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Abstract: In this study, adsorption of the heavy metal ions (Pb(II), Cu(II) and Cd(II)) from water by
peanut shells (PS), sawdust (S) and commercial activated carbon (AC) were comparatively studied.
Thus, the relationship between different adsorption parameters and different heavy metal ion removal
rates was investigated. The adsorption capacity of the three adsorbents for heavy metal ions increased
with an increase in temperature, pH value, contact time, adsorbent dosage, and heavy metal ion
concentration, however, it decreased with an increase of adsorbent particle size. All the adsorption
processes are better described by Langmuir isotherm or Freundlich isotherm. Thus, the results show
good agreement with pseudo-second-order kinetics and the adsorption processes are spontaneous
heat absorption processes. Herein, all adsorbents have higher affinity for Pb(II) ions, and hence
possess higher removal rates. In addition, heavy metal ions were desorbed significantly at acidic
conditions in the desorption experiments. The results demonstrate that PS can be used as a green
adsorbent instead of AC for the adsorption of heavy metal ions from the water.

Keywords: adsorption; desorption; agricultural waste; natural adsorbents

1. Introduction

Industrialization is increasing along with the rapid development of human society.
Generally, major industries such as the chemical industry, textiles, tanning, mining and
smelting, paints and pigments, ceramics and glass, paper and pulp industries, and the alloy
and storage battery industries have contributed to widespread heavy metal pollutions [1,2].
The industrial wastewater generated by these industries is typically composed of heavy
metals (copper (Cu), cadmium (Cd), lead (Pb), zinc (Zn), cobalt (Co), etc.). Because heavy
metals are inorganic and non-degradable, they can exist in nature for a long time and
continue to accumulate, thus threatening the healthy growth of ecosystems [3]. Lead
and cadmium, for instance, can cause cancer [4]. Cobalt can cause kidney and liver
disease, while copper and zinc can cause brain and bone damage [5,6]. Therefore, the
question of how to effectively remove heavy metals from water is an urgent problem for
people to solve. Heavy metal may be effectively separated from different media using
various methods based on physical, chemical and biological processes such as chemical
precipitation [7], membrane separation [8], ion exchange [9], electrodialysis [10], and
phytoremediation [11]. Nevertheless, these processes have inherent limitations in their
application. Chemical precipitation can effectively remove heavy metal ions from water, but
chemicals can cause secondary pollution to the environment and the resulting precipitation
is difficult to remove [12]. Membrane separation, ion exchange, and electrodialysis are all
highly effective in removing heavy metal ions, but their high cost and operating difficulties
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make them difficult to use on a large scale [13]. Although phytoremediation is a green and
non-polluting method to remove heavy metal ions from the environment, the length of
time required for this process restricts its further application [14]. Compared with other
treatment technologies, the adsorption method has the advantages of simple operation,
high adsorption rate and no secondary pollution [15,16] and is one of the most widely used
methods for removing heavy metals from the water [14]. Activated carbon is prepared
from raw materials containing carbon, such as wood, coal, and petroleum coke, through
pyrolysis and activation processing. Moreover, it has a developed pore structure, large
specific surface area, and rich surface chemical groups, hence, it is often used as a traditional
adsorbent [17,18]. AC is mostly used for drinking and technological water treatment [19].
Nowadays, as coal is becoming less accessible and much more expensive than a decade
before, its usage for water treatment has become more limited [20,21] and, therefore, finding
one or more low-cost, high-adsorption materials is necessary.

Low-cost absorbent materials can be roughly divided into four categories: natural
minerals, agricultural waste, animal and plant waste, and industrial waste [1]. Zhu et al. [22]
have found that cow manure can effectively remove Pb(II)and Cd(II). Xu et al. [23] have
demonstrated that oyster shell powder can efficiently remove Cu(II), Pb(II), and Cd(II) from
wastewater. Veli et al. [24] have concluded that natural clay can be used as an effective
adsorbent for the removal of Cu(II) and Zn(II) from aqueous solutions. Nadaroglu et al. [25]
have concluded that red mud could be successfully used to remove Cu(II) from the aqueous
solutions with heavy metals. However, some low-cost adsorbents, such as red mud with its
strong alkalinity, have a certain degree of pollution and may produce secondary pollution
in large-scale applications. Hence, the application of red mud generally requires activation
treatment, which increases the cost of its use [26]. The main components of agricultural
waste are cellulose, hemicellulose and lignin, which are natural substances and will not
cause secondary pollution. Some studies have shown that the presence of cellulose helps
adsorb heavy metal ions [27]. In addition, agricultural waste shares other advantages,
such as various pores, large surface area, and stable structure. Therefore, the use of
agricultural wastes as adsorbents is feasible. Most of the current research has focused on
the preparation and modification of biochar, and there is less research on the comparison
of natural materials with AC. In China, a large amount of agricultural waste is produced
annually, and most of the agricultural waste is disposed of through incineration, which
ultimately causes environmental pollution. Thus, research on agricultural waste is an
urgent issue.

This study aims to compare the adsorption effects of PS, S, and AC on heavy metals
from water in order to select a natural adsorbent that can replace commercial activated
carbon for water treatment. Therefore, natural peanut shells and sawdust without any
activation treatment were selected. The adsorption effect of the adsorbent was evaluated
by batch adsorption experiments, desorption experiments, as well as SEM, FTIR, and BET.
Adsorption kinetics and adsorption isotherms were also investigated.

2. Materials and Methods
2.1. Preparation of Materials

The PS and S were purchased from local farmers’ markets in South Korea. Chemi-
cals (Pb(NO3)2, Cu(NO3)2·2H2O, Cd(NO3)2·4H2O, NaOH, and HNO3) and commercial
activated carbon were purchased from Merck, Germany. All the compounds used in this
research were of analytical grade. All solutions were configured from distilled water.
Herein, 1.60 g of Pb(NO3)2, 3.80 g of Cu(NO3)2·2H2O, and 2.75 g of Cd(NO3)2·4H2O were
dissolved in distilled water in a 1000 mL volumetric flask to configure the Pb(II), Cu(II),
and Cd(II) ions mother liquor at a concentration of 1000 mg/L for subsequent experiments,
respectively. Meanwhile, NaOH and HNO3 (1 M) were used to adjust pH values.

Materials were washed with distilled water (to remove residues), dried in the air, and
placed in a thermostat at 110 ◦C for 72 h. They were then crushed in a grinder and sieved
using meshes of different sizes. Adsorbents with the following different particle diameters
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were obtained: 0–0.45, 0.45–0.85 mm, 0.85–1.18 mm, and 1.18–2.00 mm. The basic physical
and chemical properties of the three adsorbents used in this study are shown in Table 1.

Table 1. Basic physical and chemical properties of three adsorbents (particle size 0.85–1.18 mm).

Adsorption Material AC PS S

pH 7.6 6.7 5.1

Specific surface area (m2/g) 532 3.6 1.25

Fixed carbon (%) 82.23 27.31 16.73

Volatile substances (%) 11.23 50.3 59.87

Water content (%) 3.76 8.96 9.1

A scanning electron microscope (SEM) was used to observe the surface of the adsorbent
microscopically. In addition, Fourier transform infrared spectroscopy (FTIR) was used to
determine the functional group and molecular structure of the adsorbent. The spectrum of
the adsorbent was measured within the range of 4000–400 cm−1 wave number.

2.2. Adsorption Experiments

Batch adsorption experiments were conducted based on the standard method recom-
mended by the Organization of Economic Cooperation and Development (OECD,2000).
In addition, a self-designed round stirrer was used for the batch adsorption experiments.
The batch adsorption experiments were performed in 50 mL glass test tubes at an optimum
condition with a pH of 7, reaction time of 5 h, temperature of 24 ◦C, adsorbent mass of
0.4 g/35 mL, particle size of 0.85–1.18 mm, and initial metal ion concentration of 60 mg/L
for each of the Pb(II), Cu(II) and Cd(II) ions. Then, the batch adsorption studies were con-
ducted for different effects, including temperature (8–24 ◦C, with 4 ◦C intervals), pH value
(2–10), adsorbent particle size (0–2 mm), contact time (10–1440 min), adsorbent dosage
(0.2–1 g), and initial heavy metal solution concentration (20–400 mg/L) on the adsorption
efficiencies were studied. Each adsorption experiment was repeated thrice, and the average
value was taken for analysis. Finally, the mass of heavy metal ions adsorbed per unit of
adsorbent was calculated by Equation (1). Meanwhile, the removal ratio of heavy metal
ions was calculated by Equation (2):

qe =
(C0 − Ce)× V

M × 1000
(1)

R =
(C0 − Ce)

C0
× 100% (2)

where C0 is the initial concentration of the heavy metal solution (mg/L), Ce is adsorbate
concentrations at equilibrium (mg/L), qe are adsorbed amount at equilibrium (mg/g), R
is the removal efficiency of heavy metal (%), V is the volume of the heavy metal solution
(mL), M is the mass of the adsorbent (g).

2.3. Adsorption Kinetics

Herein, kinetic models are used to investigate the batch adsorption results affected
by contact time and understand the diffusion characteristics of heavy metal ions from
liquid to solid [28–30]. The type of adsorption mechanism preceding heavy metal ions
can be determined through kinetic studies [31]. At present, the pseudo-first-order kinetic
model (Equation (3)), pseudo-second-order kinetic model (Equation (4)), and intra-particle
diffusion model (Equation (5)) are widely used kinetic models and their linear expressions
are as follows:

log(qe − qt) = log qe − K1t (3)

t
qt

=
1

K2q2
e
+

t
qe

(4)
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qt = Kdt
1
2 + D (5)

where qt is the adsorption capacity when the adsorbent contact time is t (mg/g), K1 is the
rate constant of the pseudo-first-order kinetic model, and K2 is the rate constant of the
pseudo-second-order kinetic model, Kd and D are diffusion kinetic parameters.

2.4. Adsorption Isotherm

Analysis of adsorption isotherms can help us to understand the process of heavy metal
ions in the transfer from the solution to the surface of the adsorbent. Herein, we used
Langmuir (Equation (6)) and Freundlich isotherms (Equation (7)), two commonly used
isotherm models.

qe =
CeKLqm

1 + CeKL
(6)

qe = KFCe
1
n (7)

where KL is the ratio of the adsorption rate and desorption rate (L/mg), b is the constant of
the Langmuir model (mg/g), KF and n are the constants of the Freundlich model.

2.5. Adsorption Thermodynamics

Values of thermodynamic parameters are essential indicators for adsorption application.
In general, the Gibbs free energy (∆G), enthalpy (∆H) and entropy (∆S) changes are calculated
using Equations (8)–(10) based on the adsorption results at different temperatures.

Kc =
qe

Ce
(8)

ln Kc = −∆H
rT

+
∆S
r

(9)

∆G = ∆H − T∆S (10)

where Kc is the thermodynamic equilibrium constant (L/g), ∆H is the enthalpy change
(J/mol), ∆G is the free energy change (J/mol), ∆S is the entropy change (J/(mol·k)), T is
the absolute temperature (K), r is the ideal gas constant, 8.314 J/(mol·k).

2.6. Desorption Experiment

The desorption experiment is carried out at acidic conditions (pH = 5), neutral conditions
(pH = 7), and alkaline conditions (pH = 9). Acidic conditions were prepared with nitric acid
and distilled water, while the neutral conditions were prepared with distilled water only, and
alkaline conditions were prepared with sodium hydroxide and distilled water.

A total of 50 mL of heavy metal solution (60 mg/L) and 0.4 g of adsorbent were taken
into a 70 mL glass bottle, reacted at 24 ◦C, and pH value of 7. After 5 h of adsorption, the
glass bottle was removed from the stirrer. After standing for 2 h, 20 mL of the supernatant
liquid was taken out from the bottle, then the same volume of the desorbent solution was
added under different conditions into the glass bottle, and the newly obtained mixture was
placed in a rotary stirrer and stirred for 24 h. The desorption process was repeated thrice.
After each desorption was completed, 20 mL of the supernatant was replaced, and the same
volume of desorption solution was added. All desorption experiments were carried out in
three sets of parallel experiments to analyse the concentration of heavy metal ions in the
supernatant replaced each time. After the desorption was completed, the mass of heavy
metal ions adsorbed on the adsorbent was calculated by Equation (11) and the desorption
efficiency of metal ions on the adsorbent was calculated by Equation (12).

Qdi =
C0 × V0 − Cdi × V − ∑(Cr × Vr)

1000 × M
(11)

Desorption efficiency =
Qd0 − Qd1

Qd0
(12)
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where V0 is the volume of the solution (mL), Qdi is the mass of heavy metal ions adsorbed
on the adsorbent after i analysis process (mg/g), Cdi is the concentration of heavy metal
solution after i desorption process (mg/L), ∑(Cr×Vr) is the total number of heavy metal ions
removed from the glass bottle before the desorption process (mg), Cr is the concentration
of heavy metal ions removed from the glass bottle (mg/L), and Vr is the concentration of
heavy metal ions removed from the glass bottle (mL).

3. Results and Discussion
3.1. Adsorbent Characteristics

The main elemental components of the three adsorbents are composed of C and O from
Table 2. The weight percentage of carbon produced by AC is above 90%. In contrast, PS and
S showed a decrease in carbon for the weight percent more than the AC, which is similar
with previous research results [32]. The electric field emission scanning electron (SEM)
studied and analysed the microstructure of the adsorbent. The SEM images of adsorbents
is shown in Figure 1. Herein, AC has various pores on the surface and has high adsorption
rate for heavy metal ions (Figure 1a). Meanwhile PS has a rough texture structure with
voids or pores formed on the surface and has a good adsorption structure, which can be
used to adsorb heavy metal ions (Figure 1b). The surface of the S is relatively smooth, a
directional structure filled in filaments with anisotropic characteristics (Figure 1c).

Table 2. Composition of EDX elements of adsorbent.

Absorbent Element Wt% At%

AC
C 92.21 94.03

O 7.91 5.97

PS

C 50.09 57.89

O 47.39 41.11

Mg 0.53 0.30

K 1.05 0.37

Ca 0.94 0.33

S
C 55.97 62.87

O 44.03 37.13
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Figure 1. SEM image of adsorbents showing the particle size of 1 µm at 10,000 magnificationfor AC,
PS, and S.

The FTIR of the three adsorption materials is shown in Figure 2. Herein, the vibrational
spectrum of PS and S are similar. The peak near 2900 cm−1 represents the C–H and
methylene CH3 stretching vibrations on the surface of both adsorbents, thereby indicating
the presence of lignin in both. Meanwhile, the peak between 1300 cm−1 and 1000 cm−1
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can be attributed to the C–O stretching vibration of the carboxyl group. The peak between
1500 cm−1 and 1300 cm−1 is caused by the COO- stretch vibration of the carboxylic acid
functional group, which indicates that the PS and S contains cellulose. In conclusion, PS and
S contain functional groups such as carboxyl, hydroxyl, and methyl groups [33,34]. From
the vibrational spectrum of AC, the broadband around 3425 cm−1 indicates the existence
of hydroxyl groups with O–H stretching vibration. In addition, the peak at 2900 cm−1

is attributed to the C–H tensile vibration. There are five peaks between 2000 cm−1 and
1000 cm−1. The peak around 1800 cm−1 can be attributed to the C=O stretching vibration of
the carbonyl group. Meanwhile, the peak value of about 1600 cm−1 belongs to C=C tensile
vibration absorption. Moreover, the peak around 1400 cm−1 belongs to COO-vibration.
The peak around 1000 cm−1 is the C–O tensile vibration of CH2–O–CH2. Therefore, oxygen-
containing surface functional groups play an important role in the performance of AC. The
main functional groups in AC are carboxyl and hydroxyl [35].
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Figure 2. FTIR spectra of AC, PS and S.

3.2. Factors Affecting Absorption
3.2.1. Effect of Contact Time

Contact time is an essential factor in studying the equilibrium state of the adsorption
process, and it determines the kinetic characteristics of adsorption. The changes in the
number of heavy metal ions at different times are shown in Figure 3. With the increase in
contact time, the number of heavy metal ions adsorbed by different adsorbents increased
rapidly and then gradually reached equilibrium. This trend is similar to other studies
on heavy metal adsorption [36,37]. In the initial stage of adsorption, there are enough
adsorption sites on the adsorbents’ surface to adsorb a large number of heavy metal
ions Consequently, the adsorption sites tend to be saturated, and the removal efficiency
also decreased and reached equilibrium, thereby providing diffusion resistance [38]. In
addition, the order of adsorption effect for three different heavy metal ions is as follows:
Pb(II) > Cu(II) > Cd(II). This means that the affinity of the three adsorbents for Pb is higher
than other metals, a result which is similar to those of Skoczko et al. [39]. The order of
the adsorption performance of the three adsorbents to Cd(II) is as follows: AC > PS > S.
The order of the adsorption performance of the three adsorbents to Cu(II) is as follows:
AC > PS > S.
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3.2.2. Effect of Temperature

Temperature is another important factor thar affects the adsorption process. The
changes in the adsorption of heavy metal ions at different temperatures are shown in
Figure 4. Herein, the amount of adsorbed heavy metal ions increases with the increase in
temperature, thus indicating that the adsorption process is an endothermic reaction. The
reasons for this phenomenon may be as follows: (1) a higher temperature provides more
energy for the adsorption process, through which heavy metal ions can be better transferred
from the solution to the adsorption site of the adsorbent [40]; (2) a higher temperature
can increase the ion exchange capacity of the adsorbent [41]; and (3) a higher temperature
can activate the spots on the surface of the adsorbent, thereby obtaining more effective
adsorption sites, which can adsorb more of the heavy metal ions.
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3.2.3. Effect of pH Value

The pH value is also an essential factor affecting the adsorption effect because it can
affect the surface charge of the adsorbents and the ionization degree of the solution [42–44].
The changes in the adsorption of heavy metal ions at different pH are shown in Figure 5. It
can be seen that when the pH values were between 3–7, the removal efficiency of heavy
metal ions increased rapidly. Then the removal efficiency increased gradually and finally
reached 100%. This may be due to low pH conditions, whereby a large number of hydrogen
ions in the solution compete for binding sites on the surface of the adsorbent with heavy
metal ions, thus resulting in a decrease in the number of heavy metal ions adsorbed. As
the pH increases, hydrogen ions competing for binding sites decrease, and the number
of heavy metal ions adsorbed increases. When the pH values were greater than 8, the
precipitation rate was almost 100%. The complete removal of heavy metal ions in the
solution can be attributed to precipitation because the hydroxyl ions in the solution can
undergo a precipitation reaction with heavy metal ions [45].
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3.2.4. Effect of Adsorbent Particle Size

Herein, the changes in the number of heavy metal ions adsorbed by four different
adsorbent particle sizes (1.18–2 mm, 0.85–1.18 mm, 0.45–0.85 mm, and 0–0.45 mm) were
studied, and the results are shown in Figure 6. The results show that the adsorption capacity
of heavy metal ions decreases as the size of the adsorbent increases because of the difference
in the specific surface area of the adsorbent. For the dosage of adsorbent, a smaller particle
size means a higher specific surface area of the adsorbent, which can provide more binding
sites for the adsorption process and a shorter internal diffusion path [46,47]. These results
are consistent with those of other studies [48].

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 19 
 

Herein, the changes in the number of heavy metal ions adsorbed by four different 

adsorbent particle sizes (1.18–2 mm,0.85–1.18 mm,0.45–0.85 mm, and 0–0.45 mm) were 

studied, and the results are shown in Figure 6. The results show that the adsorption ca-

pacity of heavy metal ions decreases as the size of the adsorbent increases because of the 

difference in the specific surface area of the adsorbent. For the dosage of adsorbent, a 

smaller particle size means a higher specific surface area of the adsorbent, which can pro-

vide more binding sites for the adsorption process and a shorter internal diffusion path 

[46,47]. These results are consistent with those of other studies [48]. 

   

(a) S (b) PS (c) AC 

Figure 6. Effect of different adsorbent particle sizes on the adsorption of heavy metal ions. 

3.2.5. Effect of Adsorbent Dosage 

The effect of adsorbent dosage on adsorption is shown in Figure 7. As the adsorbent 

dosage increases, the number of heavy metal ions adsorbed per unit mass of adsorbent 

decreases. This is because the weight of the heavy metal ions in the solution was fixed. As 

the number of adsorbents increases, the total surface area and adsorption sites of the ad-

sorbent in the solution also increase. Consequently, heavy metal ions assigned per unit 

mass adsorbent decrease, and more unsaturated adsorption sites will appear on the sur-

face of the adsorbent. 

   

(a) S (b) PS (c) AC 

Figure 7. Effect of adsorbent dosage on the adsorption efficiency of heavy metal ions. 

3.2.6. Effect of Initial Concentration 

The changes in heavy metal ion adsorption and removal efficiency—in different ini-

tial concentrations—are shown in Figure 8. Herein, with the increase of the initial concen-

tration, the adsorption capacity of the adsorbent for heavy metal ions initially increased 

rapidly and then gradually reached a point where it remained unchanged. This phenom-

enon can be attributed to the driving force of the concentration gradient. In addition, as 

the initial solution concentration increases, the solution concentration gradient increases, 

and the driving force also increases. Therefore, a higher driving force can promote the 

Figure 6. Effect of different adsorbent particle sizes on the adsorption of heavy metal ions.

3.2.5. Effect of Adsorbent Dosage

The effect of adsorbent dosage on adsorption is shown in Figure 7. As the adsorbent
dosage increases, the number of heavy metal ions adsorbed per unit mass of adsorbent
decreases. This is because the weight of the heavy metal ions in the solution was fixed.
As the number of adsorbents increases, the total surface area and adsorption sites of the
adsorbent in the solution also increase. Consequently, heavy metal ions assigned per unit
mass adsorbent decrease, and more unsaturated adsorption sites will appear on the surface
of the adsorbent.

3.2.6. Effect of Initial Concentration

The changes in heavy metal ion adsorption and removal efficiency—in different initial
concentrations—are shown in Figure 8. Herein, with the increase of the initial concentration,
the adsorption capacity of the adsorbent for heavy metal ions initially increased rapidly
and then gradually reached a point where it remained unchanged. This phenomenon can
be attributed to the driving force of the concentration gradient. In addition, as the initial
solution concentration increases, the solution concentration gradient increases, and the
driving force also increases. Therefore, a higher driving force can promote the diffusion
of heavy metal ions from the solution to the adsorbent surface, thereby increasing the
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absorption rate and leading to a saturation of adsorption points on the surface of the
adsorbent. The number of adsorption sites for a certain amount of adsorbent is fixed and
can only adsorb a limited amount of heavy metal ions. As the initial concentration increases,
heavy metal ions also gradually increase. The surface adsorption sites will be progressively
occupied by heavy metal ions and tend to be saturated. Heavy metal ions adsorbent by per
unit of adsorbent increases and reaches an equilibrium state [49]. Therefore, for a certain
quality of adsorbent, the greater the initial solution concentration, the lower the removal
efficiency of heavy metal ions [50].

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 19 
 

Herein, the changes in the number of heavy metal ions adsorbed by four different 

adsorbent particle sizes (1.18–2 mm,0.85–1.18 mm,0.45–0.85 mm, and 0–0.45 mm) were 

studied, and the results are shown in Figure 6. The results show that the adsorption ca-

pacity of heavy metal ions decreases as the size of the adsorbent increases because of the 

difference in the specific surface area of the adsorbent. For the dosage of adsorbent, a 

smaller particle size means a higher specific surface area of the adsorbent, which can pro-

vide more binding sites for the adsorption process and a shorter internal diffusion path 

[46,47]. These results are consistent with those of other studies [48]. 

   

(a) S (b) PS (c) AC 

Figure 6. Effect of different adsorbent particle sizes on the adsorption of heavy metal ions. 

3.2.5. Effect of Adsorbent Dosage 

The effect of adsorbent dosage on adsorption is shown in Figure 7. As the adsorbent 

dosage increases, the number of heavy metal ions adsorbed per unit mass of adsorbent 

decreases. This is because the weight of the heavy metal ions in the solution was fixed. As 

the number of adsorbents increases, the total surface area and adsorption sites of the ad-

sorbent in the solution also increase. Consequently, heavy metal ions assigned per unit 

mass adsorbent decrease, and more unsaturated adsorption sites will appear on the sur-

face of the adsorbent. 

   

(a) S (b) PS (c) AC 

Figure 7. Effect of adsorbent dosage on the adsorption efficiency of heavy metal ions. 

3.2.6. Effect of Initial Concentration 

The changes in heavy metal ion adsorption and removal efficiency—in different ini-

tial concentrations—are shown in Figure 8. Herein, with the increase of the initial concen-

tration, the adsorption capacity of the adsorbent for heavy metal ions initially increased 

rapidly and then gradually reached a point where it remained unchanged. This phenom-

enon can be attributed to the driving force of the concentration gradient. In addition, as 

the initial solution concentration increases, the solution concentration gradient increases, 

and the driving force also increases. Therefore, a higher driving force can promote the 

Figure 7. Effect of adsorbent dosage on the adsorption efficiency of heavy metal ions.

Sustainability 2022, 14, x FOR PEER REVIEW 10 of 19 
 

diffusion of heavy metal ions from the solution to the adsorbent surface, thereby increas-

ing the absorption rate and leading to a saturation of adsorption points on the surface of 

the adsorbent. The number of adsorption sites for a certain amount of adsorbent is fixed 

and can only adsorb a limited amount of heavy metal ions. As the initial concentration 

increases, heavy metal ions also gradually increase. The surface adsorption sites will be 

progressively occupied by heavy metal ions and tend to be saturated. Heavy metal ions 

adsorbent by per unit of adsorbent increases and reaches an equilibrium state [49]. There-

fore, for a certain quality of adsorbent, the greater the initial solution concentration, the 

lower the removal efficiency of heavy metal ions [50]. 

   

(a) Cd (b) Cu (c) Pb 

Figure 8. Effect of initial concentration on the adsorption efficiency of heavy metal ions by differ-

ent adsorbents. 

3.3. Adsorption Kinetics 

In this study, the adsorption data were analysed at different times (10–1440 min). The 

fitting parameters and pseudo-second-order kinetics are shown in Table 2. Meanwhile, 

the linear fitting curves of the pseudo-first order and pseudo-second order kinetic models 

are shown in Figure 9 and Figure 10. The fitting degrees (R2) of the pseudo-second-order 

kinetic models were all above 0.99 and higher than the values obtained by the pseudo-

first-order kinetic model. In addition, the experimental adsorption capacities are much 

closer to the fitting values of equation (4). In summary, the adsorption process of the stud-

ied adsorbents for heavy metals can be better represented by the pseudo-second-order 

model compared with the pseudo-first-order kinetic model. This suggests that the reac-

tion processes are probably chemical adsorption processes controlled by rate limit, involv-

ing the sharing or replacing of electrons between the adsorbent and the heavy metal. Anal-

ysis of the rate controlling steps is beneficial for elaborating the adsorption mechanism. 

However, the intraparticle diffusion model cannot describe the whole adsorption process, 

but it reflects the speed limit factor before the adsorption balance is reached to a certain 

degree. Figure 11 illustrates the diffusion process of heavy metal ions on different adsor-

bents. The diffusion process of each heavy metal ion adsorption can be divided into two 

evident diffusion stages. In the first stage, the heavy metal ions diffuse rapidly on the 

adsorbent particles, then the concentration of heavy metal in the solution decreases and 

the particle diffusion starts to slow down before gradually reaching an adsorption equi-

librium [51]. 

Table 3 shows the fitting parameters of the intra-particle kinetic model. The slope of 

the straight line at each stage is called the rate parameter Kd. Herein, the Kd values of the 

first stage are more significant than those of the second stage. At the beginning of the 

adsorption process, heavy metal ions are mainly adsorbed by the external surface of the 

adsorbent particles, and the adsorption speed is extremely fast. Then, the external surface 

adsorption reaches saturation, and heavy metal ions enter through the pores in the parti-

cles and are adsorbed on the particles’ inner surfaces. When heavy metal ions diffuse in 

the pores of the particles, the diffusion resistance increases, thereby resulting in a decrease 

Figure 8. Effect of initial concentration on the adsorption efficiency of heavy metal ions by differ-
ent adsorbents.

3.3. Adsorption Kinetics

In this study, the adsorption data were analysed at different times (10–1440 min). The
fitting parameters and pseudo-second-order kinetics are shown in Table 3. Meanwhile, the
linear fitting curves of the pseudo-first order and pseudo-second order kinetic models are
shown in Figures 9 and 10. The fitting degrees (R2) of the pseudo-second-order kinetic
models were all above 0.99 and higher than the values obtained by the pseudo-first-order
kinetic model. In addition, the experimental adsorption capacities are much closer to the
fitting values of equation (4). In summary, the adsorption process of the studied adsorbents
for heavy metals can be better represented by the pseudo-second-order model compared
with the pseudo-first-order kinetic model. This suggests that the reaction processes are
probably chemical adsorption processes controlled by rate limit, involving the sharing or
replacing of electrons between the adsorbent and the heavy metal. Analysis of the rate
controlling steps is beneficial for elaborating the adsorption mechanism. However, the
intraparticle diffusion model cannot describe the whole adsorption process, but it reflects
the speed limit factor before the adsorption balance is reached to a certain degree. Figure 11
illustrates the diffusion process of heavy metal ions on different adsorbents. The diffusion
process of each heavy metal ion adsorption can be divided into two evident diffusion stages.
In the first stage, the heavy metal ions diffuse rapidly on the adsorbent particles, then the
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concentration of heavy metal in the solution decreases and the particle diffusion starts to
slow down before gradually reaching an adsorption equilibrium [51].

Table 3. The fitting parameters of the pseudo-first-order and pseudo-second-order kinetic models.

Adsorbent Metal Ions
Pseudo-First-Order Kinetic Model Pseudo-Second-Order Kinetic Model

K1 qe R2 K2 qe R2

AC
Pb 0.013 0.22 0.75 0.52 5.26 0.99
Cu 0.006 2.75 0.91 0.02 5.26 0.99
Cd 0.004 2.25 0.92 0.05 5.26 0.99

PS
Pb 0.028 0.11 0.98 0.26 5.26 0.99
Cu 0.003 0.32 0.94 0.10 4.55 0.99
Cd 0.014 0.93 0.77 0.15 4.00 0.99

S
Pb 0.005 0.92 0.96 0.06 4.35 0.99
Cu 0.002 0.55 0.98 0.04 3.57 0.99
Cd 0.023 0.99 0.79 0.03 2.63 0.99
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Table 4 shows the fitting parameters of the intra-particle kinetic model. The slope
of the straight line at each stage is called the rate parameter Kd. Herein, the Kd values of
the first stage are more significant than those of the second stage. At the beginning of
the adsorption process, heavy metal ions are mainly adsorbed by the external surface of
the adsorbent particles, and the adsorption speed is extremely fast. Then, the external
surface adsorption reaches saturation, and heavy metal ions enter through the pores in
the particles and are adsorbed on the particles’ inner surfaces. When heavy metal ions
diffuse in the pores of the particles, the diffusion resistance increases, thereby resulting in a
decrease in the diffusion rate. Simultaneously, the concentration of heavy metal ions in the
solution gradually decreases, the diffusion rate also gradually decreases and finally reaches
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zero. Furthermore, the diffusion driving force is significant for the adsorption process.
The decrease in the concentration of heavy metals will reduce the driving force, thereby
reducing the rate of diffusion.
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Table 4. Fitting parameters of intraparticle diffusion kinetic model.

Adsorbent Metal Ions

Diffusion Coefficient

First Stage Second Stage

Kd D R2 Kd D R2

AC
Pb 0.05 4.83 0.73 0.01 5.19 0.87
Cu 0.35 1.47 0.98 0.11 3.48 0.99
Cd 0.28 1.21 0.94 0.01 5.04 0.68

PS
Pb 0.43 4.76 0.99 0.01 1.97 0.86
Cu 0.06 3.84 0.92 0.03 4.01 0.89
Cd 0.09 3.17 0.93 0.03 3.61 0.76

S
Pb 0.08 3.34 0.9 0.01 4.19 0.84
Cu 0.03 2.97 0.98 0.01 3.24 0.74
Cd 0.10 1.87 0.85 0.01 2.46 0.83

3.4. Adsorption Isotherm

Langmuir and Freundlich isotherms were used to further study the relationship
between adsorption capacity and initial concentration. The Langmuir isotherm was used
to express the single-layer adsorption of heavy metal ions on the adsorbent with a uniform
surface and the Freundlich isotherm was used to describe the non-monolayer adsorption
that occurs on the non-uniform surface of the adsorbent [52,53].

The non-linear Langmuir isotherm and Freundlich isotherm fitting results are shown
in Figure 12. Meanwhile, their fitting parameters are shown in Table 5. Herein, Langmuir
and Freundlich isotherms can better describe the adsorption of Pb, Cu and Cd ions by the
three adsorbents. The processes of PS adsorption of Pb ions, S adsorption of Cu ions and all
adsorption of Cd ions are more consistent with the Langmuir equation, thereby indicating
that these adsorption processes are mainly explained by monolayer adsorption, while
chemisorption occupies an important position. In contrast, other adsorption processes are
dominated by multilayer adsorptions.
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Table 5. Fitting parameters of isotherm models.

Adsorbent Metal Ions
Freundlich Isotherm Langmuir Isotherm

KF n R2 KL b R2

AC
Pb 4.86 5.48 0.98 3.14 11.73 0.91
Cu 1.70 2.81 0.99 0.03 13.33 0.98
Cd 2.33 6.66 0.87 0.96 5.11 0.96

PS
Pb 2.19 3.94 0.93 0.19 8.70 0.96
Cu 0.97 2.68 0.96 0.03 8.54 0.90
Cd 1.30 4.17 0.92 0.07 5.23 0.98

S
Pb 1.39 4.16 0.96 0.04 5.91 0.92
Cu 0.85 3.11 0.92 0.03 5.81 0.97
Cd 0.82 3.64 0.92 0.04 4.23 0.98

3.5. Adsorption Thermodynamics

The thermodynamic investigations were accomplished to verify whether adsorption
occurs spontaneously in adsorption processes [54].

Table 6 presents the thermodynamic adsorption parameters of different adsorbents
for different heavy metal ions. The ∆H can be calculated from the slope of ln against 1/rT
(Figure 13). In addition, a positive value of ∆H indicates that the adsorption process is
endothermic, which is consistent with the increasing tendency of adsorption capacity with
the increase in temperature.

Table 6. Thermodynamic adsorption fitting parameters.

Adsorbent Metal
Ions ∆S ∆H

∆G
R2

281 K 285 K 289 K 293 K 297 K

PS
Pb 421.99 0.12 −11.86 −12.03 −12.20 −12.36 −12.53 0.99
Cu 145.71 0.045 −40.94 −41.53 −42.11 −42.69 −43.28 0.96
Cd 179.98 0.056 −50.57 −51.29 −52.01 −52.73 −53.45 0.94

S
Pb 160.00 0.049 −44.96 −45.60 −46.24 −46.88 −47.52 0.94
Cu 93.79 0.033 −26.35 −26.73 −27.10 −27.48 −27.85 0.94
Cd 71.24 0.028 −20.02 −20.30 −20.59 −20.87 −21.16 0.98

AC
Pb 478.43 0.13 −13.44 −13.64 −13.83 −14.02 −14.21 0.95
Cu 405.28 0.12 −11.39 −11.55 −11.71 −11.87 −12.04 0.93
Cd 77.41 0.025 −21.75 −22.06 −22.37 −22.68 −22.99 0.93
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The positive value of ∆S indicates that the degrees of freedom increased at the solid–
liquid interface during the adsorption process because of the redistribution of energy
between the adsorbent and heavy metal ions. The distribution of rotational and kinetic
energy between a small number of molecules will increase during the adsorption process,
thereby resulting in a positive ∆S value. The obtained values of ∆G are negative and
show an increasing trend at different temperatures, thus confirming that the adsorption
of heavy metal ions is spontaneous and thermodynamically favourable. Meanwhile, the
temperature is an essential factor in the heavy metal ions adsorption process. As the
temperature increases, the mobility of heavy metal ions in the solution also increases,
which causes a high affinity of heavy metal ions on the adsorbent [55].

3.6. Desorption Analysis

Herein, the desorption characteristics of heavy metal ions by three different solutions
were also investigated. The desorption results can evaluate the secondary pollution in
different environments.

Figure 14 shows the desorption effect of different adsorption solutions on Pb(II), Cu(II),
and Cd(II) ions. The acidic environment (HNO3) possesses a high desorption efficiency,
while the neutral (H2O) and alkaline environments (NaOH) are inconspicuous for the
desorption of metal ions. The available studies prove that the solubility of metals increases
with decreasing pH [56–59]. As the pH increases, the solubility of metals decreases and
the concentration of ions in solution decreases due to the precipitation of metals with OH-
in solution [60,61]. Thus, the desorption efficiency of the adsorbent is higher in the acidic
environment than in other environments. The desorption efficiency of S is significantly
higher than that of AC and PS in Figure 14a. This may be due to the fact that the binding of
Pb ions to S is mainly by outer layer adsorption or ion exchange, whereas on AC and PS it
is mainly by inner layer adsorption or complexation. Therefore, Pb is more easily desorbed
from S under an acidic environment.
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Figure 15 shows the adsorption capacities of AC, PS and S for heavy metals after dif-
ferent desorption cycles. The number of heavy metal ions adsorbed by different adsorbents
remained almost unchanged during the desorption cycle by distilled water, thus indicating
that there is hardly any desorption phenomenon in neutral conditions. As the number
of cycles increases, the adsorption capacity in the acidic solution decreases, while, on the
contrary, the adsorption capacity in an alkaline solution increases. Considering that there
are precipitation reactions between OH− and heavy metal ions in an alkaline environment,
more heavy metal ions are removed by NaOH solution. However, there is a large volume of
H+ in the acidic solution, and this H+ will compete for adsorption sites on the surface of the
adsorbent with heavy metal ions, thus reducing the number of adsorption sites available to
adsorb heavy metal ions, and thereby resulting in a decrease in heavy metal adsorption
capacity. Meanwhile, as the number of cycles increases, the pH decreases, which makes the
solubility of metal ions higher, resulting in lower adsorption of metal ions on the adsorbent.
Based on desorption experiments, AC, PS and S can be used as adsorbents in alkaline and
neutral environments, however, they are not suitable for acidic conditions.
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4. Conclusions

(1) Peanut shell (PS), Sawdust (S), and commercial active carbon (AC) were compared
for their adsorption and desorption of Pb(II), Cu(II), and Cd(II) ions from aqueous
solutions. The results demonstrate that PS is a green adsorbent material that can
replace the traditional adsorbent AC and has effective adsorption of Pb(II), Cu(II),
and Cd(II) ions from the water.

(2) For three adsorbents, the adsorption capacity increases with the increasing phase
temperature, pH value, contact time, adsorbent dosage, and heavy metal ion concen-
tration, but decreases with the increase of adsorbent particle size.

(3) The adsorption kinetics were well described by the pseudo-second-order model, mean-
while, the adsorption isotherms were well described by the Langmuir or Freundlich
models. The adsorption process is a spontaneous heat absorption process.

(4) It was shown that the desorption rate of adsorbents is higher in acidic environments
than in other environments.
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