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Abstract: To improve the prevention and control of geological disasters in Shuicheng District,
10 environmental factors—slope, slope direction, curvature, NDVI, stratum lithology, distance from
fault, distance from river system, annual average rainfall, distance from road and land use—were
selected as evaluation indicators by integrating factors such as landform, basic geology, hydrom-
eteorology and engineering activities. Based on the weight of evidence, random forest, support
vector machine and BP neural network algorithms were introduced to build WOE-RF, WOE-SVM
and WOE-BPNN models. The sensitivity of Shuicheng District to geological disasters was evaluated
using the GIS platform, and the region was divided into areas of extremely high, high, medium,
low and extremely low sensitivity to geological disasters. By comparing and analyzing the ROC
curve and the distribution law of the sensitivity index, the AUC evaluation accuracy of the WOE-RF,
WOE-SVM and WOE-BPNN models was 0.836, 0.807 and 0.753, respectively; the WOE-RF model
was shown to be the most effective. In the WOE-RF model, the extremely high-, high-, medium-, low-
and extremely low-sensitivity areas accounted for 15.9%, 16.9%, 19.3%, 21.0% and 26.9% of the study
area, respectively. The extremely high- and high-sensitivity areas are mainly concentrated in areas
with large slopes, broken rock masses, river systems and intensive human engineering activity. These
research results are consistent with the actual situation and can provide a reference for the prevention
and control of geological disasters in this and similar mountainous areas.

Keywords: geological disasters; environmental factors; weight of evidence; random forest;
sensitivity evaluation

1. Introduction

Geological disasters pose a significant threat to the safety of building facilities and
the lives and property of residents. Geological disasters occur frequently in Shuicheng
District, the most prominent and harmful of which is landslide. Geological disaster sensi-
tivity and risk assessment can effectively analyze the characteristics of regional geological
disasters and provide a scientific basis for land use planning and the prevention and
reduction of disasters.

Geological disaster sensitivity evaluation refers to the evaluation of the trend of geolog-
ical disasters based on the environmental characteristics of past disasters and determination
of the probability of geological disasters. At present, geological disaster sensitivity evalua-
tion models mainly include probability statistical models and machine learning models.
Probability statistical models include the frequency ratio model [1], informational value
model [2,3] and certainty factor model [4,5], etc. Machine learning models include the logis-
tic regression model [6,7], neural network model [8], support vector machine model [9,10]
and random forest model [11,12], etc. Combining two or more models has become a
popular evaluation approach in recent years.

Sustainability 2022, 14, 16247. https://doi.org/10.3390/su142316247 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142316247
https://doi.org/10.3390/su142316247
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-4094-1000
https://orcid.org/0000-0002-0602-7832
https://doi.org/10.3390/su142316247
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142316247?type=check_update&version=1


Sustainability 2022, 14, 16247 2 of 11

Compared with other binary statistical models (such as the information value and
certainty factor models), the weight of evidence model has the advantage that it not only
considers the positive weight obtained by the sufficient rate of disaster occurrence but also
considers the negative weight obtained by the necessary rate of disaster occurrence; thus,
the final weight considers the two factors comprehensively [13]. In addition, in existing
research on geological disasters in Shuicheng District, the research objectives are generally
the most harmful single geological disasters, such as extremely large landslides [14,15].
In view of this, our paper attempts to analyze geological disasters in Shuicheng District
from the regional perspective. On the basis of the evidence, we combine the random
forest, support vector machine and BP neural network algorithms to build the WOE-RF,
WOE-SVM and WOE-BPNN models and, through a comparative study of each model,
discuss the disaster sensitivity evaluation model applicable to Shuicheng District.

2. Materials and Methods
2.1. Study Area

Shuicheng District is subordinate to Liupanshui City, Guizhou Province, China, with
geographical coordinates ranging between 104◦34′~105◦15′ E and 26◦02′~26◦55′ N, cov-
ering a total area of 3054.92 km2. The study area has a plateau monsoon climate with an
annual average temperature of 15 ◦C and an annual average rainfall of 1300 mm. The river
belongs to the Sancha River basin of the Yangtze River system and the Beipan River basin
of the Pearl River system. The terrain in the area fluctuates significantly, with an altitude
of 645~2865.2 m. The landform is dominated by mountains, in addition to hills, valleys
and basins. The overall terrain is high in the northwest and low in the southeast; folds and
faults are developed, tectonic activities are strong, and the rock and soil associations are
complex and diverse. Landslides in the area are mainly small- and medium-sized, and
most of them are soil landslides; 533 landslide points were determined using a geological
disaster survey and remote sensing interpretation; their spatial distribution is shown in
Figure 1.
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2.2. Data Sources

The basic data in this paper include landslide data and landslide influencing factor
data. Landslide influencing factor data is composed of terrain, geology, remote sensing,
hydrometeorology and engineering activity data. The data sources for this paper are shown
in Table 1.

Table 1. Data sources.

Database Data Sources

DEM,
Landsat-8 image Geospatial data cloud (https://www.gscloud.cn, accessed on 10 January 2022)

Fault distribution,
Lithological distribution National Geological Data Center (https://www.ngac.org.cn, accessed on 17 January 2022)

Distribution of geological disasters,
Annual average rainfall

Resources and environment science and data center of Chinese Academy of Sciences
(https://www.resdc.cn, accessed on 1 February 2022)

River system distribution,
Road distribution

National Geographic Information Resources Directory Service System
(https://www.webmap.cn, accessed on 5 February 2022)

Land use Globeland30 dataset (http://www.globallandcover.com, accessed on 6 February 2022)

2.3. Landslide Influencing Factors

The occurrence of geological disasters is influenced by various environmental fac-
tors. From previous research and existing data, the elevation, slope, aspect, curvature,
roughness, undulation, terrain humidity index, NDVI, stratum age, lithology, distance
from fault, distance from water system, annual average rainfall, distance from road and
land use were determined. The results are shown in Table 2 (D1–D15 represent the above
environmental factors). When the correlation coefficient |R| is > 0.3, it is considered that
there is a strong correlation between environmental factors. The correlation coefficients
between elevation and distance from the river system and average annual rainfall were
0.41 and 0.51, respectively. Therefore, the elevation factor was discarded. The correlation
coefficients between slope and roughness, fluctuation and the terrain humidity index were
0.90, 0.93 and 0.44, respectively. The correlation coefficient between curvature and the to-
pographic moisture index was −0.46, and the correlation coefficient between fluctuation
and the topographic humidity index was −0.36. Because roughness and topographic mois-
ture index were extracted on the basis of slope, the three factors of roughness, fluctuation
degree and terrain humidity index were excluded. The correlation coefficient between
stratigraphic age and lithology was 0.69, and the stratigraphic age factor was discarded. To
ensure the mutual independence of the various environmental factors and the reliability of
the evaluation results, the 10 eligible environmental factors were selected as the evaluation
indicators, as shown in Figure 2.

Slope affects the stress distribution of the slope body and plays an important role in
the distribution and volume of surface water runoff and loose deposits on the slope. The
intersecting relationship between the aspect and the structural planes, such as the rock
layer and joint fissure, forms different types of slope structures, which govern the spatial
distribution of geological disasters and the failure mode of slopes. Curvature indicates the
unevenness of terrain and affects the erosion and deposition of terrain surface materials.
The above three environmental factors can be directly extracted from DEM data. Vegetation
distribution has a certain impact on the distribution of geological disasters. The normalized
difference vegetation index (NDVI) can be utilized to represent vegetation distribution. The
NDVI value is obtained using radiometric calibration, atmospheric correction and band
calculation of Landsat-8 images in the study area via ENVI software. Rainfall infiltration
increases the gravity of the slope, softens the rock–soil interface, and induces geological
disasters. The annual average rainfall provides a stable reflection of regional annual
rainfall. Geological disasters often develop to a greater extent in particular strata, and

https://www.gscloud.cn
https://www.ngac.org.cn
https://www.resdc.cn
https://www.webmap.cn
http://www.globallandcover.com
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different types and scales of geological disasters are triggered in different strata lithologies.
Geological structures such as faults destroy the original structure of the rock mass, resulting
in the fragmentation of the rock mass and the development of joint fissures. Cutting and
scouring by the water system can easily create high and steep slopes and loose deposits,
which increase the possibility of slope instability. Human engineering activities, such
as road construction and land utilization, have transformed and destroyed the original
landform and geological environment and, to a certain extent, have affected the frequency
of geological disasters. The Euclidean distance tool was used in ArcGIS to obtain the
distances from faults, water systems and roads. For the continuous environmental factors,
we adopted the natural discontinuity classification method (Jenks) [16], which can classify
similar values and maximize the difference between different types of values. For discrete
environmental factors, inherent classification was adopted: the slope direction was divided
into eight directions and flat according to the azimuth angle; the formation lithology was
divided into hard rock, relatively hard rock, alternating soft and hard rock, soft rock and
relatively soft rock according to the degree of hardness; and land use type was divided into
five categories: cropland, forest, grass, water and artificial.

2.4. Methods
2.4.1. Technical Process

First, using functional modules of the ArcGIS software such as cropping, projection
and resampling, the projection coordinates of each environmental factor were unified as
CGCS2000_GK_Zone_18. The grid cell was selected as the basic evaluation unit to improve
evaluation efficiency and meet the accuracy requirements. The grid cell size was calculated
using the following formula [17]:

Gs = 7.49 + 0.0006S− 2.0× 10−9S2 + 2.9× 10−15S3 (1)

where Gs is the grid cell size (m) and S is the scale denominator. Because the geographical
base map scale selected for this paper was 1:50,000, combined with Formula (1), the
evaluation unit was a 30 m × 30 m grid, with 3,350,033 grid cells in the total study area.

Then, for the 533 landslide points in Shuicheng District, an equal number of nonland-
slide points were randomly selected outside the 1 km range; the two constituted a total
sample point. Combined with environmental factors and total sample points, the evidence
weight of each environmental factor layer was calculated and assigned to the total sample
points and the total grid points of the study area for quantitative processing. Finally, 70%
of the assigned total sample points were selected as training samples to participate in the
training of each model. The sensitivity index of the total grid points in the study area was
predicted according to the training results, and then the geohazard sensitivity zoning of
each model was drawn. The remaining 30% of the sample points were used as test samples
to compare and test the accuracy of each model.

Table 2. Correlation coefficient matrix of the environmental factors.

Factors D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

D1 1.00
D2 −0.17 1.00
D3 −0.03 0.03 1.00
D4 0.11 0.04 0.00 1.00
D5 −0.17 0.90 0.03 0.03 1.00
D6 −0.17 0.93 0.03 0.03 0.91 1.00
D7 −0.13 −0.44 −0.01 −0.46 −0.32 −0.36 1.00
D8 0.20 0.09 −0.07 0.08 0.03 0.08 −0.15 1.00
D9 0.02 0.00 −0.02 0.01 0.01 0.00 −0.01 −0.08 1.00
D10 −0.07 −0.07 −0.01 −0.01 −0.05 −0.07 0.03 −0.10 0.69 1.00
D11 −0.25 0.03 −0.01 0.00 0.01 0.01 −0.01 −0.09 0.07 0.19 1.00
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Table 2. Cont.

Factors D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

D12 0.41 −0.08 −0.02 0.03 −0.08 −0.08 −0.07 0.09 −0.09 −0.07 −0.07 1.00
D13 0.51 −0.09 −0.07 0.01 −0.10 −0.09 −0.06 0.21 −0.24 −0.21 −0.08 0.24 1.00
D14 0.13 0.05 −0.01 0.02 0.04 0.06 −0.08 0.11 0.05 0.02 0.02 0.11 0.12 1.00
D15 0.00 0.04 0.00 −0.01 0.06 0.06 0.02 −0.11 −0.04 −0.02 −0.06 0.01 −0.01 0.00 1.00

Sustainability 2022, 14, x FOR PEER REVIEW 4 of 11 
 

environmental factors). When the correlation coefficient |R| is > 0.3, it is considered that 
there is a strong correlation between environmental factors. The correlation coefficients 
between elevation and distance from the river system and average annual rainfall were 
0.41 and 0.51, respectively. Therefore, the elevation factor was discarded. The correlation 
coefficients between slope and roughness, fluctuation and the terrain humidity index 
were 0.90, 0.93 and 0.44, respectively. The correlation coefficient between curvature and 
the topographic moisture index was −0.46, and the correlation coefficient between fluctu-
ation and the topographic humidity index was −0.36. Because roughness and topographic 
moisture index were extracted on the basis of slope, the three factors of roughness, fluc-
tuation degree and terrain humidity index were excluded. The correlation coefficient be-
tween stratigraphic age and lithology was 0.69, and the stratigraphic age factor was dis-
carded. To ensure the mutual independence of the various environmental factors and the 
reliability of the evaluation results, the 10 eligible environmental factors were selected as 
the evaluation indicators, as shown in Figure 2. 

 
Figure 2. Environmental factors: (a) slope, (b) aspect, (c) curvature, (d) NDVI, (e) formation lithol-
ogy, (f) distance from fault, (g) distance from river system, (h) distance from road and (i) land use. 
(annual average rainfall omitted). 

Figure 2. Environmental factors: (a) slope, (b) aspect, (c) curvature, (d) NDVI, (e) formation lithology,
(f) distance from fault, (g) distance from river system, (h) distance from road and (i) land use. (annual
average rainfall omitted).



Sustainability 2022, 14, 16247 6 of 11

2.4.2. Weight of Evidence (WOE)

The weight of evidence model is a quantitative evaluation method based on Bayesian
statistics and integrates various evidence layer factors to predict the probability of disaster
occurrence. The calculation formula is as follows:

Wi
+ = ln

Npix1
Npix1+Npix2

Npix3
Npix3+Npix4

(2)

Wi
− = ln

Npix2
Npix1+Npix2

Npix4
Npix3+Npix4

(3)

W f i = Wi
+ −Wi

− (4)

In this formula, Npix1 represents the area within the environmental factor level, Npix2
represents the area of a disaster outside the environmental factor level, Npix3 represents
the area with no disasters within this environmental factor level, Npix4 represents the area
outside the environmental factor level, W+

i and W−i indicate the positive and negative
correlation weights of the evidence factor and the difference between them is the contrast
Wfi, which indicates the weight of disaster occurrence in each classification state of the
evidence level factors.

2.4.3. Random Forest (RF)

Random forest is an ensemble learning algorithm with a decision tree as the basic
unit. The first step is to select m training samples from the original training set to establish
a decision tree model, then randomly select n subsets of features from each sample and
select the optimal features to grow the nodes. The final result is obtained by voting on each
decision tree. The formula is as follows:

Z(x) = argmax
n

m

∑
i=1

I(Yi(x) = U) (5)

where Z(x) represents the random forest model, Yi(x) is a single decision tree model, U is
the output variable and I is the explicit function. Each decision tree randomly selects some
samples and some features, which avoids the overfitting of the model to some extent and
provides good noise resistance.

2.4.4. Support Vector Machine (SVM)

The SVM is a binary classification model that aims to solve the separated hyperplane
with the largest class interval so that the support vector is as far from this hyperplane as
possible to achieve a better classification effect, as shown in the equation:

f (x) = ωφ(x) + θ (6)

In this formula, f (x) is the regression function of the SVM, ϕ(x) is a nonlinear mapping
function, ω is the weight vector and θ is the bias term. For high-dimensional nonlinear
mapping functions, the kernel function is used, instead of calculating its inner product,
to reduce the complexity of the algorithm [18]. The radial basis kernel function (RBF) is
selected to construct the SVM model as follows:

k(x, y) = exp

(
−‖x− y‖2

2σ2

)
(7)

where x and y are the input vector and the width parameter of the RBF kernel function, respectively.
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2.4.5. BP Neural Network (BPNN)

The BP neural network is an error backpropagation algorithm consisting of the input
layer, hidden layer and output layer, which can minimize the error between the predicted
value and the true value by adjustment of the weights [19]. The calculation formula
is as follows:

vp =
a2

∑
q=1

ω2 f

(
a1

∑
i=1

ω1xi + bq

)
(8)

In the formula, vp is the p-th output, ω1 is the weight of i-number neurons in the input
layer to q-number neurons in the hidden layer, ω2 is the weight of q-neurons in the hidden
layer to p-neurons in the output layer, bq is the offset value of the q-number neurons in the
hidden layer, a1 is the number of neurons in the input layer and a2 is the number of hidden
layer neurons.

3. Results and Discussion
3.1. Calculation Results of WOE

The weight of evidence under each classification state was obtained using
Formulas (2)–(4); the results are shown in Table 3.

Table 3. Classification and weight of evidence for each environmental factor.

Environmental
Factor Data Type Factor Classi-

fication WOE Environmental
Factor Data Type Factor Classi-

fication WOE

Slope
Successive

type

0◦~11◦ −0.568

Formation
lithology

Discrete type

Hard rock −0.184

11◦~19◦ −0.097 Relatively
hard rock −0.981

19◦~27◦ 0.004 Relatively
soft rock 0.601

27◦~38◦ 0.380 Soft and hard
rock 0.378

38◦~71◦ 0.637 Soft rock 0.890

Aspect Discrete type

Flat −0.191

Distance
from fault

Successive
type

0~1.3 km 0.637
North −0.213 1.3~2.8 km 0.270

Northeast −0.122 2.8~4.8 km −0.096
East −0.068 4.8~7.4 km −0.336

Southeast 0.052 7.4~12.9 km −0.520

South 0.167
Distance

from river
system

Successive
type

0~0.5 km 0.359
Southwest 0.220 0.5~1 km 0.365

West −0.033 1~1.7 km −0.461
Northwest −0.037 1.7~2.5 km −1.136

2.5~4.6 km −1.192

Curvature
Successive

type

−10.8~−1 −0.502
Annual
average
rainfall

Successive
type

1005~1107
mm −1.089

−1~−0.3 −0.227 1107~1156
mm −0.590

−0.3~0.3 0.284 1156~1194
mm 0.336

0.3~1.1 −0.166 1194~1238
mm 0.533

1.1~9.6 0.382 1238~1352
mm 0.576

NDVI
Successive

type

−1~0 −0.296

Distance
from the road

Successive
type

0~0.2 km 0.641
0~0.31 0.694 0.2~0.5 km −0.211

0.31~0.45 0.250 0.5~0.7 km −0.353
0.45~0.59 0.069 0.7~1.1 km −0.456

0.59~1 −0.812 1.1~2.1 km −1.026
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Table 3. Cont.

Environmental
Factor Data Type Factor Classi-

fication WOE Environmental
Factor Data Type Factor Classi-

fication WOE

Land use Discrete type

Cropland 0.582
Forest −0.704
Grass 0.101
Water −1.121

Artificial 0.646

3.2. Prediction Sensitivity of RF, SVM and BPNN

For the RF model, the random forest classifier algorithm of the scikit-learn library was
called in Python language, and the samples were imported into the model and trained
after evidence weight assignment. For the SVM and BPNN models, the samples were
imported into IBM SPSS modeler 18.0 software for model training after evidence weight
assignment. The geodisaster sensitivity indexes of the total grid points in the study area
were predicted according to the training results for each model, and then the corresponding
WOE-RF, WOE-SVM and WOE-BPNN result layers were generated using the ArcGIS point-
to-grid tool. The natural discontinuity classification method was used to divide these into
extremely high-, high-, medium-, low- and extremely low-sensitivity areas. The geological
disaster sensitivity zoning provided by each model is shown in Figure 3.
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(c) WOE-BPNN model.

3.3. Receiver Operating Characteristic Curves

At present, the generally recognized model evaluation index is the receiver oper-
ating characteristic (ROC) curve. Its vertical axis is the true positive rate (sensitivity),
which describes the probability that the model is actually a geological disaster and that the
model is judged to be a geological disaster. The horizontal axis is the false positive rate
(1 − specificity), which describes the probability that the model is judged to be a nongeo-
logical disaster. The area under the ROC curve is the AUC value, which is in the range of
0~1. The closer it is to 1, the better the prediction effect of the model. When it is 0.5~0.6,
0.6~0.7, 0.7~0.8, 0.8~0.9 and 0.9~1.0, this means that the prediction effect fails, is poor, is
general, is good and is especially good, respectively. It can be seen from Figure 4 that the
AUC evaluation accuracy of WOE-RF, WOE-SVM and WOE-BPNN was 0.836, 0.807 and
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0.753, respectively; WOE-RF had the best accuracy, indicating that it is more suitable for
the sensitivity evaluation of land disasters in Shuicheng District.
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3.4. Distribution Law of the Disaster Sensitivity Index

The mean value (Mean) and standard deviation (SD) represent the average level and
dispersion of the sensitivity index distribution, respectively, which can be used to analyze
the uncertainty of the prediction results of different models [20]. For all the models, the
sensitivity index was divided into 100 intervals, the number of grids of different intervals
were counted and the mean and standard deviation of the sensitivity index distribution
were calculated. The results are shown in Figure 5. The mean value and standard devi-
ation of each sensitivity index were sorted as follows: Mean(WOE-SVM) > Mean(WOE-RF) >
Mean(WOE-BPNN), SD(WOE-RF) > SD(WOE-BPNN) > SD(WOE-SVM). Of these, the WOE-RF model
had a small mean value and a large standard deviation, which distinguished the disas-
ter sensitivity in the study area relatively well. From combining the ROC curve and the
sensitivity index rule, we found that the WOE-RF model had higher accuracy and lower
uncertainty.
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4. Conclusions

Taking geological disasters in Shuicheng District as the research objective, a geological
disaster sensitivity evaluation system was established by screening 10 environmental factors
that met the independence test, such as slope. Based on the quantification of evidence
weight assignment, the corresponding geological disaster sensitivity zoning was established
using random forest, support vector machine and BP neural network algorithms.

Comparing the area under the ROC curve (AUC) and the distribution law of the
sensitivity index of each model, the WOE-RF model was shown to have higher prediction
accuracy and lower uncertainty than the WOE-SVM and WOE-BPNN models, and is
therefore more suitable for use in studies evaluating sensitivity to urban land disasters.



Sustainability 2022, 14, 16247 10 of 11

The areas in the study area that are extremely and highly sensitive to geological disas-
ters are mainly distributed in Bide Town, Huale Town, Yushe Town, Shaomi Town, Miluo
Town, Aga Town, Guobuga Township, Duge Town, Jichang Town, Houchang Township
and other parts of the area. The terrain in these areas is steep, the rock mass is broken,
the river system is cut and there is intensive human engineering activity, which destroys
the structure of the slope rock mass, alters the stress of the original slope, leading to slope
instability and then causing geological disasters such as landslides and ground collapse.
The terrain slope of the medium-sensitivity area is fairly large, and it is some distance
from the river system. The stability of the rock mass under the action of the geological
structure is poor, and therefore the possibility of geological disasters is medium. The low-
and extremely low-sensitivity areas are flat, the terrain slope is not undulated, and there
is little damage to the geological structure of the rock mass, reducing the probability of
geological disasters.
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