed with NPs compared to the control. While under salt stress,
ten ion homeostasis regulating genes and 13 ROS pathway genes were expressed in seeds,
resulting in salt stress tolerance and improved growth. Ye et al. [40] observed that MnSOD
(Mn superoxide dismutase) was upregulated in primed seeds which enhanced the SOD
enzyme levels to avoid the phytotoxic effects caused by the ROS. Primed seeds were also
better resistant to biotic stresses compared to controlled seeds. The expression of genes for
polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase was upregulated in
seed primed with chitosan NPs which impart them resistance against oomycete Schlerospora
graminicola i.e., cause of downy mildew disease [127]. Plaksenkova et al. [128] demonstrated
the over-expression of miRNA-156 and miRNA-159 in the barley seeds primed with ZnO
NPs. These microRNAs impart resistance to plants against abiotic stress factors.

Several studies have been performed, but still, extensive research is required to better
understand the molecular mechanisms taking place after seed priming with NPs and the
expression of resistance genes. Variable NPs with variable coatings are used for priming
purposes, and each produces a different response at the molecular level. Moreover, NPs
can serve as co-factors or signals that can improve the regulation of gene transcription
related to abiotic stress responses [94].

8. Effects on Photosynthesis under Abiotic Stress

Photosynthesis is the process of conversion of sunlight energy into organic compounds
taking place in higher plants, some microorganisms, and algae [129]. Nano-priming of the
seeds has found its way into the plant’s photosynthesis mechanisms. Seed priming with
ZnO NPs has improved photosystem and gas-exchange attributes resulting in increased
photosynthetic activity [46]. The improved photosynthetic efficiency is attributed to the
protective role of ZnO NPs against oxidative damage induced by abiotic stress. Lower
concentrations (0.01%) of aluminum oxide (Al2O3) NPs on Hibiscus sabdarifa L. cultivars
significantly enhanced the biochemical functions (proline, proteins, soluble sugars, chloro-
phyll a and b, and carotenoid levels), physiological properties, growth characteristics (fresh
and dry mass, root and shoot length, and dry mass), and the activity of various antioxidant
enzymes (ascorbate peroxidase (APX), CAT, peroxidase (POD), and SOD) [130]. The in-
crease in photosynthetic rate could be attributed to the stimulation of water splitting in the
electron transport system, as Pradhan et al. [131] observed in the case of Mn NPs. Rubisco
(Ribulose-1, 5-bisphosphate carboxylase/oxygenase) is the key enzyme in photosynthesis
that integrates CO2 into biological compounds. Rubisco activity is induced by TiO2-primed
chickpeas [132]. In Mentha piperita, TiO2 (200 mg L−1) enhanced the carotenoid and chloro-
phyll a and b content [133]. Similarly, Yang et al. [134] observed that TiO2 priming raised
Rubisco activity and enhanced photosynthesis by water splitting and oxygen evolution,
normalizing the provision of light energy from photosystems (PS II and PS I) and light
absorption in the chloroplast.

Iron plays its part in the electron transport system of photosynthesis and respiration,
helping photosynthesis, reproduction, and initial seed germination [135]. Rui et al. [136]
reported that the need for natural sources of iron in Arachis hypogaea could be replaced by
iron oxide (Fe3O4) priming. This enhanced the Fe level, chlorophyll content, root and shoot
length, and activity of phytohormones (abscisic acid and gibberellic acid) and antioxidant
enzymes. The growth and photosynthetic rate of rice seedlings could be enhanced by prim-
ing with low zero-valent iron NPs (nZVI). When physiological and biochemical changes in
nZVI-primed Oryza sativa were observed, there was a significant increase in expression of
OsGAMYB and OsGA3Ox2 (to mediate mobilization of seed storage food reserves efficiently
and control the activity of hydrolases) [137]. The photosynthetic pigments content was
enhanced by applying Al2O3 and TiO2 NPs in wheat leaves [138]. Moreover, in soybean,



Sustainability 2022, 14, 14880 12 of 24

Rubisco activity [139], stomatal conductance, and transpiration rate were promoted by
CeO2 NPs [140]. Gold NPs stimulated oxygen evolution and the electron transport chain in
mung bean leaves [141].

It was reported by Abdel-Latef et al. [142] that when ZnO NPs were used as a priming
agent for lupin seeds, they elevated photosynthetic pigments and growth parameters
(fresh and dry weight, root and shoot length) by alleviating salt-stress-induced changes.
Hussain et al. [42] reported that under cadmium (Cd) stress, SiO2 NPs–primed seeds
increased the chlorophyll a and b content, carotenoid content, photosynthetic rate, plant
biomass, and reduced Cd uptake, antioxidant enzyme activity, and ROS production. Seed
germination and plant growth were reported to be elevated when sorghum seeds were
primed with Fe3O2 NPs [143]. Biomass and photosynthetic pigments were increased
when treated with 500 mg L−1 concentration of Fe3O2 NPs, while leaf water content was
enhanced by 100 and 500 mg L−1 concentrations. The enhanced photosynthetic parameters
improved biomass production and maintained biochemical balance, alleviating the drought
stress from the wheat seedlings (cultivar HI 1544) when they were primed with 15 mg L−1

of SiO2 NPs [83]. Similarly, Abou-Zeid et al. [86] observed an increase in root and shoot
growth and improved photosynthesis and ultra-structure of leaves when wheat cultivars
were primed with ZnO NPs. Silicon dioxide NPs have also been reported to enhance the
photosynthetic rate of plants by inducing the synthesis of photosynthetic pigments [144].
However, further investigation is needed to explore the molecular mechanisms underlying
NPs’ improved photosynthesis and related attributes.

9. Effects on Nutrient Uptake and Regulation

Nanotechnology has become a promising candidate for boosting the food and agricul-
tural industries. Nanofertilizers can be used to replace conventional chemical fertilizers,
which will reduce environmental pollution [145]. The application of NPs has increased
since the discovery of their benefits with regard to nutrition and stress tolerance. Such
nano-formulations are developed which can attach, absorb, encapsulate, and entrap the
active molecules. Nanofertilizers are available in various modes such as aerosol dusting,
fertigation drip tape, seedling root drip, seed priming, and foliar sprays [146]. Nanopar-
ticles affect plant physiology, growth, and morphology [86]. Physiological features may
be affected by changing the SOD, CAT activity, total phenolic content (TPC), chlorophyll
content, and ROS formation [113]. Morphological changes may depend on physiological
attributes such as phosphorus and nitrogen metabolism, enhanced photosynthesis, and in-
creased enzyme activity [147]. Plant growth includes parameters such as biomass, root and
shoot length, and leaf area. MWCNTs are used as nanofertilizers that induce development
and growth, and enhance supplement nutrition, antioxidant defense, aquaporin expression,
and photosynthesis [148]. The increase in leaf growth, plant height, and chlorophyll content
was observed when MgO, MgH, ZnO, and CuO NPs were used as fertilizers and foliar
sprayed on crops [149]. However, over-concentration of these NP-derived fertilizers could
induce toxicity in plants [150].

Priming seeds with NPs benefits the germination process, which may be attributed
to the grain’s efficient nutrient and water uptake. Priming Citrullus lanatus with Ag
NPs improved their germination, growth, quality, and yield even when stored for long
periods [151]. Laware and Rasker [152] observed that TiO2 elevates seedling growth and
germination rate along with the increase in the activity of protease and amylase. Silver
NPs reduced sulfur, phosphorus, and magnesium concentration and enhanced potassium
content in oriental lilies [153].

Nutrient priming is another technique in which seeds are saturated in a particular
concentration of nutrients before sowing [154]. Water uptake efficiency, nutrient availability,
and germination are boosted when seeds are primed with either micro- or macronutrients.
During germination, osmosis for water regulation is elevated by micronutrient seed prim-
ing [154]. For example, the yield of mung beans was enhanced when primed with sodium
molybdate dihydrate for 5 h [155]. Similarly, when macronutrients such as potassium are
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used, they increase stress tolerance against environmental conditions in plants [156]. Prim-
ing with Zn solutions was reported to increase the grain yield of chickpeas and wheat [157].
Zinc priming may mimic the zinc in zinc-deficient soils and enhance the crop’s nutri-
ent absorption and growth. Zinc sulfate heptahydrate (ZnSO4.7H2O) priming increased
seed production by up to 9% in chickpeas compared to non-primed seeds [158]. Nutrient
priming not only increases nutrient availability but also improves plant stress tolerance.
Ascorbic acid (antioxidant and essential nutrient) and plant extracts induce the antioxidant
potential of plants and protect them from oxidative stress damage [159,160]. Under salinity
stress, it also improves the germination rate of Agropyron elongatum [161].

Nano-priming can be combined with nutrient priming to enhance its effects. Several
studies have come up with positive results. The photosynthetic rate, growth, and seed
germination could improve Zea mays seedlings when primed with macronutrient NPs such
as Mg(OH)2 [162]. Similarly, it is reported that priming with MgO NPs has improved seed
vigor and germination in Vigna radiata [163]. In rice and wheat field trials, Zn nutrition has
been reported to enhance productivity as well as grain nutrient quality [66,164]. In black-
eyed pea plants, Fe content and seedling vigor can be alleviated using foliar sprays of Fe-
NPs (500 mg L−1) [23]. Das et al. [165] found that nano-pyrite could efficiently replace NPK
(nitrogen, phosphorus, potassium) fertilizers for rice cultivation. Seed germination and
growth could be raised using low concentrations of nZVI (40–80 µmol L−1) in peanuts [166].
Yoon et al. [167] demonstrated that in Arabidopsis thaliana, photosynthesis and biomass
could be boosted by using nZVI (500 mg kg−1 soil). It increased the plant Fe content and
promoted the levels of micro and macro-nutrients such as Zn, Mg, Mn, and P. However,
to date, no study has reported the potential of nZVI in fields. Therefore, further research
is required to investigate the role of nano-priming in aggravating plant nutrition under
abiotic stresses in field trials.

10. Effects on Plant Antioxidant Defense Systems

Antioxidant enzymes play a crucial role in plant defense systems against biotic and
abiotic stress [46,168]. The stress factor triggers the overproduction of ROS (H2O2, O2,
and O−) that cause oxidative stress, including lipid peroxidation and cellular damage,
which disturb cell functionality. ROS generation and their scavenging should be balanced
for plant survival and better functioning, and this state of homeostasis is achieved by the
plant’s antioxidant defense system [169–171], which generally increases as it encounters
stress-induced overproduction of ROS. Scavenging over-produced ROS by various antiox-
idant enzymes has a crucial role in developing tolerance in plants against abiotic stress
and maintaining the balance of biochemical state of the cell [172]. Several studies have
reported that seed priming with NPs is shown to positively regulate the plant’s antioxidant
defense system [46,89,107,108]. Mazhar et al. [107] have reported that ZnO NP priming has
increased SOD, POD, and CAT activity in rice under drought stress. SOD is the first line of
defense against ROS-induced oxidative and cellular damage [173]. Seed priming with Ag
NPs and TiO2 NPs improved SOD, POD, CAT, and carotenoid contents in Solanum Lycop-
ersicum [69,89]. Previously, it has been stated that seed priming with TiO2 NPs increased
phenylalanine ammonia-lyase (PAL) activity along with other antioxidants in maize under
salt stress. Phenylalanine ammonia-lyase has great importance in the phenylpropanoid
pathways of plants [174]. Phenylpropanoid compounds are the precursors of various
phenolic compounds that have a wide range of functions in plants and play essential roles
in various pathways such as plant defense against biotic and abiotic stress, signal transduc-
tion, and interaction with other organisms [175,176]. Regab et al. [101] reported that the
application of sulfur (SNPs) as priming agents has improved the antioxidant compounds
(ascorbic acid, total flavonoid, total phenolic contents) in sunflower seedlings under man-
ganese stress, and the increase in the production of antioxidants due to SNPs stimulates
the detoxification machinery of plants, resulting in dismutation of ROS. Flavonoid and
phenolic compounds serve as free radical scavengers because of their hydroxyl groups
and their roles as hydrogen/electron-donating agents, singlet oxygen quenchers, and
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metal chelators, protecting the plant against oxidative stress caused by elicitors [177,178].
Similarly, Si nano-priming together with Pseudomonas inoculation increased antioxidant
activity (based on DPPH radical scavenging and ß-carotene/linoleic acid (BCB) bleaching
tests) by 85.3% and 86.3% in Melissa officinalis L. [172]. Kumar et al. [179] reported that Ag
NP priming enhanced antioxidant enzymes such as SOD, POD, CAT, and APX and higher
soluble sugar concentrations in Psophocarpus tetragonolobus L. CAT and APX are considered
crucial regarding ROS detoxification, which protects plant cells from oxidative damage [46].
Nano-ceria seed priming has been reported to alleviate ROS-induced damage in cotton
seedlings under salinity stress [38].

11. Crosstalk with Plant Growth-Promoting Microbiota

Plants nurture an array of phyto-microbiota, particularly rhizobacteria in the below-
ground ecosystem, which mutually establish a relationship to underpin each other’s eco-
logical and physiological functions through various communication sources [176,180,181].
Plant growth-promoting microbiota positively influences plant health and fitness by em-
ploying direct and indirect mechanisms [182,183]. They are a group of microbes inhabiting
the plant rhizosphere zone that synthesize plant growth regulators at low concentrations
and regulate plant biochemical processes that lead to improved plant growth and de-
velopment [175,176,184]. These microbial communities perform substantial biological
roles, including nutrient cycling, plant protection, and abiotic stress alleviation [3,185].
Yasmin et al. [186] applied ZnO NPs alone and with “Phytoguard”, a PGPR consortium,
and reported higher growth attributes in combined treatment than individually, under salt
stress. They determined that the increase in growth under combined treatment was a result
of reducing MDA content and improving photosynthesis and antioxidant activity, which
led to reduced salt toxicity. Recently, Akhtar et al. [187] reported that SiO2 NPs and PGPR
strains modulate wheat plants’ physiological and metabolic reactions and induce tolerance
under drought stress environments. This evidence was strengthened by Galal’s study [188],
which demonstrated that ZnO NPs significantly modulate the defense system and enhance
plant growth and tolerance against abiotic stresses. Interestingly, nano-silica did not show
any hazardous effect on soil bacteria. Nonetheless, it stimulated PGPR growth and mul-
tiplied the bacterial population in soil that might serve as biofertilizers for plant growth
and productivity [187]. Raliya et al. [189] stated that foliar spray of ZnO NPs enhanced the
rhizosphere zone, increasing rhizosphere enzymes (acid phosphatase, alkaline phosphatase,
phytase) and plant root growth. Dai et al. [190] reported that exogenously applied CeO2
NPs decreased the general rhizosphere zone but increased the PGPR zone. The concen-
tration level of NPs plays a crucial role and should be carefully considered before being
applied to secure optimum benefits [62–64]. The exploitation of beneficial microbes and
NPs is an emerging and valuable approach in the present era, as the application of NPs at
optimum concentration and plant growth-promoting rhizobacteria (PGPR) both induce
stress tolerance and promote plant growth [191–195]. However, the synergistic effect and
the chemistry of plant-associated microbes with NPs need to be explored further, in depth,
on a molecular basis to fully understand the mechanism. The schematic diagram in Figure 3
illustrates the proposed pathways of priming induced tolerance against abiotic stress.
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Figure 3. Seed nano-priming induced regulation of abiotic stress tolerance and growth enhancement.
After entering seed tissue, NPs induce the expression of AQP genes (seed-located water channel
genes), resulting in water uptake and promoting germination. NPs induce mild ROS production that
serves as a signal transduction cascade leading to an activated plant defense mechanism. Abiotic
stressors cause the overproduction of ROS, resulting in oxidative damage. In contrast, NPs protect
the plant by enhancing antioxidant enzymes (SOD, POD, CAT, etc.) that scavenge over-produced
ROS and maintain redox homeostasis. NPs increase plant nutrient uptake and improve plant
photosynthetic efficiency, ultimately improving overall plant growth and development.

12. Conclusions

In the current state of the world, agriculture is facing many biotic and abiotic con-
straints which cause concern over food security and safety. Certain aspects of traditional
agriculture, involving the extensive use of fertilizers, agrochemicals, and pesticides, pol-
lute the environment and threaten the food chain. Thus, innovative and environmentally
friendly strategies must be developed and implemented to cope with these issues in or-
der to promote agricultural sustainability. Nanotechnology exploitation via seed priming
could be a user-friendly alternative to achieve this goal. It has been tested as a simple and
cost-effective approach that could potentially be the future solution for agricultural sus-
tainability. Nano-priming promises to move the traditional farming system to sustainable
agriculture, augmenting tolerance to biotic and abiotic stresses and ultimately enhancing
crop productivity. Seed nano-biofortification through nano-priming aims to reduce the
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harm that runoff fertilizer and other agrochemicals can cause to the environment. All these
factors together can guarantee the prevalence of a safer system for farmers and consumers,
and can mitigate the damage to the ecosystem caused by traditional farming methods.
However, the exact mechanisms behind the positive effects of NPs against abiotic stress are
not yet fully explored. In the future, extensive research is needed to dissect the underly-
ing mechanisms of nano-priming-induced changes and subsequent stress tolerance at the
molecular and hormonal levels. Moreover, the concentration of NPs and exposure time
should be optimized for maximum plant growth and production to produce the desired
outcomes. Intensive laboratory tests based on concentration optimization are highly recom-
mended before the large-scale use of nanoparticle-based materials in field trials. Moreover,
introducing new NPs and the crosstalk of NPs with phytohormones and plant-growth-
promoting bacteria is a new field that requires further study. The synergistic interaction of
NPs is currently lacking in the literature regarding their role in enhancing plant growth and
stress management. In this paper, we have reviewed previous research. Further studies
into nano-priming should focus on the synergistic interaction of nano-materials for stress
mitigation, opening new avenues for the direction of future research.
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