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Abstract: An assessment of climate impacts in the hydrologic system of the Blue Nile basin is
useful for enhancing water management planning and basin-wide policymaking. Climate change
adaptation activities predominantly require an understanding of the range of impacts on the water
resource. In this study, we assessed climate change impacts on the Blue Nile River using 30-year
in situ climate data (1981–2010) and five bias-corrected General Circulation Models (GCMs) for
future (2026–2045) climate projections of RCP8.5. Both historical and GCM precipitation projections
show inter-annual and spatial variability, with the most significant increases in the rainy season
and a significant decrease in the dry season. The results suggest the probability of an increase in
total precipitation. The intensity and frequency of future extreme rainfall events will also increase.
Moreover, the hydrological model simulation results show a likely increase in total river flow, peak
discharges, flood inundation, and evapotranspiration that will lead to a higher risk of floods and
droughts in the future. These results suggest that the operation of water storage systems (e.g., the
Grand Ethiopian Renaissance Dam) should be optimized for Disaster Risk Reduction (DRR) and
irrigation management in addition to their intended purposes in the Nile basin.

Keywords: climate change; hydrological model; flood and drought; reservoir; Blue Nile basin

1. Introduction

The African region is one of the most vulnerable continents in terms of climate change
and climate variability [1]. It is predicted that the direct impacts of climate change on the
water–food–energy nexus will pose an increasing number and types of risks to life and
livelihood in the African region. Moreover, IPCC AR5 reports that reduced precipitation is
likely over North Africa and the southwestern parts of South Africa, while in sub-Saharan
Africa, particularly in high or complex-topography regions such as the Ethiopian Highlands,
rainfall and extreme rainfall are likely to increase [2]. The rainfall pattern in the tropics is
strongly influenced by large-scale features including Hadley Circulation, the pattern of
sea surface temperatures, the effects of planetary waves, and the influence of local winds,
which also influences the position of the Inter-Tropical Convergence Zone (ITCZ) [3,4].

The Nile River, the world’s longest river, occupies nearly 10% of the landmass of the
African continent. It has been used since antiquity for domestic purposes, irrigation, and
navigation, but large-scale planning and development only began in the late 19th century
as set out by Hurst (see [5]). Currently, water infrastructure such as the Grand Ethiopian
Renaissance Dam (GERD), with a capacity of 74 billion cubic meters, is being constructed
in response to increasing demand for food, energy, drinking water, and navigable waters.
As the Nile is a significant water resource for the nations in the region, its sustainability is
crucial under global warming.
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Climate change, particularly in transboundary rivers, poses a substantial risk, given
the different economic, political, and social interests of the riparian countries that require
local and international policy arrangements related to water management. There is growing
evidence of climate change: Changes such as rainfall reduction over North Africa and the
increase in the frequency of extreme events, place additional pressure on water resources
and point to the necessity of a clear all-stakeholder consensus on the best use of model
projections in the formation of sound water resource management decisions [6].

Assessment of the impact of climate on water resources requires reliable future hydro-
meteorological information and simulations of the entire range of flows within a watershed,
in order to provide spatial information on various hydrological components for use in
evidence-based policymaking. GCMs perform reasonably well at larger spatial scales and
in large land mass areas such as Africa but perform poorly at finer spatial and temporal
scales. This is especially true of precipitation, which is a crucial element of hydrological
analysis [7,8]. Previous studies found substantially less confidence in the magnitude, and
even direction, of regional rainfall changes in Africa [9,10]. A number of examinations
of climate change in the Blue Nile basin report a much less homogeneous set of changes
in precipitation [11–13]. Other studies report clear discrepancies in the projections of
precipitation [14,15] and limited findings due to the coarse spatial resolution and the
limited number of GCMs used [16]. There is evidence that the projected changes in
rainfall in the Blue Nile were dependent on the climate models used and the downscaling
method applied [17]. This points to a need for assessments of climate change through the
combination of data from historical observation and detailed analysis of climate variables
in GCMs. Despite considerable progress, climate model simulations still require further
adjustment before they can be applied to climate change impact studies [18,19].

Recent advances in science and technology (e.g., GCM selection and downscaling
techniques on GCM’s projection performance with in situ data and advances in hydrological
models) now enable reliable quantification of the impacts of climate change on water
resources and water-related disasters at the basin level. However, not only is the use
of regional climate models for the dynamical downscaling of GCMs computationally
demanding but also the results are not at a scale suitable for application in hydrological
models [20]. Studies applying statistical downscaling in GCMs have identified an empirical
relationship between the large-scale climate features simulated by the GCM and the fine-
scale climate variables observed in various regions [21–23]. In addition, the elimination of
biases in statistical bias correction methods and ground observations could further address
the major shortcomings of GCM [24]. The selection of several GCMs that represent the
regional climate history reasonably well could reduce uncertainties and could enable the
inclusion of an uncertainty assessment in climate change impact studies [25]. The individual
analysis of GCM characteristics could promote transparent management of uncertainty,
in contrast to multi-model ensemble analysis, where uncertainty can vanish due to the
reduction of the confidence interval around the mean [26]. Importantly assessment of
the variance in GCM projections increases research objectivity and can enhance impact
evaluations and the quality of policy suggestions [27]. In this study, the best-performing
GCM on CMIP5 models and bias correction with in situ data were determined using Data
Integration and Analysis System (DIAS) [28].

Furthermore, there is a need for physical-based distributed hydrological models
(DHMs) with the particular ability to simultaneously address parameters related to floods
and drought under the influence of variation in surface energy and temperature to support
the evaluation of changes in water availability and hydrological extremes under climate
change. Previous studies in the upper Blue Nile basin used semi-distributed models, which
constrained parameters within certain ranges that have clear physical meanings [29–31].
The Water–Energy Budget Rainfall-Runoff-Inundation (WEB-RRI) model, which incor-
porates water and energy budget processes, land–vegetation–atmosphere interactions,
multilayer soil moisture dynamics, and inundation processes, was developed and used
in simulations of low flow, flood onset timing, and inundation characteristics [8,32]. For
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those reasons, the WEB-RRI model was selected for the simulation of past and future GCM
outputs for Blue Nile projections. Moreover, flow projections are expected to provide infor-
mation for reservoir management to mitigate significant problems caused by hydrological
extremes under climate change.

As climate-related hazards such as floods, storms, and droughts continue to cause
major disasters globally, international policies such as the Sendai Framework for Disaster
Risk Reduction (SFDRR) have been formulated by global leaders to strengthen the resilience
of societies to disasters [33]. The United Nations Framework Convention on Climate
Change (UNFCCC) Paris Agreement addressed the topic of water adaptation by adopting
a focus on the protection of the ecosystem and biodiversity, so as to enhance environmental
resilience to climate change [34]. Equitable and reasonable water utilization in conjunction
with the principle of cooperation and obligation against causing significant harm will
ensure the development, conservation, and management of international watercourses. In
this context, climate change impact assessment and qualitative presentation are essential
for the understanding and management of risk; implementation and management of risk;
implementation of mitigation measures; and strengthening of adaptation mechanisms,
particularly in transboundary river basins.

This study aims to develop a methodology for the assessment of the climate change
impact on future water resources of the Blue Nile basin. The range of the projection and
analyses conducted in this study is wider than that in previous studies, mainly due to four
factors:

(a) The combined use of selected GCMs and 30-year observed data.
(b) Analysis of uncertainty in GCM projections.
(c) The use of a distributed hydrological model with a wide range of simulation capabilities.
(d) The application of qualitative assessment to decision making.

The results of the hydrological extremes projections were also unique representations
of the climate change hazards for inputs in disaster risk reduction. The approach adopted
here is developed for the evaluation of climate change impact under uncertainty and to
guide robust decision-making for development in a transboundary basin. Future directions
of this research will focus on reservoir optimization and investigation of water resource
management practices under a changing climate to support the facilitation of transboundary
water development and cooperation in the Nile basin.

2. Materials and Methods
2.1. Study Area

The Blue Nile (Abbay) is the main tributary to the Nile Basin covering a catchment
area of approximately 312,000 km2 and providing 62% of the flow reaching the Aswan
dam [35]. The basin has highly rugged topography and a huge variation of altitude
extending from approximately 370 m above sea level (masl) at Khartoum to more than
4220 (masl). More than 50% of the Blue Nile catchment in Ethiopia is within the north-
central Ethiopian highland. The river tributaries drainage area also includes Dedesa and
Dabus sub-basins and a large proportion of the western and south-western highlands of
Ethiopia before dropping to the plains of Sudan. The seasons in Ethiopia are classified into
October–January (Bega), February–May (Belgi), and June–September (Kiremt) seasons [36].

2.2. Data
2.2.1. Topographic Data

Topographic data, including digital elevation models, flow direction, and flow accu-
mulation, were obtained from the U.S. Geological Survey (HydroSHEDS) 1 arc-minute
(~1800 m) of hydrologically accustomed data, improved from the original DEM by means of
procedures including void-filling, filtering, and upscaling. Soil-type distribution data were
obtained from the Food and Agriculture Organization (FAO) at a 9 km spatial resolution.
The land-use data were collected from United States Geological Survey (USGS) global
datasets with a spatial resolution of 1 km and reclassified via the Simple Biosphere Model2
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(SiB2) [37]. In this study, Terra satellite’s Moderate-Resolution Imaging Spectroradiometer
(MODIS) global products (MCD15A2H) of the Fraction of Photosynthetically Active Radia-
tion (FPAR) and Leaf Area Index (LAI) version 6 (based on an 8-day composite dataset with
aa 500 m pixel size) were used to produce vegetation phenology inputs for the estimation
of surface energy, water, and carbon budget processes in the model.

2.2.2. Temporal Data

The temporal data include observed and reanalysis weather and streamflow data.
The higher the temporal resolution of the record, the higher the accuracy of the flow
estimation [38]. In this study, the observed daily precipitation data from 12 observation
stations and daily minimum and maximum temperatures from nine stations for the period
of 1981–2010 were obtained from the Ethiopian National Meteorological Agency. The
stations are located upstream of the Blue Nile basin and within the Ethiopian boundary,
as shown in Figure 1. Data quality control was performed on the original data and used
for analysis. Similarly, observed daily river discharges for 1981–2010 were obtained from
the Ministry of Water and Energy at the Abbay near Kessie station at 10.07 latitudes and
38.18 longitudes. Additionally, monthly flow data were obtained for Bahir-Dar, Border (the
Ethiopia–Sudan border), and Khartoum stations on the Blue Nile River.
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Meteorological forcing inputs were also obtained from the Japanese 55-year Reanalysis
(JRA-55) data prepared by the Japan Meteorological Agency (JMA). The JRA-55 data
analysis period covers 1958 onwards, making it a high-quality homogeneous re-analysis
climate dataset covering the last half-century for the entire globe [39]. The JRA-55 data are
available at a 3 h temporal resolution and 0.125◦ spatial resolutions for air temperature,
wind speed, specific humidity, and surface pressure, and 0.56◦ spatial resolutions for
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downward radiations. These data were interpolated to model grid resolutions of ~1800 m
using a linear interpolation method in the WEB-RRI model.

2.3. Methods

The research design consists of three main components: (a) Climate change trend as-
sessment on observations and GCMs climatic variables (i.e., temperature and precipitation);
(b) analysis of local- and synoptic-scale climate variables in GCMs for understanding the
projection uncertainties; (c) hydrological model development using WEB-RRI for baseline
(1981–2000) and future (2026–2045) periods for the estimation of the water balance and
extreme flows along the river, including future inflow changes at the Great Ethiopian
Renaissance Dam (GERD). The overall methodological flow of the study is shown in
Figure 2 below.
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2.3.1. Monotonic Trend Analysis

Parametric and non-parametric tests are commonly used in trend analysis of time series
such as hydro-climatic data. In this study, non-parametric trend analysis in precipitation
time series was applied using the Mann–Kendall test for trends [40,41] and Sen’s slope
estimator [42]. Non-parametric trend tests require only that the data be independent and
flexible to outliers in the data [43]. Additionally, techniques that do not require assumptions
about the data distribution, such as rank techniques and percentage changes, have been
used in trend assessment. Deviations from the mean were used to assess the trend in
temperatures in long-term observation data. Wet and dry spells were also classified based
on the basin’s average consecutive wet, dry, no-rain, and high-rain records.

2.3.2. Meteorological Assessment from GCM

The CMIP5 tool function in DIAS enables a 2-D comparison of the model output
with reference data and was used to select GCMs for examination of the study area by
applying seven meteorological elements: Precipitation, air temperature, outgoing longwave
radiation, sea-level pressure, zonal wind, meridional wind, and sea-surface temperature.
The long-term average values of an inspected element for a particular month with respect
to climatology and the grid-by-grid model output vs. reference data were used to calculate
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the spatial correlation coefficient (Scorr) and Root Mean Square Error (RMSE) [28]. In
the selection of GCMs, the RMSE and Scorr values of all models were averaged over the
evaluation period. Index (1, 0, −1) based on the RMSE and Scorr of each model were
assigned and then summed for all inspected elements to provide a ranking for each model.
The models with the highest rank will be used in the generation of future rainfall. The
GCM selection is crucial due to the huge storage requirement and insufficient utilization of
the models.

In this study, five GCMs were selected among the 44 models available in DIAS-CMIP5
based on regional performance: MPI-ESM-LR and MPI-ESM-MR (both from Germany),
ACCESS1.0 (Australia), CESM1(CAM5) (USA), and CMCC-CMS (Italy). The selected
GCMs were subjected to bias correction with observed data. A three-step statistical bias
correction method was applied to precipitation: (a) Generalized Pareto distribution for
extreme rainfall correction; (b) gamma distribution for normal-rainfall correction; and
(c) statistical ranking order for no-rain day correction incorporated into the DIAS-CMIP5
tool [24]. The bias-corrected rainfall data were spatially distributed using the Thiessen
polygon method to force the hydrologic model simulation. Though some countries around
the world made efforts to reduce GHG emissions, the IPCC AR6 reports indicate the
annual average emission in 2019 was approximately 12% higher than in 2009 and 54%
higher than in 1990. The annual average during the decade of 2010–2019 was the highest
decadal emissions increase on record from 2000–2009 [44]. Consequently, climate change
evaluation with the RCP 8.5 “Business as usual scenario” was performed to evaluate the
worst-case climate change impact on the climatic parameters and water resources of the
Blue Nile basin.

2.3.3. Discharge Simulation

To evaluate the hydrological variables, a physical-based distributed model (DHM)
and the Water Energy Budget-based Rainfall-Runoff-Inundation model (WEB-RRI) were
developed and validated with observed discharge data. WEB-RRI is structured into four
major modules: (1) The Simple Biosphere Model 2 (SiB2) module for the vertical energy
and water flux transfer between land and atmosphere for each model grid; (2) the vertical
soil moisture distribution module based on Richard’s equation and Darcy’s equations
for groundwater recharge; (3) the 2-D diffusive wave lateral flow module for surface
flow and groundwater flow; and (4) the 1-D diffusive wave river flow module. The
model implemented the connections between surface and river and groundwater flow,
and soil moisture content and groundwater and river discharge [45]. The WEB-RRI model
incorporates the simulation of wide-ranging hydrologic elements and he evaluation of
water and energy fluxes.

2.3.4. Evaluation Indices

Hydrologic model parameters must be derived from the calibration using one or
more observed variables with modelled results, e.g., streamflow. The comparison indices
provide physical meaning and adequate ranges for their values. The evaluation of the
model performance has been tested using statistical measures including the Nash–Sutcliffe
equation (NSE), Mean Bias Error (MBE), and Root-Mean-Squared Error (RMSE) for model
performance (i.e., the strengths and weaknesses of the model). This measures-oriented
method to model performance evaluation takes into account several different aspects of the
model’s correctness or skill. The equations for testing are shown below:

NSE = 1 −
[

n

∑
i=1

(Oi − Si)
2/

n

∑
i=1

(Oi − O)
2
]

, (1)

MBE =
n

∑
i=1

(Oi − O)/n (2)
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RMSE =

√
n

∑
i=1

(Oi − Si)
2/n, (3)

where Oi is the measured values of flow (m3/s), Si is the simulated values, O is the mean
measured values, and n is the number of data points.

2.3.5. Qualitative Assessment

Decision-making regarding climate change policy, particularly in transboundary
basins, is a very complex and demanding task since there is no single decision maker
and different stakeholders tend to assign different values to climate change impacts. IPCC
AR5 and AR6 developed a framework for applying expert judgment in the evaluation of the
findings and communication of the state of knowledge [32]. In IPCC-AR6, five qualifiers
have been used to classify climate change: Very low, low, medium, high, and very high.
In this study, qualitative indices were used to classify climate change evaluations for ease
of decision-making. Therefore, if all five GCMs agree, the trend is classified as extremely
likely. If the four models agree, it is very likely. If three models, including high-ranking
models, agree, it is classified as likely; otherwise, it is classified as uncertain. The water
availability and extremes at various locations were also evaluated in the same manner.

3. Results
3.1. Meteorological Assessment
3.1.1. Temperature

Seasonal and annual trends of daily mean temperature between 1981 and 2010 were
examined in terms of the deviation from the mean temperature, as shown in Figure 3. In
the Bega (ONDJ) season, the average temperature increased slightly by 0.3 ◦C during the
observation period (Figure 3a). In the Belgi (FMAM) season (Figure 3b), the deviation
increased by 1.2 ◦C, while in the Kiremt (JJAS) season (Figure 3c), temperature deviation
increased by 0.8 ◦C, indicating variability in the changes between seasons. The annual
average temperature was observed to be monotonically increasing up to 0.7 ◦C over the
analysis period (Figure 3d).

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 21 
 

models, agree, it is classified as likely; otherwise, it is classified as uncertain. The water 
availability and extremes at various locations were also evaluated in the same manner. 

3. Results 
3.1. Meteorological Assessment 
3.1.1. Temperature 

Seasonal and annual trends of daily mean temperature between 1981 and 2010 were 
examined in terms of the deviation from the mean temperature, as shown in Figure 3. In 
the Bega (ONDJ) season, the average temperature increased slightly by 0.3 °C during the 
observation period (Figure 3a). In the Belgi (FMAM) season (Figure 3b), the deviation in-
creased by 1.2 °C, while in the Kiremt (JJAS) season (Figure 3c), temperature deviation 
increased by 0.8 °C, indicating variability in the changes between seasons. The annual 
average temperature was observed to be monotonically increasing up to 0.7 °C over the 
analysis period (Figure 3d). 

 
Figure 3. The deviations of seasonal and annual average temperature from the climate norm (1981–
2010). 

The temperature difference in GCM between the past (1981–2000) and predicted tem-
peratures (2026–2045) suggests that there will be an average increase ranging between 1 
°C and 2.5 °C for all selected models, as shown in Figure 4. The temperature increases for 
all seasons with marginal variation among months, indicating a high likely temperature 
increase in the future period. Those temperature differences were also used to correct the 
JRA-55 air temperature for future hydrologic model simulations. 

Figure 3. The deviations of seasonal and annual average temperature from the climate norm (1981–2010).



Sustainability 2022, 14, 15438 8 of 20

The temperature difference in GCM between the past (1981–2000) and predicted
temperatures (2026–2045) suggests that there will be an average increase ranging between
1 ◦C and 2.5 ◦C for all selected models, as shown in Figure 4. The temperature increases for
all seasons with marginal variation among months, indicating a high likely temperature
increase in the future period. Those temperature differences were also used to correct the
JRA-55 air temperature for future hydrologic model simulations.
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3.1.2. Extreme Precipitation

Climate change in terms of climatic extreme dry and wet conditions was estimated
from the observed data as shown in Figure 5. A basin average precipitation threshold
for no rain days and high rainfall was selected to accommodate the variability in the
rainfall record between the observation stations. The consecutive dry days (CDD) trend
indicates a monotonic increase over the observation period, as shown in Figure 5a. Similarly,
consecutive wet days (CWD) indicate an increasing trend as shown in Figure 5b. Further,
extreme events with the count of days that recorded a basin average rainfall of less than
1 mm/day (Figure 5c) and above 10 mm/day (Figure 5d) show increasing trends in both
extremes. A high number of consecutive and total wet days correlate with overland
flooding due to land saturation and flow concentration in catchments, while an increase in
the number of consecutive dry days positively correlates to a drought frequency increase
due to high evapotranspiration and soil water stress.

Similarly, a comparison of extreme events with the peak recorded rainfall from past
and future GCMs were ranked as shown in Figure 6. All GCMs indicate higher peak rainfall
intensity in the future projection. As a result, the occurrence of extreme climate events
in the Blue Nile basin will high likely increase in the future period. These also echo the
increase in the frequency of flash and riverine floods observed in the downstream area of
the Blue Nile basin in the recent past, particularly in 2020 and 2021. Changes in extreme
weather and climate events, including an increase in the number of heavy precipitation
events in several regions, have been linked to human influence [46].
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3.1.3. Total Precipitation

Precipitation in the observation data between 1981 and 2010 was analyzed using a
non-parametric evaluation at each observation station considering the Mann–Kendall and
Sen’s slope tests. From the results, both increasing and decreasing trends were observed
over different seasons. As can be noted from Table 1, in the Kiremt season, 9 of 12 stations
indicate a significant trend in at least one month between June and September. Decreasing
trends in February were observed in five stations located in the central part of the basin.
In addition to the spatial and inter-annual difference in increasing and decreasing trends,
overall, the basin’s total annual trend tends to be increasing at a non-significant level.

Precipitation comparison for GCM past and future indicates higher rainfall in the
future period for CESM1(CAM5), MPI-ESM-MR, and MPI-ESM-LR models with 10.9%,
+10.7%, and 7.1% increases, respectively. The ACCESS1.0 model indicates negligible or
no change (0%), while the CMCC-CMS model projected a decrease of 9.0%, a percentage
calculated by (Future − Past)/Past × 100, as shown in Figure 7a. Further, the projected
changes in GCM assessed by season (Figure 7b) indicate a significant average precipitation
increase for MPI-ESM-LR, MPI-ESM-MR, and CESM1 (CAM5) during the wet Kiremt
(JJAS) season. In Bega (ONDJ), only CESM1 (CAM5) predicted a decrease, while in the
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Belgi (FMAM) season, four models indicate decreasing trends. The projected changes in
precipitation indicated high inter-annual variability.

Table 1. Non-parametric monthly precipitation trend test at observation stations.

Test Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Gondar
MK (Z) 0 −0.41 0 −0.11 0.62 1.13 1.64 2.2 1.24 −0.33 −0.68 −0.17

Sen’s (Q) 0 0 0 −0.08 1.3 3.11 3.1 4.54 1.33 −0.78 −0.14 0

Delgi MK (Z) 0.4 −0.46 0.2 −0.18 0.32 1.23 1.74 1.6 1.2 −0.43 −0.82 −0.07
Sen’s (Q) 0 0 0 −0.18 1.2 2.11 2.1 3.7 1.1 −0.58 −0.24 0

Addis
zemen

MK (Z) 1.25 −0.31 0.18 0.28 0.96 1.86 0.45 0.73 1.35 −1.75 0 −1.81
Sen’s (Q) 0 0 0 0.1 1.65 5.61 3.14 1.73 4.04 −1.77 0 −1.82

Mehal_meda
MK (Z) 1.34 −2.1 −0.17 −0.99 0.28 1.35 0.67 −0.96 0.34 −1.41 1.48 −0.29

Sen’s (Q) 0.5 −2.94 −0.48 −1.15 0.26 1.43 2.49 −1.79 0.48 −0.53 0 0

Filiklik
MK (Z) −0.71 1.45 −1.21 −0.93 0.39 2.43 1.07 0.06 −0.17 −0.59 1.53 −1.08

Sen’s (Q) 0 −0.46 −1.43 −1.11 0.68 6.8 4.3 0.45 −0.93 −0.72 0 0

Uka
MK (Z) −1.19 −0.4 −0.99 −0.17 −0.68 −0.51 1.02 −1.3 0.39 −0.73 −0.51 −0.4

Sen’s (Q) −0.51 −0.09 −1.03 −0.38 −3.16 −1.53 2.86 −3.77 1.95 −2.15 −0.62 −0.06

Gebrguracha MK (Z) 0.45 −0.4 −0.03 −0.31 0.85 2.26 0.79 −0.85 0 0.4 1.05 −0.15
Sen’s (Q) 0.1 0 0 −0.32 1.79 4.95 1.96 −1.77 0.17 0.06 0.01 0

Fiche
MK (Z) 0.99 −2.03 −0.9 −0.87 0.62 2.03 1.35 −0.23 −0.9 −0.08 1.8 −0.55

Sen’s (Q) 0.15 −2.35 −0.78 −1.4 0.65 2.2 4.79 −0.53 −1.11 −0.03 0.18 0

Enchini
MK (Z) −0.37 −2.28 0.34 −0.23 1.24 1.64 0.28 0.11 0.06 −0.68 0.85 −0.45

Sen’s (Q) −0.28 −2 0.68 −0.3 3.1 2.75 1.03 0.18 0.14 −0.95 0.24 −0.13

Tikurenchini
MK (Z) 0.2 −2.54 −0.28 1.41 0.85 1.52 0.62 −0.45 1.97 0.68 0.17 −1

Sen’s (Q) 0.11 −2.33 −0.89 5.5 1.86 3.8 1.14 −1.35 5.44 1.42 0 −0.47

Bedele
MK (Z) −0.87 −1.13 −1.13 0.23 0.79 1.69 1.69 1.24 0.85 −0.28 0.93 −0.79

Sen’s (Q) −0.32 −0.6 −1.2 0.18 2.52 4.37 4.75 −2.46 2.35 −0.97 1.22 −0.35

Setema
MK (Z) −0.11 −1.75 −1.52 0.68 1.33 −1.18 1.13 −1.07 0 −0.39 −1.18 −1.38

Sen’s (Q) −0.18 −1.9 −2.3 1.2 4.13 −2.81 3.3 −2.45 0.06 −1.57 −0.99 −0.69

Bold is significant at 10%.
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The spatial distribution of annual precipitation change in GCMs is displayed in
Figure 8. Both increasing and decreasing rainfall projections from GCMs were found
to be higher in the southern part of the Blue Nile basin. In this study, precipitation esti-
mates from observation data and GCMs indicated that future total precipitation will likely
increase, with an increase in basin average precipitation during wet seasons and a decrease
in dry seasons. Generally, the results of both observed trends and GCM projection indicate
high spatial and intra-annual variability in future precipitation in the Blue Nile basin.
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3.2. Uncertainty Analysis

In this study, major climatic physical variables over a wider domain were examined
using the DIAS-CMIP5 tools to understand the differences in GCM precipitation projections.
Variance among GCM projections results from differences in the model formulation and
internal variability of climate systems [47]. Various climatic variables’ uncertainty on
a wider scale and different pressure levels were analyzed statistically and graphically.
However, wind speed and direction differences for the Kiremt (JJAS) season were found to
linearly correlate with the precipitation projection direction of the GCM models. ACCESS1.0
and CMCC-CMS show strong wind at the southern part of the Indian Ocean diverted
towards the southern part of the ocean, with the red region displayed in Figure 9a,c. Wind
vectors for CESM1 (CAM5), MPI-ESM-LR, and MPI-ESM-MR models show stronger wind
vectors in the southern part of the Indian Ocean directed towards the study area, shown
as the purple region in Figure 9b,d,e. These patterns are suggestive of a strong impact of
the Indian summer monsoon on the projected rainfall increase, while diverted winds are
linked to the decrease in projected precipitation in the Blue Nile basin.
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Furthermore, the movement of the ITCZ in response to the position of the sun and
tread winds is responsible for the convergence and rising of warm, moist air masses
into the atmosphere followed by condensation and cloud formation, which create high
precipitative storms in tropical latitudes. In most global climate models, more energy flux
and cloud bias are responsible for excessive rainfall projections [48]. Lau and Kim [4] found
a strengthening of the Hadley circulation and its connection to increased global dryness.
This study identifies a linkage between rainfall projections and wind vector movement
as well as the south–north difference in the spatial distribution of precipitation change.
Analysis of the climate variables differences in GCMs in association with the ITCZ and the
Hadley Circulation movement enhances the efficacy of climate models.

3.3. Hydrological Assessment

Calibration and validation of the WEB-RRI model were performed against the ob-
served data at the Abbay Kessie observation station. Calibration was conducted for daily
data between 1993 and 1996. The validation is performed for the past simulation period
between 1981 and 2000. An acceptable range of error metrics was obtained for both the
calibration and validation and matching hydrographs as shown in Figure 10 below.
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3.3.1. Water Balance

Hydrologic simulation for each selected model was evaluated with observed discharge
data at Abbay Kessie station to assess the GCMs’ flow simulation performance in the
past. The evaluation results have shown a satisfactory simulation with most of the GCMs
attaining an acceptable range for error indices, as shown in Table 2. This evaluation
established the model reliability for future discharge prediction based on the past simulation
performance.

Table 2. Error metrics for observed and GCMs’ past simulation at Abbay Kessie station.

Parameter Observed ACCESS 1.0 CESM1
(CAM5) CMCC-CMS MPI-ESM-LR MPI-ESM-MR

NSE 0.84 0.66 0.44 0.58 0.72 0.72
MBE (m3/s) −97.59 −126.78 −184.44 −127.28 −97.14 −127.73

RMSE (m3/s) 262.02 383.91 491.53 425.57 348.02 347.36

The future water balance and its differences from the past at major points along the
river have been assessed, as shown in Table 3. The flow in three models indicated increasing
total volume while two models showed decreasing values. CESM1(CAM5), MPI-ESM-LR,
and MPI-ESM-MR models show an increase in total volume in the future period while
CMCC-CMS and ACCESS1.0 models indicate a decrease at all locations from the upstream
Lake Tana outlet to the very downstream location at Khartoum. At the border station,
which is the inflow to the GERD dam, the projected flow indicated the highest sensitivity to
both increases and decreases in the river flow change, while the upstream area was found
to show less sensitivity to changes. Thus, the flow projection indicates a likely increase in
the total flow in the future period along the Blue Nile River with spatial variability.

Table 3. Annual water balance variability along the Blue Nile River.

Location
GCM Annual Flow Difference in % (Future – Past/Past × 100)

ACCESS 1.0 CESM1 (CAM5) CMCC-CMS MPI-ESM-LR MPI-ESM-MR

Bahir-Dar −5.3 0.5 −24.0 3.6 20.4
Kessie −10.3 5.6 −26.7 7.5 15.8

Sudan Border −15.1 11.5 −33.3 8.9 18.3
Khartoum −6.1 9.7 −25.7 5.2 16.3

On the other hand, evapotranspiration (ET) is projected to increase in all GCMs with
annual and seasonal variability, with the highest being in the Kiremt season and the lowest
in the Belgi season, as shown in Figure 11. Furthermore, the ET temporal variability
reflects the high vegetation transpiration during and after the rainy season. The spatial and
temporal distribution of ET in the Blue Nile basin exceeds the potential ET in the period of



Sustainability 2022, 14, 15438 14 of 20

May through November [49]. The changes in ET are mainly attributable to the temperature
increase incorporated into the future hydrologic model simulation.
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3.3.2. Hydrological Extremes

All-time-high flood inundation maps for the past, future, and difference (future–past)
simulations extracted in the WEB-RRI model (Figure 12) indicate an increase in all GCMs.
The future inundation area for ACCESS1.0, CESM1(CAM5), CMCC-CMS, MPI-ESM-LR,
and MPI-ESM-MR will increase by 2208, 14782, 2618, 753, and 1838 km2, respectively. In
the Blue Nile basin, extreme high flows practically trigger floods around Lake Tana and
downstream areas. Typically, the inundation area was identified in the downstream area
for both the past and future. Nevertheless, flood control in dams can substantially mitigate
disastrous floods in the future period.
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Consequently, this study assessed the extreme inflows to the GERD dam to evaluate its
potential to control flood flow to the downstream area. The result indicates a likely decrease
in extreme low inflow and an increase in extreme high flows, signaling an increase in the
frequency of both extreme flows in the future period. Extreme inflows to the GERD dam
and the applicability of the dam for flood control against annual maximum and minimum
records with real-time flow monitoring are ideal to mitigate the occurrence of disasters.
Adjusting the dam operation for hydropower operation of the dam maximizes the benefits
to all. The annual total projected inflow to the GERD dam also indicates a likely increase,
as shown in the box and whisker graph in Figure 13.
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Figure 13. Wet and dry extreme discharge changes at the GERD dam using a box–whisker for annual
maximum and minimum extreme records between future and past periods. The top bar is a maximum
percentile, the lower bar is a minimum percentile, the top of the box is the third quartile, the bottom
of the box is the first quartile, the middle bar in the box is the median value, plus sign represents the
outlier, and the star sign within the box represents the mean value.

4. Discussion

This study evaluated the impact of climate change on future water resources and inves-
tigates climate-change-related uncertainties regarding the Blue Nile basin using 30 years of
observed hydro-climatic data and statistically bias-corrected outputs of five GCMs selected
based on their regional performance through DIAS-CMIP5 tools. The observed data show
a monotonically increasing trend in temperature and extreme rainfall while the total pre-
cipitation shows an unsteady trend. The GCM projection under RCP8.5 scenarios provides
evidence of uniformity in the temperature increase indicating an extremely likely warmer
climate in the future. The climate projection also indicates a high probability that extremely
dry and wet events will occur in the future period.

The analysis of total precipitation in GCMs indicates an increase in three of the five
models (i.e., CESM1(CAM5), MPI-ESM-MR, and MPI-ESM-LR), while ACCESS1.0 remains
the same and CMCC-CMS shows a decreasing trend. The seasonal precipitation projections
indicated a difference from the annual, particularly in the rainy season. The Kiremt (JJAS)
season was used to assess the uncertainties of projection as the bulk rainfall in the Blue
Nile region is received in this season. Similarly, trends in observed precipitation were
found to show seasonality, increasing in Kiremt and decreasing in Bega seasons. The
spatial distribution at stations indicated the sensitivity of the southern part of the basin,
particularly the Dedesa and Dabus sub-basins, to both increasing and decreasing trends.
The results indicate high inter-annual and spatial variability in precipitation projection.
While previous studies also indicated uncertainty in precipitation projection in the Nile
region [11–15], this study investigated the sources of differences in the GCM’s climate
variables for understanding the variance in GCMs.

As a result, an uncertainty analysis of precipitation projection conducted in major
climatic physical variables over a wider domain identifies wind vector dynamics as a key
factor for the projected precipitation differences in GCMs. Meanwhile, no robust trend
was found in the statistical comparison of geopotential height, specific humidity, outgoing
longwave radiation, and sea surface pressure (SLP) in the synoptic scale. Studies show that
Ethiopian rainfall is strongly influenced by Indian Ocean circulation and the ENSO [50,51].
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The connection between Africa and India is also suggested to reflect a common imprint
of the Madden–Julian oscillation, which is known to affect intra-seasonal variations of the
Indian monsoon [52]. Moreover, a study on the CMIP5 GCM’s climate projection indicates
changes in the strengthening of Hadley Circulation in the deep tropics induce atmospheric
moisture divergence and reduce tropospheric relative humidity, resulting in an increased
frequency of dry events in preferred geographic locations worldwide [4]. In future studies,
this can be addressed through a detailed assessment of climate variables at various pressure
levels. The uncertainty analysis can also provide inputs for the improvement of climate
model accuracy.

The analysis of river flow at selected locations from upstream to downstream indicates
high variability in the projected changes and suggested a likely increase in flow discharge in
the future. The flood inundation with an all-time peak inundation and the evapotranspira-
tion comparison indicate a high likely increase in both parameters. The interconnectedness
of changes in temperature, evapotranspiration, and water availability is also expected
to affect agricultural productivity. Allam et al. [49] estimates the spatial and temporal
distribution of ET in the Blue Nile basin and found that the actual ET exceeds the potential
ET with a peak actual evapotranspiration rate of approximately 150 mm/month from July
through September. Thus, it is very likely that flooding due to peak discharge and drought
(resulting from extremely low flow) would increase in the future period. The comparative
assessment of changes in observed trends and the results of GCM projections provided in
this study enables a qualitative assessment (Table 4) with a high confidence level.

Table 4. Summary of basin-scale climate change assessment.

Meteorological Assessment Hydrological Assessment

Temperature Extreme
Rainfall

Total
Rainfall

Total
Discharge

High Flow
(Flood)

Low Flow
(Drought)

Level of
confidence

Extremely
likely

increase

Very likely
increase

Likely
increase

Likely
increase

Very likely
increase

Very likely
increase

Further, seasonal and extreme flow projections indicate a reduction in future low flow
and an increase in high flow with high inter-annual variability, including a likely increase in
the frequency of seasonal extreme inflows to the Grand Ethiopian Renaissance Dam (GERD).
Although 85% of Nile waters originate in Ethiopia, nearly all related consumption occurs
downstream in Egypt and Sudan, and the GERD operations are expected to significantly
change downstream flow patterns [5,53]. The GERD dam, which is near completion, had
three consecutive years of progressive storage (i.e., 2020 to 2022); however, the downstream
area experienced devastating floods during these particular periods. As a result of this
study, the frequency of the extreme flow to the GERD dam is found to increase even more.
In light of this, the outputs of this study suggest operational considerations aimed at
optimizing existing and proposed dams for water resource management and disaster risk
reduction in addition to their intended purposes. If the GERD is properly operated, it would
generate substantial economic benefits and enhance economic growth and welfare in all the
Eastern Nile countries through basin-wide power trade [54]. To envision shared benefits
and reimagine more prosperous development among the riparian countries, encouraging
partnerships and moving beyond business-as-usual are indispensable. This study also
suggests the vitalization of water infrastructure for basin-wide climate change adaptation
based on scientific projections (e.g., GERD, Rosaries, and Sennar dams). This kind of
activity will also reduce the cost inquired by loss and damages due to improper planning.
Furthermore, the consideration of climate change risk in transboundary river negotiations
and treaties can fundamentally enhance the equitable and reasonable use of water resources
based on internationally available water laws, the UN Sustainable Development Goals
(SDGs), and the general principles of the Sendai Framework for Disaster Risk Reduction.
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5. Conclusions

This study applies a novel methodological approach to achieve findings helpful for a
substantial understanding of the impact of climate change on the water resource of the Blue
Nile basin. The meteorological assessment, temperature and precipitation, and the hydro-
logical assessment of total and extreme flow provide evidence indicative of future extreme
condition occurrence. The quantitative and qualitative results presented here indicate the
need for the integration of future developments in climate change adaptation and disaster
risk reduction in the Nile River basin. An increase in the frequency of extremely high flow
with high inter-annual variability would pose flood hazards. Seasonally low flow reduction
would affect agricultural productivity and environmental flow in the basin. As a result, the
optimization of dam operation is recommended to reduce the impact of the inter-annual
and spatial variability of dry and wet seasons, as well as extreme flood and drought events.
In a transboundary context, the operation of water storage infrastructure in response to
climate change scenarios would help countries to generate returns and improve their ability
to cope with the risk of floods and droughts [5]. Flooding during peak flow and irrigation
water release during low flow require operational adjustment to accommodate the total
volume increase and seasonal fluctuation so as to smooth downstream release. Furthermore,
the results indicate that the GERD dam offered an opportunity to maximize the availability
of water for irrigation and environmental flow and mitigate flood and drought risks as
an element of climate change adaptation. In addition, the GERD hydroelectric generation
operation could enhance downstream water storage in locations including the high Aswan
dam. Consequently, GERD dam operation could enhance disaster risk reduction, basin
planning, and cooperation across the entire Nile River basin.

We conclude that the climate change assessment methodology developed in this study
is a useful tool to transparently study climate change projection under uncertainty and could
provide evidence that would support future efforts to adapt to climate change. These results
also point to a need for research on the optimization of water storage system operation
with climate change scenarios and research on topics including real-time monitoring for
disaster risk reduction. The results presented here are clear and practical and include
ways to formulate projections for addressing uncertainty in climate change. Addressing
climate hazards, particularly in transboundary water systems under development, not
only mitigate the water-related challenges but also provide an opportunity for consilience
between researchers and the community in the form of informed decision-making and the
implementation of Integrated Water Resource Management (IWRM). Furthermore, from
this study, it is notable that directing efforts to climate change mitigation and adaptation
through reducing emissions and cooperation is key to reducing loss and damages. Future
directions of this research should focus on analyzing reservoir optimization and real-time
monitoring under a changing climate in the Nile basin.
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