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Abstract: Studies that consider both the differences of evaluation systems and index weights among
different ecological areas in different study periods for ecological vulnerability evaluation have not
been reported yet. In addition, the comparability of vulnerability assessment results among different
study areas is poor. This paper proposed a novel quantitative vulnerability evaluation method
for multi-type and multi-temporal ecological functional areas using a dynamic weighting method:
Three-River Source region grassland–wetland ecological functional area (TRSR), Guiqiandian karst
rocky desertification control ecological functional area (GQD), Hunshandake desertification control
ecological functional area (HSDK), and Chuandian forest and biodiversity ecological functional area
(CD), and then introduced net primary productivity (NPP) to realize the determination of multi-
type ecological vulnerability thresholds, which is helpful to compare the vulnerability evaluation
results of different ecological functional areas in a unified and comparable level. The proposed novel
quantitative vulnerability evaluation method had higher applicability in vulnerability assessment for
multi-type ecological functional areas (91.1% for TRSR, 91.9% for HSDK, 91.7% for CD, and 94.2%
for GQD) based on the dynamic weight determination method. The determination of vulnerability
thresholds based on NPP could provide a comparable level to investigate the spatial distribution
patterns of ecological vulnerability in multi-type ecological functional areas for different periods. The
average ecological vulnerability of the TRSR, GQD, and CD was classified as mild vulnerability, while
that of the HSDK was classified as moderate vulnerability. The research results could provide a novel
method for the support of ecological protection for multi-type ecological zones on a national scale.

Keywords: multi-type functional areas; ecological vulnerability; NPP; climate change; human
activities

1. Introduction

The evaluation of the ecological environment vulnerability has become a hot issue in
the research of regional environmental evolution and sustainable development under the
influence of global climate change [1]. With the rapid developments of the economy, the
intensity of the exploitation and utilization of natural resources are also increasing [2]. As
a result, the environment of key ecological functional areas in China has been seriously
damaged [3]. Especially since the 20th century, with the intensification of environmental
problems such as global warming and frequent extreme weather events, loss of species
diversity, frequent extreme weather events, and intensified desertification have become
increasingly prominent [4]. The comprehensive degradation or even loss of ecological
functions poses a great threat to regional and national ecological security, as well as socio-
economic sustainable development [5].

Research on ecological vulnerability evaluation that has been conducted both at home
and abroad mainly includes two types of index systems: comprehensive index and single
index. At present, the pressure–state–response (PSR) models have been widely applied
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in ecological vulnerability assessment [6]. Zheng [7] analyzed the important factors af-
fecting the vulnerability of the ecosystem in the upper reaches of the Minjiang River and
constructed the evaluation index system of the vulnerability of that region based on the
SPR model. Zheng et al. [8] constructed a comprehensive index of ecological environment
vulnerability to analyze the ecological environment vulnerability characteristics of the
Pearl River Delta in different periods based on the pressure–sensitivity–restoration (PSR)
model and analytic hierarchy process (AHP). Chang and Cai [9] selected 15 indicators
such as elevation, slope, topographic range, and landscape diversity index to evaluate the
ecological vulnerability of Poyang County based on the PSR model. A series of studies on
ecological vulnerability evaluation and its driving mechanism have also been conducted by
many scholars. Adger [10] found that vulnerability was derived from the combined actions
of natural and artificial changes in the ecosystems. Liu et al. [11] constructed the ecological
vulnerability index in Sanjiang Plain, and then explored the spatial distributions of wetland
ecosystem vulnerability. Qiu et al. [12] proposed the ecological vulnerability model of
western Hainan Island based on soil erosion index, landscape index, and desertification
index, and then determined the dominant factors that affected the ecological vulnerability.
Edmonds et al. [13] used the data covering more than 100 countries compiled by the Univer-
sity of Notre Dame in 2016 to construct a new composite climate change vulnerability index.
Kantamaneni et al. [14] developed a new Physical Coastal Vulnerability Index (PCVI), and
then combined the new Financial Coastal Vulnerability Index (FCVI) to propose a coastal
vulnerability composite index. Jin et al. [15] established an indicator system for 23 spa-
tial variables based on the driver–pressure–state–impact–response (DPSIR) framework to
calculate the ecological vulnerability index. Chatrabgoun et al. [16] developed a novel
mathematical framework to explore the risk and uncertainties associated with frost events
and their impacts on yields of vineyards by analyzing the non-linear dependency structure
using copula functions as an efficient tool. Goodarzi et al. [17] adopted the developed
numerical model to set series of scenario-based simulations in order to investigate the
effects of WSP’s geometrical features and implementation of an island retrofitting on the
hydraulic performance and treatment efficiency of the WSPs.

During the past decades, scholars have proposed many comprehensive evaluation
methods of ecosystem vulnerability, including principal component analysis (PCA) [18,19],
AHP, gray correlation method, and entropy weight method. Aspinall and Pearson [20]
introduced the theories and technical methods of remote sensing (RS), geographic informa-
tion science (GIS) and landscape ecology into the field of ecological hydrology to establish
the health index system of catchment area, and then systematically evaluated the envi-
ronmental health and changes at the regional scale. Zheng [21] analyzed the influencing
factors of regional ecosystem vulnerability in the upper reaches of Minjiang River and
constructed the index system suitable for the ecological evaluation of the study area based
on the PSR model, and then analyzed the temporal and spatial change patterns of ecological
vulnerability in the study area from multiple angles by using the methods of variation
coefficient, gravity center model, and transfer matrix. Fully considering the background
characteristics of the ecological environment in the alpine region of the Qinghai–Tibet
Plateau, Guo et al. [22] introduced extreme climate factors and human disturbance fac-
tors to construct the ecosystem vulnerability evaluation system and reasonably analyzed
the temporal and spatial distribution law and driving factors of ecological vulnerability.
Zhao [23] analyzed the main causes of ecological vulnerability affecting Central Asia ac-
cording to the principle of index selection and constructed an index system based on the
PSR model. Zhang [24] established the VSD ecological vulnerability evaluation system to
analyze the vulnerability status and evolution trend of large-scale (the whole study area)
and small-scale (city) areas. Nguyen et al. [25] combined AHP, GIS, and RS to establish
a vulnerability assessment framework related to sixteen variables for the largest river
system in Vietnam. Zhang et al. [26] constructed the ecological vulnerability index of the
Wutai Mountain area based on the PSR model, and then analyzed the spatial and temporal
changes in ecological vulnerability of the Wutai Mountain area in four periods by using the
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PCA, gravity center, and difference analysis methods. Hu et al. [27] used the PSR model
to select parameters and used AHP to determine the weights of parameters. In summary,
the shortcomings of the above objective methods (such as PCA and entropy weight) were
that they could only consider the information of the factor or image itself and ignore the
significance of different indicator factors in the ecological vulnerability assessment system.
On other hand, the advantage was that these methods could better avoid excessive interfer-
ence of experts’ subjective consciousness. However, subjective methods (such as AHP and
FAHP) could take into account expert experience knowledge in the ecological vulnerability
assessment. Although expert experience knowledge is conductive to reflect the significance
of different indicators in the vulnerability evaluation system, excessive amplification of
expert experience knowledge will interfere with the construction of the index system and
the formulation of weights. Net primary productivity (NPP), which is an important index
to determine the health status and sustainable development level of ecosystems, can also
indicate the sensitivity and vulnerability of regional ecosystems. It is also conducive to the
continuous expression of ecological vulnerability in different sub-ecological intervals in
space, and it can better confirm the comparability among the vulnerability assessments
results of different sub-regions to a certain region.

However, most previous studies were mainly aimed at a single type, and few studies
of ecological vulnerability evaluations for multi-type of ecological function zones have
been reported yet. In addition, taking into account global changes and human activities, the
contribution rate of each factor in the regional ecological vulnerability assessment system
changed significantly in different historical periods. Previous studies mostly used the
same index weight for vulnerability assessment [28]. Zhang et al. [29] found significant
differences in influencing factors and their contribution rates in the ecological degradation
of the Yellow River Basin from 1986 to 2013. Zhang et al. [30] proposed an ecological
vulnerability evaluation index system reflecting the impact of natural and human stress
factors and found that the contribution rates of natural factors to the ecological vulnerability
of the Yellow River Basin showed a downward trend from 2001 to 2019. At the same time,
due to the differences of the evaluation systems for multi-type ecological functional areas
and the index weights in the evaluation system for different historical periods, the ecological
vulnerability evaluation results in different ecological areas and historical periods were
not comparable. However, fewer studies were conducted to focus on the comparability
enhancement of vulnerability assessment results among different study areas. Determining
their vulnerability threshold from a scientific standpoint has become a key problem, and it
is important to approach this problem in this research field and find solutions to it.

Therefore, this study established the evaluation systems of the TRSR, HSDK, GQD, and
CD according to the regional ecological characteristics and proposed the dynamic weight
determination method to make the weight assignments for different ecological functional
areas and different periods. In addition to that, NPP was introduced to determine the
ecological vulnerability thresholds for multi-type ecological functional areas to confirm
comparability on a unified level. This proposed novel evaluation method could provide a
new approach for the vulnerability assessment for multi-type ecological zones worldwide.

2. Materials and Methods
2.1. Study Area

The Three-River Source region grassland–wetland ecological functional area (TRSR)
(Figure 1) is located in the southern part of Qinghai Province, at an altitude of 3500–4800 m.
The rivers, lakes, and swamps are widely distributed in this region. The climate in this area
is typical of that on the Qinghai–Tibet Plateau, which is characterized by distinct dry and
wet seasons, long sunshine duration, small annual temperature difference, and larger daily
temperature difference. The precipitation is more prevalent in summer, with an average
value of 262.2~772.8 mm.

The Hunshandake desertification control ecological functional area (HSDK) is mainly
composed of Xilinguole, Inner Mongolia, and Chifeng City, with a total area of 5.3 × 104 km2.
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Its natural environment belongs to the steppe zone of a temperate semi-arid region, the
climate of which is mainly affected by temperate continental monsoons and prevailing
west wind. The terrain is sloped downward from southeast to northwest with small
fluctuations [31].

The Chuandian forest and biodiversity ecological functional area (CD) is located in the
southeastern margin of the Qinghai–Tibet Plateau. The terrain is sloped downward from
the northwest to the southeast, with huge topographic relief. The topographic features
include plateaus, mountains, plains, hills, sloping valleys, and lakes. The climate can be
classified as a monsoon climate, which is characterized by high temperature and abundant
precipitation in summer. However, the advance and retreat of the summer monsoon is
irregular, which can cause frequent natural disasters such as droughts and floods [32].

The Guiqiandian karst rocky desertification ecological functional area (GQD) is a
typical karst development area in China, involving Yunnan, Guizhou, and Guangxi, with an
average altitude of 200 m and a total area of about 3.2 × 105 km2. This area is dominated by
the typical sub-tropical and tropical monsoon climate. The precipitation and temperature
vary significantly with seasons and regions, and the average annual temperature and
precipitation show an increasing trend from northwest to southeast. However, due to the
vulnerability of the karst environment and the influence of human activities, a series of
ecological problems such as soil erosion and rocky desertification have occurred [33,34].
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Figure 1. Location of the study area.

2.2. Data Source

The meteorological data were downloaded from China Meteorological Data Sharing
Network. These mainly include daily precipitation (0.1 mm), annual average temperature
(◦C, 0.1 ◦C), extreme high temperature (◦C, 0.1 ◦C), extreme low temperature (◦C, 0.1 ◦C),
sunshine hours (hour, 0.1 h), accumulated temperature (◦C, 0.1 ◦C), and frost-free period
(day, 1 day); the grid datasets (250 m) are obtained through Kriging interpolation with
ArcGIS 10.3. The 1:100,000 land use data are from the Institute of Remote Sensing and
Digital Earth, Chinese Academy of Sciences. The DEM data derive from the Geospatial Data
Cloud Platform with a resolution of 90 m. Land surface indicators, such as humidity index,
bare soil index, improved adjusted vegetation index, salinity index, surface temperature,
and vegetation coverage were obtained from Landsat images with a resolution of 30 m.
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The above datasets (accessed on 15 February 2022) can be obtained from the Geospatial
Data Cloud Platform (http://www.gscloud.cn/). The annual net primary productivity is
derived from MOD17A3 with a spatial resolution of 500 m, which can be freely obtained
from NASA EOS (National Aeronautics and Space Administration Earth Observation
System). The projection type of all these above datasets is Krasovsky_1940_Albers. All the
above factors were resampled into grids with a spatial resolution of 250 m utilizing the
ArcGIS 10.3, which all have higher precisions (Table 1, Appendix A).

Table 1. The descriptions of the evaluation factors.

Evaluation Factor Data Source Equations Approach Overall
Accuracy RMSE

Annual mean temperature

823
meteorological

stations

AMT =

N
∑

i=1
Td

N

Geostatistical
Analyst

91.2% 0.657

Annual precipitation AP =
365
∑

i=1
pd

93.4% 0.964

Variation coefficient of
annual precipitation Pcv =

σpre

Mpre
89.7% 1.012

Variation coefficient of
annual mean temperature Tcv =

σtemp

Mtemp
90.8% 1.354

Extreme high-temperature
days EHT =

N
∑

i=1
nT>THR 93.6% 0.458

Extreme low-temperature
days ELT =

N
∑

i=1
nT<THR 88.6% 0.653

Proportion of erosive rainfall
PER =

N
∑

i=1
pd

N
∑

i=1
pd>12mm

85.4% 0.854

Accumulated temperature
(>10 ◦C) AT =

N
∑

i=1
Td>10°C

88.2% 0.697

Sunshine hours Sh =
N
∑

i=1
dsunh

93.7% 0.324

Frost-free period FFP =
N
∑

i=1
nTL>2°C

96.3% 0.328

Humidity index

Landsat images

MI = 0.0315× Bblue + 0.2021× Bgreen + 0.3102× Bred+

0.1594× Bnir − 0.6806× Bswir1 − 0.6109× Bswir2

Raster
Calculator

96.1% 0.425

Surface albedo
Albedo = 0.356× Bblue + 0.13× Bred+

0.085× Bswir1 + 0.072× Bswir2 − 0.0018 90.9% 0.357

Land surface temperature LST = a(1−C−D) + (b(1−C−D) + C + D)T10 −DTa 86.9% 0.247

Bare soil index BSI =
((Bswir + Bred)− (Bnir + Bblue))

((Bswir + Bred) + (Bnir + Bblue))
94.4% 0.358

Desertification index DI =
√

LST2 + NDVI2 91.5% 0.688

Salinization index SI =
√

Bblue × Bred 90.8% 0.665

Rock exposure index REI =
Bswir1/Bswir1,mean

Bnir/Bnir,mean
86.2% 0.987

Altitude
SRTM DEM

– – –
Slope – – –

Topographic relief TR =Hmax − Hmin
Zonal

Statistics 96.0% 0.632

Lithology Geological and
hydrological map – – –

Water resources
Land use data

– – –
Water network density – – –

http://www.gscloud.cn/
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Table 1. Cont.

Evaluation Factor Data Source Equations Approach Overall
Accuracy RMSE

Vegetation coverage MODIS NDVI VC =
NDVI−NDVImin

NDVImax−NDVImin

Raster
Calculator

86.7% 0.359

Landscape Diversity index

Land use data
SHEI =

−
m
∑

i=1
(Pi × ln Pi)

ln m
– –

Landscape fragmentation
index Ci =

Ni
Ai

– –

Human activity intensity
index Land use data HAIS =

Si
S
× 100 93.1% 0.257

Note: Bblue, Bgreen, Bred, Bnir, Bswir1, and Bswir2 are the band reflectance of blue, green, red, swir1, and swir2,
respectively; τ is the atmospheric transmittance; ε is the land surface emissivity; T10 is the radiance temperature of
thermal infrared B10(K); C and D refer to the intermediate parameter; Ta is the average action temperature of the
atmosphere (K); Td refers to the average daily temperature (◦C); Pd refers to the daily precipitation (mm); σtemp
refers to the standard deviation of temperature; Mtemp refers to the average value of temperature; σpre refers to
the standard deviation of precipitation; Mpre refers to the average value of precipitation; dsunh refers to the daily
sunshine duration (hour); nTL>2 ◦C refers to the day with daily minimum temperature larger than 2 ◦C; Ni refers
to the patch number of landscape type i; Ai refers to the total area of landscape type i; and Pi refers to the area
ratio of landscape type i. RMSE is the root mean square error.

2.3. Methods

In this paper, the overall technical flowchart is shown in Figure 2.
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2.3.1. Comprehensive Index Model

The comprehensive index evaluation method is the superposition of different eval-
uation indexes for comprehensive calculation. The comprehensive evaluation index of
ecological vulnerability requires different indicators to establish a comprehensive evalua-
tion system, and then utilize the weights of different indicators in the system to calculate
the comprehensive index.

Considering that different indicators have different contributions to ecosystem vul-
nerability, it is necessary to introduce the concept of weight and assign different weights
to different indicators, so as to highlight the dominant problem of the regional ecological
environment. The calculation equation is:

EVI =
n

∑
i=0

fi ×Wi (1)

where EVI (ecosystem vulnerability index) is the ecosystem vulnerability index; fi is index
i; Wi is the weight of the i-th index; and n is the number of indicators.

2.3.2. Factor Normalization

Different indicators play different roles in the vulnerability assessment system. The
larger the value of some indicators, the more serious the vulnerability, such as extreme
precipitation. At the same time, larger values of several other indicators carry less weight
on vulnerability, such as NDVI. Thus, the positive and negative normalization equations
should be applied according to the action direction of different factors. Considering the
dimensional differences between different index factors and their role in the evaluation
model, this study uses Equations (2) and (3) to standardize the indicators.

Positive : Ii =
xi − xmin·i

xmax·i − xmin·i
(2)

Negative : Ii =
xmin·i − xi

xmax·i − xmin·i
(3)

where Ii represents the normalized value of factor i, xi is the original value of factor i, and
xmax·i and xmin·i represent the maximum and minimum values of factor i, respectively.

2.3.3. Dynamic Weight Determination Method

With the increasing or decreasing disturbances of climate change and human activity,
the roles of different environmental problems in the ecosystem change greatly. Therefore,
it is not scientific and reasonable to adopt one single index weight assignment scheme to
evaluate the ecological vulnerabilities for different periods. Based on the idea of dynamic
weight determination, this study proposes a dynamic weight determination method based
on FAHP (Fuzzy Analytic Hierarchy Process), PCA, and the variation coefficient method,
and then formulates the dynamic weight assignment schemes for different key ecological
functional areas. The coefficient of variation is used to represent the normalized measure
of the discrete degree of probability distribution. It can be defined as the ratio of standard
deviation to average value, which is used to represent the spatial variation of the indication
factor (index layer). The relative importance of each index in the FAHP can be determined
by the variation coefficient. The FAHP is utilized to determine the index of target and factor
layers to ensure the relative consistency of the index weight assignment scheme for different
periods. This method not only considers the spatial differentiation characteristics and the
changes in ecological significance for each index in different periods but also avoids the
excessive interference of expert knowledge on weight assignment [35,36]. PCA is utilized to
deal with multidimensional data to obtain the climate vulnerability in this paper (Figure 3).
In addition, ecological vulnerability includes ecological sensitivity (refers to the sensitivity
of the ecosystem to the interference of various natural and human activities in the region),
ecological resilience (the ability of the system to anticipate, resolve external shocks, and
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maintain its main functions in the event of a crisis), and ecological pressure (ecological
pressure refers to the external interference that endangers the growth and reproduction of
individual organisms or populations and the physiological effects it produces) [37].
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2.3.4. Geographic Detector

The geographic detector is a model that helps identify the interactions between driving
factors on certain geographic phenomenon [38–41]. This method can be utilized to deter-
mine the dominant influencing factors of ecological vulnerability with the factor detector
and interactive detector.

The factor detector can be used to detect the spatial differentiation of dependent
variables, and the interactive detector can be applied to reveal the explanatory degree of
dependent variables with the q value. The equations are as follows:

q = 1−

L
∑

h=1
Nhσ2

h

Nσ2 = 1− WSS

TSS
(4)

WSS =
L

∑
h=1

Nhσ2
h (5)

Tss = Nσ2 (6)

where h refers to the stratification or partition of independent variable Y and dependent
variable X; Nh refers to the number of units in layer h; N represents the number of units
throughout the region; and σ2

h and σ2 are the variance of Y value in layer h and the whole
region, respectively. Wss refers to the sum of variances for each layer; Tss represents the
total variance of the entire region. q ∈ [0, 1], the greater the q value, the stronger the
interpretation ability of X to Y, and vice versa.

2.3.5. Validation Method

In this paper, the accuracy of different interpolation methods is evaluated by compar-
ing the differences between the predicted values and the measured values of verification
stations. In this article, the root mean square error (RMSE) is selected as the evaluation in-
dex. RMSE is used to measure the deviation between the estimated value and the predicted
value, reflecting the extreme value and sensitivity of the data estimation. RMSE can reflect
the overall accuracy of the interpolation results. Generally speaking, the smaller the value
of RMSE, the better the interpolation effect and the higher the accuracy of the interpolation
model. The equation for RMSE is as follows:

ERMS =

√
1
n

n

∑
i=1

(zi − pi)
2 (7)
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where zi and pi represent the predicted value and the measured value, respectively; n is the
number of test points.

In this paper, the precision index and the basic error matrices are adopted to test the
accuracy of the evaluation results of ecological vulnerability.

Ci+ =
n

∑
j=1

Ci j, C+ j =
n

∑
i=1

Ci j (8)

Pu,i = Cii/Ci+, PA,j = Cjj/C+j (9)

where Pu,i represents the user accuracy of inversion category i, PA,j represents the carto-
graphic accuracy of the field observed category j, n is the number of categories, Ci+ is the
sum of the inversion category i, C+j is the sum of the field observed category j, and Cij is
the number of the inversion category i and the field-observed category j that both occur.

2.3.6. Determinations of the Ecological Vulnerability Thresholds of Multi-Type Ecological
Functional Areas in Different Periods Based on NPP

In this paper, NPP was introduced to determine the ecological vulnerability thresholds
for multi-type ecological functional areas in different periods, which avoids the randomness
of vulnerability threshold definition and also ensures the comparability of the ecological
vulnerability among multi-type ecological functional areas in different periods. The detailed
processes are as follows:

(1) The NPP of four key ecological functional areas in different periods (2000 and 2018)
is divided into four levels (<0.25; 0.25~0.5; 0.5~0.75; >0.75).

(2) The classification datasets of the NPP of four key ecological functional areas in
different periods is utilized to obtain the average value of ecological vulnerability index
corresponding to different grades.

3. Results
3.1. Ecological Vulnerability Evaluations for Multi-Type Key Ecological Functional Areas

The climate of the TRSR is a typical plateau continental, characterized by low tempera-
tures, scarce precipitation, and strong wind. The area suffers from severe land degradation,
such as salinization, soil erosion, and desertification. The HSDK was the source of sand-
storms in northern China. It was affected by the temperate continental monsoon climate
and natural disasters such as drought, cold currents, desertification, and sandstorms were
the main eco-environmental problems. The CD was mainly influenced by a plateau moun-
tainous temperate and sub-tropical monsoon climate, and floods, soil erosion, and droughts
were the dominant disaster types. The GQD belongs to a special ecosystem dominated by
a karst environment. The karst landform was congenitally developed, which was char-
acterized by more rocks and less soil [42]. Based on the natural characteristics and the
dominating ecological environment problems of different key ecological functional areas,
the ecological vulnerability evaluation systems of multi-type key functional areas were
determined and established referring to relevant scientific research at home and abroad.
The vulnerability evaluation systems are shown in Table 2.

3.2. Dynamic Weights for Different Ecological Function Areas

Utilizing the dynamic weight determination method that is composed of FAHP, PCA,
and the coefficient of variation method (CV), the index weights of the target layer and index
layer were determined by FAHP, while that of the factor layer was made with CV and PCA
(for climate vulnerability) (Figure 3). The index weights of the target layer for different
types of key ecological functional areas are shown in Tables 3–6.
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Table 2. Evaluation system of ecological function areas in different study areas.

Target Layer Index Layer Factor Layer A B C D Direction

Ecological
vulnerability

Ecological
sensitivity

Climate

Annual mean temperature
√ √ √ √

Negative
Annual precipitation

√ √ √ √
Negative

Variation coefficient of annual precipitation × ×
√ √

Positive
Variation coefficient of annual mean

temperature
√ √

× × Positive

Extreme high-temperature days ×
√ √ √

Positive
Extreme low-temperature days

√ √
× × Positive

Proportion of erosive rainfall × ×
√ √

Positive
Accumulated temperature (>10 ◦C)

√ √ √ √
Negative

Sunshine hours
√ √

× × Negative
Frost-free period

√ √
× × Negative

Soil

Humidity index
√ √ √ √

Negative
Surface albedo

√ √ √ √
Positive

Land surface temperature
√ √

× × Positive
Bare soil index

√ √ √ √
Positive

Desertification index
√ √

× × Positive
Salinization index

√ √
× × Positive

Rock exposure index × × ×
√

Positive

Terrain
Altitude

√ √ √ √
Positive

Slope
√ √ √ √

Positive
Topographic relief

√ √ √ √
Positive

Geology Lithology × × ×
√

–

Water
Water resources

√ √ √ √
Negative

Water network density
√ √ √ √

Negative

Ecological
resilience Vegetation Vegetation coverage

√ √ √ √
Negative

Ecological
pressure

Land use
Landscape diversity index

√ √ √ √
Negative

Landscape fragmentation index
√ √ √ √

Positive

Social devel-
opment Human activity intensity index

√ √ √ √
Positive

Note: A refers to the Three-River Source region grassland, meadow, and wetland ecological functional area;
B refers to the Hunshandake desertification control ecological functional area; C refers to the Chuandian forest
and biodiversity ecological functional area; and D refers to the Guiqiandian karst rocky desertification control
ecological functional area.

Table 3. Dynamic evaluation table of index weights in the TRSR.

Target Layer Index Layer Factor Layer Weights of
2000

Weights of
2018

Ecological
vulnerability

Ecological
sensitivity (0.4)

Climate (0.19)

Annual mean temperature

PCA PCA

Annual precipitation
Variation coefficient of annual mean temperature

Extreme low-temperature days
Accumulated temperature (>10 ◦C)

Sunshine hours
Frost-free period

Soil (0.31)

Humidity index 0.13 0.08
Surface albedo 0.12 0.26

Land surface temperature 0.13 0.14
Bare soil index 0.07 0.05

Desertification index 0.34 0.14
Salinization index 0.21 0.33

Terrain (0.21)
Altitude 0.16 0.16

Slope 0.47 0.47
Topographic relief 0.37 0.37

Water (0.29) Water resources 0.6 0.50
Water network density 0.4 0.50

Ecological
resilience (0.25) Vegetation (1.0) Vegetation coverage 1.0 1.0

Ecological
pressure (0.35)

Land use (0.6) Landscape diversity index 0.6 0.5
Landscape fragmentation index 0.4 0.5

Social development
(0.4) Human activity intensity index 1.0 1.0
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Table 4. Dynamic evaluation table of index weights in the HSDK.

Target Layer Index Layer Factor Layer Weights
of 2000

Weights
of 2018

Ecological
vulnerability

Ecological
sensitivity

(0.35)

Climate (0.19)

Annual mean temperature

PCA PCA

Annual precipitation
Variation coefficient of annual mean

temperature
Extreme high-temperature days
Extreme low-temperature days

Accumulated temperature (>10 ◦C)
Sunshine hours

Frost-free period

Soil (0.37)

Humidity index 0.24 0.04
Surface albedo 0.08 0.21

Land surface temperature 0.17 0.12
Bare soil index 0.17 0.10

Desertification index 0.1 0.16
Salinization index 0.24 0.37

Terrain (0.15)
Altitude 0.09 0.09

Slope 0.51 0.51
Topographic relief 0.40 0.40

Water (0.29) Water resources 0.7 0.6
Water network density 0.3 0.4

Ecological
resilience (0.35) Vegetation (1.0) Vegetation coverage 1.0 1.0

Ecological
pressure (0.3)

Land use (0.5) Landscape diversity index 0.6 0.5
Landscape fragmentation index 0.4 0.5

Social
development (0.5) Human activity intensity index 1.0 1.0

Table 5. Dynamic evaluation table of index weights in the CD.

Target Layer Index Layer Factor Layer Weights
of 2000

Weights
of 2018

Ecological
vulnerability

Ecological
sensitivity (0.4)

Climate (0.15)

Annual mean temperature

PCA PCA

Annual precipitation
Variation coefficient of annual precipitation

Extreme high-temperature days
Proportion of erosive rainfall

Accumulated temperature (>10 ◦C)

Soil (0.37)
Humidity index 0.31 0.11
Surface albedo 0.53 0.56
Bare soil index 0.16 0.33

Terrain (0.28)
Altitude 0.26 0.26

Slope 0.38 0.38
Topographic relief 0.36 0.36

Water (0.20) Water resources 0.7 0.6
Water network density 0.3 0.4

Ecological
resilience (0.35) Vegetation (1.0) Vegetation coverage 1.00 1.00

Ecological
pressure (0.25)

Land use (0.4) Landscape diversity index 0.50 0.50
Landscape fragmentation index 0.50 0.50

Social
development (0.6) Human activity intensity index 1.00 1.00
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Table 6. Dynamic evaluation table of index weights in the GQD.

Target Layer Index Layer Factor Layer Weights
of 2000

Weights
of 2018

Ecological
vulnerability

Ecological
sensitivity (0.4)

Climate (0.11)

Annual mean temperature

PCA PCA

Annual precipitation
Variation coefficient of annual precipitation

Extreme high-temperature days
Proportion of erosive rainfall

Accumulated temperature (>10 ◦C)

Soil (0.29)
Humidity index 0.32 0.21
Surface albedo 0.26 0.17
Bare soil index 0.30 0.32

Rock exposure index 0.12 0.30

Terrain (0.25)
Altitude 0.36 0.36

Slope 0.37 0.37
Topographic relief 0.27 0.27

Geology (0.14) lithology 1.00 1.00

Water (0.21) Water resources 0.7 0.6
Water network density 0.3 0.4

Ecological
resilience (0.3) Vegetation (1.0) Vegetation coverage 1.00 1.00

Ecological
pressure (0.3)

Land use (0.55) Landscape diversity index 0.50 0.50
Landscape fragmentation index 0.50 0.50

Social
development (0.45) Human activity intensity index 1.00 1.00

3.3. Ecological Vulnerability Evaluation Index and Its Validation

Based on the above evaluation systems and the weights of different evaluation systems,
the vulnerability assessment index of different study areas was calculated using the raster
calculator tool of ArcGIS 10.3. Then, the determinations of ecological vulnerability threshold
in different periods of multi-type ecological function areas were conducted based on NPP.
The average values of vulnerability index and the standard deviations were utilized to
determine the vulnerability thresholds of multi-type ecological functional areas (Table 7).

Table 7. Thresholds of ecological vulnerability for multi-type ecological functional areas in different
periods.

Levels of Vulnerability
TRSR GQD CD HSDK

(2000) (2018) (2000) (2018) (2000) (2018) (2000) (2018)

Slight vulnerability <0.49 <0.36 <0.27 <0.25 <0.31 <0.36 <0.26 <0.36
Mild vulnerability 0.49–0.51 0.36–0.49 0.27–0.33 0.25–0.31 0.31–0.47 0.36–0.44 0.26–0.35 0.36–0.48

Moderate vulnerability 0.51–0.56 0.49–0.54 0.33–0.39 0.31–0.35 0.47–0.51 0.44–0.49 0.35–0.40 0.48–0.51
Intensive vulnerability 0.56–0.59 0.54–0.58 0.39–0.47 0.35–0.38 0.51–0.55 0.49–0.51 0.40–0.44 0.51–0.53

Severe vulnerability >0.59 >0.58 >0.47 >0.38 >0.55 >0.51 >0.44 >0.53

In order to validate the accuracy of the novel quantitative vulnerability evaluation
method for multi-type ecological functional areas, 270 validation samples (Figure 4, taking
the TRSR as an example) were selected from different types of landscape areas by using
field measured data, Google Earth, and GF-2 satellite images. After that, the error matrixes
of ecological vulnerability index for different types of ecological functional areas (2018)
were constructed, shown in Tables 8–11. The results show that the overall accuracies of
the vulnerability evaluation method for multi-type ecological functional areas were 91.1%
(TRSR), 91.9% (HSDK), 91.7% (CD), and 94.2% (GQD), respectively, indicating that the
proposed novel quantitative vulnerability evaluation method had higher applicability for
multi-type ecological zones.
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Table 8. Error matrix of ecological vulnerability index for the TRSR.

Vulnerability Levels Slight Mild Moderate Intensive Severe Sum

Slight 63 1 2 1 1 68
Mild 1 54 1 2 2 60

Moderate 1 0 49 1 1 52
Intensive 2 1 2 42 0 47

Severe 2 1 1 1 38 43
Sum 69 57 55 47 42 270

Table 9. Error matrix of ecological vulnerability index for the HSDK.

Vulnerability Levels Slight Mild Moderate Intensive Severe Sum

Slight 70 2 0 1 1 74
Mild 2 60 1 1 2 66

Moderate 1 1 53 0 1 56
Intensive 1 2 2 46 2 53

Severe 2 0 1 2 58 63
Sum 76 65 57 50 64 312

Table 10. Error matrix of ecological vulnerability index for Hunshandake desertification control
ecological functional area.

Vulnerability Levels Slight Mild Moderate Intensive Severe Sum

Slight 75 1 2 2 2 82
Mild 1 66 1 0 1 69

Moderate 0 2 54 2 1 59
Intensive 2 1 2 51 0 56

Severe 2 1 1 2 42 48
Sum 80 71 60 57 46 314
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Table 11. Error matrix of ecological vulnerability index for the GQD.

Vulnerability Levels Slight Mild Moderate Intensive Severe Sum

Slight 78 0 1 3 1 83
Mild 2 74 0 1 1 78

Moderate 1 1 64 0 2 68
Intensive 2 2 1 85 0 90

Severe 0 1 2 1 56 60
Sum 83 78 68 90 60 379

Figure 5a shows that the average ecological vulnerability index of the TRSR is 0.48,
which can be classified as mild vulnerability. The ecological vulnerability in the TRSR
gradually decreases from north to south, with the northern area being the most vulnerable.
Zones of slight and mild vulnerability cover the area of 2.85 × 105 km2, accounting for
67.02%. They are mainly distributed in the southern parts of the TRSR, including southern
Geermu City, western and eastern Zhiduo County, southern Maqin County, southern
Xiahe County, the middle of Tongren County, and Gonghe County. The zone of moderate
vulnerability covers an area of 7.46 × 104 km2, accounting for 17.55%, and is mainly
distributed across northern Geermu City, northern Zhiduo County, northwestern Gonghe
County, and northern Maqin County. Zones of intensive and severe vulnerability are
mostly located in the northwest part with an area of 6.56 × 104 km2, accounting for 15.43%,
including the middle of Ulan County and northern Zhiduo County.

Figure 5b shows that the average ecological vulnerability index of the HSDK is 0.35,
which belongs to moderate vulnerability. In terms of ecological vulnerability in the south-
east of the HSDK, the situation there is better than that in the northwest. The area of slight
and mild vulnerability zones is 1.21 × 105 km2, accounting for 72.84%, mainly concen-
trated in southeastern Xilinhot, southern Jining, northern Chifeng, eastern Chengde, and
southern Zhangjiakou. The second largest is the moderately vulnerable area that covers
3.18 × 104 km2, accounting for 19.14% of the total area of the study area. It includes the
north of Xilinhaote, the northeast of Jining, the south of Chifeng, and the west of Chengde.
The area of intensive and severe vulnerability zones is 1.33× 104 km2, accounting for 8.02%,
and it is mostly concentrated in the western parts, including southern Xilinhaote City and
northern Jining City.

Figure 5c shows that the average ecological vulnerability index of the CD is 0.38,
which can be classified as mild vulnerability. Its ecological vulnerability index is low in the
central area and high in the eastern and western parts, which indicates that the ecological
situation in the center of this region is better than that in the east and west. Zones of slight
and mild vulnerability cover 2.15 × 105 km2, accounting for 68.60% of the study area.
These are widely distributed across the whole study area, including northern Jinghong
City, Simao City, Gejiu City, southern Mianyang City, western Maerkang County, southern
Kangding County, southern Ya’an City, the center of Xichang City, and northern Zhongdian
County. The zone of moderate vulnerability has the second largest area of 6.23 × 104 km2,
accounting for 19.86%. It is mostly located in southern Maqin County, northern Kangding
County, southern Zhongdian County, northern Jinghong City, and the center of Nujiang
Lisu Autonomous County. The regions with intensive and severe vulnerability zones cover
3.62 × 104 km2, accounting for 11.54%. They are scattered throughout the study area,
including northern Mianyang City, the middle of Maerkang County, northwestern Yaan
City, northwestern Kangding County, and southern Xichang City.
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Figure 5d shows that the average ecological vulnerability index of the GQD is 0.30,
which belongs to mild vulnerability. The ecological vulnerability index of central GQD
is the lowest, followed by that in the southeast, while the western region has a large
ecological vulnerability index. Zones of slight and mild vulnerability have the largest area
of 5.83 × 104 km2, accounting for 66.39%, and these are mostly concentrated in the south
and central parts, including eastern Wenshan County, the center of Baise City, southern
Xingyi City, southern Duyun City, southern Hechi City, southern Mashan County, and the
center of Liupanshui City. The zone of moderate vulnerability is the second most widely
distributed, with an area of 2.21 × 104 km2, accounting for 25.19%, mainly concentrated
in southern Wenshan County, central Mashan County, southern Heshan City, northern
Duyun City, northern Anshun City, and eastern Bijie City. The area of intensive and
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severe vulnerability zones is 0.74 × 104 km2, accounting for 8.42% in total, scattered
throughout the study area, including southwestern Wenshan County, northern Liupanshui
City, northwestern Anshun City, and western Bijie City.

3.4. Change Intensity of Ecological Vulnerability Intensity Changes in Multi-Type Key
Functional Areas

This study utilized the Grid calculator of ArcGIS 10.3 to obtain the change intensity of
ecological vulnerability. The vulnerability change intensity (CI) was then graded into five
categories to further explore the spatial and temporal changes in ecological vulnerability in
different types of key functional areas, as shown in Table 12.

Table 12. Level thresholds of ecological vulnerability change intensity.

Levels Severe Decrease Slight Decrease Stable Slight Increase Severe Increase

CI CI ≤ −0.02 −0.02 < CI ≤ −0.01 0.01 < CI ≤ 0.01 0.01 < CI ≤ 0.02 CI > 0.02

During the period of 2000–2018 in the TRSR (Figure 6a), zones of slight increase and
severe increase were mostly located in the northwest parts, accounting for 33.64%, including
western and northern Geermud City and Wulan County. Slight and severe decrease zones
account for 44.19%, which were located in southern Zhiduo County, Maqin County, Xiahe
County, Tongren County, and southeastern Gonghe County. The stable zone accounted
for 22.17% of the total area, which was concentrated in eastern Geermu City and western
Gonghe County.

Between 2000 and 2018, zones of slight and severe increase accounted for 25.87% of the
HSDK (Figure 6b), which were concentrated in the northwest of the study area, including
northern Jining City and Xilinhaote City. Slight and severe decrease zones accounted for
40.86%, which were located in central Jining City, central and northern Chifeng City, central
Chengde City, and Zhangjiakou City. The stable zone accounted for 33.26%, which was
scattered through the whole study area, including southwestern Jining City, southeastern
Xilinhaote City, and southwestern Chifeng City.

During the same time period in the CD (Figure 6c), the slight and severe increase zones
accounted for 21.71%, which were scattered throughout the study area, including southern
Mianyang City, western Kangding County, western and southern Yaan City, southwestern
Maqin County, southwestern Zhongdian County, southwestern Simao City, and southern
Gejiu City. Slight and severe decrease zones accounted for 46.89%, which were mainly
distributed across central Maqin County, northern Yaan City, Maerkang County, southern
Jinghong City, Yunlong County, and Nujiang Lisi Autonomous Prefecture. The stable zone
accounted for 31.40% and was scattered throughout the study area, including northern
Mianyang City, northern Kangding County, the middle of Xichang City, and southeastern
Yaan City.

Finally, in the same time period in the GQD (Figure 6d), the slight and severe increase
zones accounted for 14.62% of the total area, while the slight and severe decrease zones
accounted for 52.60%. These were mainly distributed in southwestern Wenshan County,
Baise City, Hechi City, southern Xingyi City, southern Duyun City, Mashan County, Heshan
City, and Pingxiang City. The stable zone accounted for 32.78% of the total area, which was
scattered in the whole study area, including southern Baise City, southern Duyun City, and
northeastern Hechi City.
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4. Dominant Factors of Ecological Vulnerability for Different Types of Ecological
Areas in Different Periods

In order to further investigate the dominant single factors as well as the interactive
factors of the change process of ecological vulnerability for multi-type ecological zones
in different periods, this study selected eight typical factors, namely vegetation coverage,
land use, solar radiation, precipitation, temperature, slope, altitude, and NPP. Utilizing the
Geodetector model, the dominant single factors and the interactive factors of multi-type
key ecological functional areas were determined.
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As shown in Figure 7, the dominant single factor and the dominant interactive factor
of the TRSR in 2000 were vegetation coverage and vegetation coverage ∩ precipitation,
with q values of 0.60 and 0.84, respectively. In 2018, the dominant single factor and the
dominant interactive factor of the study region were vegetation coverage and vegetation
coverage ∩ NPP, with q values of 0.95 and 0.97, respectively. The vegetation still played
a dominant role in the regional ecosystem evolution, and its contribution rates had been
greatly enlarged. For the HSDK in 2000, the dominant single factor and the dominant
interactive factor were vegetation coverage and vegetation coverage ∩ solar radiation,
with q values of 0.71 and 0.86, respectively. The vegetation and solar radiation contributed
greatly to the health of the regional ecosystem. The dominant single factor and the dominant
interactive factor of the study region in 2018 were NPP and vegetation coverage ∩ NPP,
with q values of 0.91 and 0.98, respectively. With effective implementation of afforestation
projects, the dominant role of vegetation in the regional ecosystem has been enhanced.
For the CD in 2000, the dominant single factor was vegetation coverage with a q value
of 0.79, while the dominant interactive factor was altitude ∩ vegetation coverage with a
q value of 0.87. The vegetation and terrain contributed greatly to the ecosystem health. In
2018, the dominant single factor was vegetation coverage with a q value of 0.83, while the
dominant interactive factor was NPP ∩ vegetation coverage with a q value of 0.89. For
the GQD in 2000, the dominant single factor was solar radiation with a q value of 0.37,
while the dominant interactive factor was altitude ∩ vegetation coverage with a q value of
0.66. In 2018, the dominant single factor was precipitation, with a q value of 0.48, while the
dominant interactive factor was altitude ∩ vegetation coverage, with a q value of 0.72.
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5. Discussion
5.1. Advantages of the Novel Quantitative Vulnerability Evaluation Method

Previous studies have conducted a series of studies on the ecological vulnerabil-
ity evaluation of single-type ecological areas in a specific historical period, which have
achieved certain results [43]. However, few studies on multi-type ecological zones have
been reported. In this paper, a complete set of ecological vulnerability evaluation systems
oriented to multi-type ecological zones was proposed, which fully considered the differ-
ences between regional eco-environmental characteristics and dominant eco-environmental
problems. Traditional subjective methods, such as AHP and FAHP, were greatly disturbed
by expert experience and knowledge, which led to significant differences in the evaluation
results of different studies in the same region [44]. Moreover, objective methods, such as
PCA, entropy weight method, and variation coefficient method, could consider the image
information features and spatial differentiation characteristics of all the evaluation index,
but these ignored the ecological significance of the index itself in the evaluation system [45].
In addition, with the increasing disturbances of natural and artificial factors, the dominant
factors of different ecological zones would change [46]. Therefore, the proposed dynamic
weight determination method by combining the variation coefficient method, FAHP, and
PCA could not only consider the spatial differentiation characteristics and ecological roles
of the weight index itself, but it would also help avoid the excessive interference of expert
knowledge [47]. Therefore, it could more accurately reflect the importance of each factor in
different evaluation systems and different periods. However, there are some significant
differences in the evaluation system of multi-type key ecological functional areas, and the
index weights in the evaluation system of different periods were also different. Therefore,
the ecological vulnerability evaluation results are not comparable. NPP referred to the
total amount of organic dry matter accumulated by green plants in unit time and area,
which is part of the total organic matter generated by photosynthesis after deducting
autotrophic respiration. It was an important indicator of the health status of the ecosystem
and sustainable development. In this study, we introduced the NPP to determine the
ecological vulnerability thresholds in multi-type ecological zones and different periods. It
could indicate the sensitivity and vulnerability of the regional ecosystem to a certain extent,
which was helpful for the continuous spatial expression of ecological vulnerability among
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different ecological zones, while avoiding the arbitrariness of the definition of vulnerability
thresholds [48]. This method could ensure the comparability of ecological vulnerability
among multi-type ecological zones in different periods [49]. The results show that the
ecological vulnerability index evaluation method based on dynamic weighting methods
and NPP had high applicability in multi-type key ecological functional areas, which could
provide an important reference for the ecological vulnerability evaluation of other regions
worldwide.

5.2. Causes of Ecological Vulnerability in Multi-Type Key Ecological Functional Areas

The average ecological vulnerability index of the TRSR was 0.48, which can be clas-
sified as mild vulnerability. The TRSR is located in the Qinghai–Tibet Plateau with high
altitude, scarce precipitation, and low temperatures. However, the abundant water re-
sources derived from glaciers and melting snow and widely distributed grassland have
improved the ecological condition. Zones with serious (intensive and severe) vulnerability
were mostly distributed in the northwest of the TRSR, where precipitation was scarce and
the wind erosion and desertification were severe [50]. The slight vulnerability zone was
located in the source regions of the Yellow River and Lancang River, and in these regions,
the surface water resources were abundant, and the vegetation coverage was higher.

The average ecological vulnerability index of the HSDK was 0.35, which is considered
moderate vulnerability. Zones of serious vulnerability were mostly concentrated in the
western parts, where the evapotranspiration was very large and the Gobi was widely
distributed. Meanwhile, frequent sandstorms and low vegetation coverage exacerbated the
ecological vulnerability [51,52].

The average ecological vulnerability index of the CD was 0.38, which can be classified
as mild vulnerability as a whole. Zones of slight and mild vulnerability were mainly
distributed in the south-central regions of the study area. The reason was that in these
regions, the vegetation coverage was higher, and there was a sufficient amount of water and
heat [53,54]. The intensive and severe vulnerability zones were mostly concentrated in the
west and east parts of the study region. In the western parts, the freeze–thaw erosion was
severe, and the climate was characterized by low temperature and scarce precipitation [55].
In the eastern parts, the frequent earthquakes caused serious geological disasters, such as
debris flow and landslide, which led to severe soil erosion.

The average ecological vulnerability index of the GQD was 0.30, which is considered
mild vulnerability as a whole. Zones of serious vulnerability were mainly distributed in
the north and west parts, where the rocky desertification was severe.

5.3. Evolution Causes of Ecological Vulnerability in Multi-Type Key Ecological Functional Areas

In 2000, precipitation was the dominant single factor in the ecological functional area
of the TRSR, and in 2018, vegetation cover was the dominant factor. This was because
during the past decades, a series of ecological protection measures, such as afforestation,
prohibition of deforestation, and returning farmland to forest and grassland, had been
effectively implemented, which achieved remarkable results with large area restorations of
forest and grassland and strengthened the ecosystem diversity and species diversity [56].

Between 2000 and 2018, the dominant factor in the HSDK was vegetation. In this
functional area, the climate was characterized by sandstorms, drought, scarce precipitation,
and extremely high temperature, which directly affected and limited the growth and
recovery of the regional plant ecosystem and further accelerated the degradation process of
grassland and forest land [57].

The dominant factor of the CD was vegetation and altitude. In this study region,
the plateaus and mountains are widely distributed, so that the climate and the natural
environment are both significantly influenced by the altitude and topographic features.
The vertical climate types were characterized by abundant orographic precipitation and
large temperature difference. In addition, there was rich ecological diversity and various
types of vegetation [58].
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The dominant factors for the GQD in 2000 were solar radiation and precipitation, while
those of 2018 were precipitation, altitude, and vegetation coverage. Since 2003, the imple-
mentations of rocky desertification control projects and closed tackling and reforestation
(CTRF) have greatly improved the conditions of vegetation. The increasing precipita-
tion with climate change had positive influences on the local ecological environment and
microclimate, which became the dominant factors affecting the regional ecosystem [59].

6. Conclusions

Fully considering the geographical and climatic characteristics of multi-type key
ecological functional areas, a set of ecological vulnerability evaluation systems oriented
to different ecological functional areas was constructed, and a novel dynamic weight
determination method was proposed to determine the index weights. Finally, the NPP
was introduced to determine the vulnerability thresholds for multi-type ecological zones
in different periods. The temporal and spatial changes in ecological vulnerability and its
driving mechanisms were explored based on Geodetector. The main results are as follows:

(1) The novel quantitative vulnerability evaluation method for multi-type ecological
functional areas had higher applicability for multi-type key ecological functional areas,
and the evaluation precisions were 91.3% (TRSR), 92.6% (HSDK), 89.9% (GQD), and 90.8%
(CD), respectively.

(2) The proposed dynamic weight determination method could better consider the
difference of contribution rate of factors in the vulnerability evaluation system for different
periods. In addition, the introduction of NPP to determine the vulnerability thresholds
could confirm the comparability of the assessment results among different study regions at
a more unified level than previous studies.

(3) The average ecological vulnerability of the TRSR, GQD, and CD can be classified
as mild vulnerability, while that of the HSDK can be considered moderate vulnerability.

(4) There were significant differences in the dominant factors of ecological vulnerabil-
ity for multi-type ecological functional areas in different periods, namely, precipitation and
vegetation in the TRSR (2000→2018, unchanged), vegetation and solar radiation (2000) to
vegetation (2018) in the HSDK, solar radiation, vegetation, and altitude (2000) to precipi-
tation, vegetation, and altitude (2018) in the GQD, and vegetation and altitude (2000) to
vegetation (2018) in the CD.
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Appendix A

Data Source

Daily precipitation

China Meteorological Data Sharing Network (http://www.nmic.cn/, accessed on 15
February 2022)

Annual average temperature
Extreme high temperature
Extreme low temperature

Sunshine hours
Accumulated temperature

Frost-free period

DEM
Geospatial Data Cloud Platform (http://www.gscloud.cn/, accessed on 10

February 2022)
Humidity index

Geospatial Data Cloud Platform (Landsat images) (http://www.gscloud.cn/, accessed
on 15 February 2022)

Bare soil index
Improved adjusted vegetation index
Salinity index, surface temperature

vegetation coverage

Annual net primary productivity
National Aeronautics and Space Administration Earth Observation System (MOD17A3)

(https://www.nasa.gov/, accessed on 12 February 2022)
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