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Abstract: Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the sludge environment
due to activities such as oil extraction and pose a serious threat to deep-seated anaerobic microorgan-
isms. Thus, in this study, we discussed the dose–response efficiency of naphthalene (Nap, a typical
PAH) on anaerobic digestion (AD) through co-metabolic degradation via batch experiments. The
batch results showed that 30 mg/L Nap promoted the AD with the accumulation of CH4 18.54%
higher than the control (without Nap) by increasing the efficiency of hydrolysis and acetogenesis
99.49% and 61.95%, respectively. However, adverse effects were observed with an excessive dosage
of Nap (higher than 100 mg/L) with a decrease of methane production (37.16) with 2000 mg/L
Nap. Interestingly, the concentrations of the polysaccharide and protein reached the highest at
138.76 mg/L and 400.41 mg/L, respectively, in 1000 mg/L Nap. Furthermore, the high activities of
hydrolase and transmembrane ATPase were acquired in 30 mg/L Nap. In addition, Nap significantly
affected the methanogenic microbial abundance and diversity, especially diminishing Methanolinea
and Syntrophobacter. Furthermore, the enrichment of Bacteroides in 30 mg/L Nap showed moderate
Nap could facilitate hydrolysis. The genes relevant to cellular processes were activated by Nap. This
research provided a reliable basis for the anaerobic microbial response under Nap stress.

Keywords: naphthalene; biomethane; anaerobic digestion; extracellular polymeric substances;
microbial community

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are new prevalent organic pollutants result-
ing from the development of the modern petroleum industry [1,2]. Among the components
of crude oil, PAHs are recalcitrant hydrophobic pollutants, which possess carcinogenic, as
well as cumulative, characteristics and seriously threaten human health and ecosystem se-
curity [3]. In actual petroleum-contaminated environments, most PAHs eventually transfer
to deep soil layers, groundwater, or swamp bottoms, where aerobic microorganisms can
hardly survive [4]. Deep soil is the storage place for organic compounds, where anaerobic
microorganisms use the complex organic compounds for anaerobic digestion (AD) [5].
Therefore, it is an important concept to explore the effects of PAHs on microorganisms
under anaerobic conditions.

In recent years, naphthalene (Nap), one of PAH, has drawn considerable concerns
as a potential carcinogen due to its high-water solubility and high volatility [6,7]. Nap
had a positive effect on denitrification, while phosphorus was inhibited [8]. Additionally,
Verrhiest et al. [9] assessed the toxicity of PAH mixtures at the level of a microbe in natural
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freshwater sediments. The activity of β-glucosidase was increased, while the leucine-
aminopeptidase activity was decreased at 300 mg/kg PAH [9]. Research has shown that
PAHs generate large amounts of reactive oxygen species during their transformation in
organisms. Electrophilic intermediates are produced during the degradation of PAHs by
cell oxygenase, which can cause lipid peroxidation, destroy the structure and composition
of the cell membrane, and cause DNA oxidative damage [10]. These intermediates can
also change the conformation of protein molecules, reduce the enzyme activity and repair
efficiency of damaged DNA, and induce apoptosis [11,12]. However, there is little research
about the effects of Nap on microbial activity and physiological indicators during AD,
especially the extracellular polymeric substances (EPS), and the key enzyme activities of
anaerobic microbes in response to NAP also need to be studied systematically.

This study aimed to explore the physiological indicators and metabolic function re-
sponse of mixed anaerobic sludge at different Nap concentrations. Physiological indicators,
including EPS and amylase, as well as ATPases, were extracted for analysis. The mi-
crobial community changes and function prediction were analyzed by high-throughput
sequencing technology.

2. Materials and Methods
2.1. Experimental Design and Procedures

The batch experiments were conducted in serum bottles with 100 mL work volume
at 35 ◦C, 120 rpm/min. The detailed experimental design is listed in Table 1. Firstly, use
acetone as the solvent to prepare a high-concentration naphthalene solution (3, 10, 30, 100,
and 200 g/L). Then, 1 mL of high-concentration naphthalene solution was added in serum
bottles and vaporized to dryness in a fume hood. Next, the medium and sludge were added
in turn. All the group were flushed with pure nitrogen to ensure an anaerobic environment.
According to the gas production, the mud–water mixture was extracted from the vials for
analysis at 45.5, 69.5, 99, and 142.5 h, respectively. The basal medium consisted of 1.0 g/L
MgCl2, 2.0 g/L KH2PO4, 2.0 g/L K2HPO4•3H2O, 1.0 g/L CaCl2, and 5.0 g/L KCl. The
bottle in which only the inoculum and starch were added was set as the control group.

Table 1. The detailed design of the batch test.

Group Sludge (g) Basal
Medium (mL) Starch (g) Nap

(mg/L)
Methanol

(mL)
Methane

(mL)

N0 15 90 0.5 0 0.5 415.25
N1 15 90 0.5 30 0.5 415.25
N2 15 90 0.5 100 0.5 415.25

N3 15 90 0.5 300 0.5 415.25
N4 15 90 0.5 1000 0.5 415.25

N5 15 90 0.5 2000 0.5 415.25

2.2. Chemical Analysis

Total solids (TS), volatile solid (VS), pH, and chemical oxygen demand (COD) were
measured according to the Standard Methods [13]. The biomethane content was measured
by saturated NaOH solution to capture CO2. The concentration of volatile fatty acids
(VFAs) was analyzed by High-Performance Liquid Chromatography (Shimadzu LC-2030).

The three-dimensional excitation–emission matrix (EEM) was described in our previ-
ous method reported [14]. The zeta potential of the sludge–water mixture was measured by
the microelectrophoresis instrument (Shanghai Zhongchen JS94H) at 142.5 h to analyze the
variances of sludge physical properties. A glass cuvette with a specification of 0.5 cm thick-
ness was used, and about 1 mL of sample was added each time. Na+ K+- ATPase and Ca2+

Mg2+- ATPase were tested using enzyme activity kits (Nanjing Jiancheng Bioengineering
Institute), respectively.
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2.3. Data Analysis

The performance of biogas and biomethane-producing were simulated by the modified
Gompertz fitting equation, which can be expressed as follows in Equation (1):

P(t) = P0 × exp
[
− exp

(
Kmax ∗ 2.73 ∗ (A− t)

P
+ 1

)]
(1)

where P is the accumulated gas (biogas/biomethane) production at time t, mL/gVSadd; P0
is the maximum gas production potential, mL/gVS; Kmax is the maximum production rate
of gas, mL/(gVS·h); A is the lag phase, h; t is the response time, h; and e is the constant.

The efficiencies of hydrolysis, acidogenesis, acetogenesis, and methanogenesis during
AD were calculated based on the COD.

Hydrolysis =
SCOD + CODCH4

TCOD
× 100% (2)

Acidogenesis =
CODVFA + CODCH4

TCOD
× 100% (3)

Acetogenesis =
CODacetate + CODCH4

TCOD
× 100% (4)

Methanogenesis =
CODCH4

TCOD
× 100% (5)

where soluble chemical oxygen demand (SCOD) is the COD of digestate after filtering with
a 0.45 µm filter; CODCH4 was calculated based on the principle of 350 mL CH4/gCOD
under the standard conditions; and CODVFA and were obtained by converting VFA and
acetate to COD, according to the theoretical calculations.

2.4. EPS Extraction and Analysis

EPS was extracted using the heat method as in our previous study [14]. The PN
concentration in EPS was measured by the BCA Protein Assay Kit (Nanjing Jiancheng
Bioengineering Institute A045-4). The concentration was determined by a UV spectropho-
tometer. The PS in EPS was determined by a UV spectrophotometer, according to the
phenol-sulfuric acid method standard (details in the Supplementary Materials).

2.5. Molecular Docking

Molecular Operating Environment (MOE) software (Version 2009, Chemical Comput-
ing Group Inc., 910-1010 Sherbrooke St. W. Montreal, QC H3A 2R7, Canada) was used to
predict the interaction between Nap and enzymes. The enzymes were downloaded from
the Protein Data Bank. The crystal structure of the enzymes, the constitutional formula of
Nap, and the parameter settings were referred to in [15].

2.6. Sequencing and Function Prediction

The sludge samples of N0, N1, N3, and N4 were collected. The modified forward
primer 5′-CTACGGRRBGCASCAGKVRVGAAT-3′ and the revise primer 3′-GGACTACNV-
GGGTWTCTAATCC-5′ targeting the V3–V4 region were selected for modified sequencing.
The metabolic functions prediction was performed by the Tax4Fun2 package and Kyoto
Encyclopedia of Genes and Genomes (KEGG) [16].

3. Results and Discussion
3.1. Influences of Nap on Biogas

As shown in Figure 1b, the production of CH4 decreased with the Nap was added,
except for N1 and N2. The biomethane yields of N1 and N2 were 181.99 and 161.50 mL/gVS,
which were 18.54% and 5.20% higher than N0. However, the biomethane yields were
reduced by 12.35%, 35.91%, and 37.16% in N3, N4, and N5 with high Nap concentrations.
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In addition, lower concentration of Nap (30 mg/L) could be utilized as the carbon source,
which resulted in the biogas production rate curve with a second peak [17]. With the Nap
concentration increased, the rate of biogas production decreased rapidly, and the second
peak in the biogas production rate curve disappeared. On the face of it, the Nap (higher
than 100 mg/L) would severely inhibit biogas production rather than act as a carbon source
to promote AD.
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Figure 1. Cumulative biogas/biomethane yield (a,b), and instantaneous gas-producing/
methanogenic rates (c,d).

The simulation results for the P0, Kmax, and A were listed in Table 2. The values
of the root mean square error (1.07–5.40), normalized root mean square error (0.01–0.05),
and Akaike information criterion (AIC) (4.76–53.23) were calculated, verifying the appli-
cability of the Gompertz model to the data obtained from gas production. N1 had the
maximum Po (129.14 mL/gVS), while the minimum (77.59 mg/gVS) appeared in N4. The
methanogenic activity of the microbial was inhibited to different degrees with the Nap
concentration increasing.

According to Table 2 a low concentration of Nap (less than 300 mg/L) significantly
increased the Kmax. The Kmax values of N3, N4, and N5 decreased by 24.67%, 55.33%, and
46.00% from the control, respectively. In addition, N1 also had the shortest lag phase, which
was reduced by 3.96% compared to the N0 Table 2). In combination with Figure 1d, N1
reached the maximum methanogenic rate of 3.28 mL/(gVS·h) at the earliest time (45.5 h).
However, excess Nap inhibited the AD, which caused the value of A in N5 to be 56.37 h,
125.57% longer than the control, and almost no biomethane was produced at the beginning
of digestion.

The significant enhancement may be caused by the microbial community consum-
ing the appropriate amount of Nap for cell growth [17]. With the increase of the Nap
concentration, the anaerobic sludge activity was inhibited, which resulted from the high
concentrations of Nap induced the accumulation of toxic metabolites in the system [18].
Similar phenomena were also reported that PAHs could conduce to the growth of microor-
ganisms [9]. However, the opposite effect was observed that Nap above 56 mg/L inhibited
Pseudomonas aeruginosa seriously [19].
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Table 2. Kinetic parameters of biogas and biomethane production.

Model Parameters N0 N1 N2 N3 N4 N5

Gompertz
(Biogas)

P0 (mL/gVS) 149.32 178.90 129.52 111.49 92.77 109.97
Standard error 3.02 5.70 2.37 1.97 4.75 16.26
K mL/(gVS·h) 2.66 2.72 2.47 1.44 0.84 0.82

Standard error 0.18 0.25 0.13 0.05 0.03 0.04
A (h) 28.10 25.35 44.87 40.15 44.75 53.90

Standard error 1.91 2.93 1.21 1.00 1.56 2.83
Reduced chi-sqr 24.86 66.93 12.15 3.34 3.68 11.04
Adj. R-Square 0.99 0.99 1.00 1.00 1.00 0.99

Residual Sum of Squares 298.33 803.13 145.82 40.09 44.15 132.47

Root-MSE (SD) 4.99 8.18 3.49 1.83 1.92 3.32
NRMSE 0.03 0.05 0.03 0.02 0.03 0.05

AIC 50.85 65.71 40.11 20.75 22.19 38.67

Gompertz
(Biomethane)

P0 (mL/gVS) 97.73 129.14 103.77 93.68 77.59 90.86

Standard error 1.97 4.47 2.14 1.30 3.52 10.69

K mL/(gVS·h) 1.50 1.70 1.88 1.13 0.67 0.81

Standard error 0.09 0.14 0.10 0.03 0.02 0.05

A (h) 24.99 24.00 44.71 39.28 42.17 56.37

Standard error 1.88 2.94 1.34 0.73 1.36 2.70

Reduced chi-sqr 8.23 29.14 8.93 1.15 1.83 9.66

Adj. R-Square 0.98 0.99 1.00 0.99 0.98 0.99

Residual Sum of
Squares 98.70 349.68 107.17 13.81 21.91 115.87

Root MSE (SD) 2.87 5.40 2.99 1.07 1.35 3.11

NRMSE 0.02 0.05 0.03 0.01 0.02 0.03

AIC 34.26 53.23 35.50 4.76 11.68 36.67

In summary, it was found that Nap promoted microbial methanogenic activity at less
than 300 mg/L. The most significant promotion effect was observed at 30 mg/L, with an
18.54% and 13.33% increase in biomethane yield and production efficiency compared to the
control group. However, the inhibitory effect of Nap on methanogenic activity increased
significantly with the Nap concentration higher than 100 mg/L. With 2000 mg/L Nap, the
biomethane yield and production efficiency decreased by 37.16% and 46.00% compared
to the control group. Moreover, the asynchrony of the maximum biogas and biomethane
production rate also proved that Nap had different effects on the four phases of AD.

3.2. Influences of Nap on AD Performance
3.2.1. Changes of DOM Components

DOM include carbohydrates, humic substances, hydrophilic acids, proteins, etc.,
which are closely related to the microbial metabolism [20]. The results of the typical EEM-
PARAFAC are shown in Figure 2a. On the time series, the concentration of soluble microbial
metabolites (SMP) increased by 21.59% and 3.67% at 69.5 h compared to 45.5 h for N0 and
N3, with the rapid production of soluble metabolites from easily degradable organic matter
(Figure 2(a1, a3)). The SMP fluorescence intensity of N0 and N3 decreased to 5.34 AU (arbi-
trary unit) and 4.18 AU at 99.5 h, respectively. However, the fluorescence intensity of SMP
in N1 kept weakening and diminished to 3.08 AU by 145.5 h (Figure 2(a2)). Additionally,
the tyrosine-like component showed the same decreasing trend. These results indicated
that 30 mg/L Nap exhibited the best impact on the metabolic capacity of microorganisms
with the maximum utilization of the substrate. In addition, SMP in N4 maintained a stable
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strong fluorescence density with about 6.30 AU, as shown in Figure 2(a4). The abundant
SMP in N4 was mainly converted from extracellular polysaccharides produced by cell
lysis [21].
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Figure 2. Dynamic variations of the digestive performance in different reactors: the EEM-PARAFAC
composition in N0 (a1), N1 (a2), N3 (a3), and N4 (a4); the concentrations of tVFA in N0 (b1), N1 (b2),
N3 (b3), and N4 (b4); and the efficiencies of the four stages in anaerobic digestion (c1–c4).

Particularly, humic acid-like (HA), the nonbiodegradable compounds, remained at a
high level (average 3.32 AU) at a high concentration of Nap (1000 mg/L) in N4 compared
with the other groups. As a typical electron acceptor in AD, HA can steal electrons from
acetic acid and further hinder methanogenesis [22]. This was one of the reasons why a high
concentration of Nap (1000 mg/L) in N4 inhibited biomethane production.

3.2.2. Variations of VFA

Figure 2b shows the variation of VFAs for N0, N1, N3, and N4. Except for N4, the
content of the total VFAs increased and then decreased with the treatment time in all groups.
In the first 45 h, the sample carbon source was hydrolyzed and acidified. The accumulation
of VFA indicated that hydrolytic and acidified bacteria adapt to the environment better
than methanogens [23]. The acetate accounted for the vast majority of total VFAs with a
relatively stable accumulation (3765.67 mg/L) in N1 until 69.5 h due to the high efficiency
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of acetogenesis (Figure 2(c3)) and subsequently rapid declined synchronization with the
rapid production of biomethane. In contrast, a maximum value close to 8000 mg/L of
acetate was observed in N4, indicating that excess Nap was significantly beneficial to
acidogenesis up to 88.58% but inhibited the methanogenesis efficiency with 13.49%, leading
to acetate accumulation.

In AD, propionate degradation by syntrophic acetogenic bacteria was recognized
as the thermodynamical challenge due to higher Gibbs-free energy [24]. Additionally,
the excessive propionate accumulation might inhibit subsequent processes of AD. The
concentration of propionate in N1 decreased to 72.52 mg/L at 99.0 h. Meanwhile, the
efficiency of acetogenesis in N1 reached the maximum of 61.95% in Figure 2(c3). It indicated
that the moderate Nap facilitated propionate to be converted to acetate fully, resulting in
a high methanogenesis efficiency with 37.79%. Nevertheless, the propionate contents of
N3 and N4 reached 312.31 mg/L and 269.92 mg/L at 99.0 h. These results illustrated that
excess Nap hindered the syntrophic bacteria from interacting with methanogens to oxidize
propionate. Furthermore, the acetogenesis of N3 and N4 declined by 10.35% and 3.99%,
respectively. The maximum value of acidogenesis efficiency in N4 reached 88.58% due to
the accumulation of SMP, and the methanogenesis could be further inhibited [25].

3.2.3. Changes of SCOD

As shown in Figure S1, N0 and N1 had the highest SCOD content at 45.5 h, and N1
was 33.06% higher than N0. The microorganisms were in the stabilization phase with
strong activity, and the methanogenic rate of N0 and N1 also increased significantly in
this phase (Figure 1d). In addition, the hydrolysis efficiency also obtained a maximum
value of 99.49% in N1, which was 21.93% higher than N0. It was proven that 30 mg/L
Nap could enrich the hydrolytic bacteria to promote the hydrolysis of starch, as follows
in the discussion in Sections 3.5 and 3.6, respectively. During the first 99 h of digestion,
along with microorganisms degrading soluble organic substances to synthesize substances
available to them, the content of SCOD in N0 and N1 gradually decreased to the minimums
at 2951.67 and 2501.67 mg/L, respectively. However, the hydrolysis was inhibited after the
excessive Nap was added. At the end of the experiment, N4 had the highest SCOD level of
7235.00 mg/L, which was 1.41 times higher than the N0. There are two possible reasons
for the low SCOD removal result: firstly, excess Nap (1000 mg/L) potentially inhibited the
activity of microorganisms capable of degrading organic matters. Secondly, microorganisms
were lysed and inactivated, caused by excess Nap with the cellular contents flowing out
(confirmed in Section 3.4), which contributed to the SCOD.

3.3. Effects of Nap on Zeta Potential of Sludge Particles

The results of the measured variation of the zeta potential with Nap dose are shown in
Figure 3a. The magnitude of the zeta potential reflected the potential stability of the system
and the macroscopic adsorption of Nap by microorganisms. The zeta potential values of all
the reaction systems ranged from -30 mV to −42 mV, indicating that the systems tended
to be stable, and the sludge particles were well-dispersed [26]. The zeta potential values
were all negative, which was caused by the negatively charged carboxyl, phosphoryl, and
hydroxyl groups on the surface of the bacteria. Ionization of anionic groups in EPS has
been reported to be responsible for its surface electronegativity [27]. The N0, N2, and N3
systems had the lowest surface potential of about −40 mV, followed by the N1 with about
−36 mV, and the highest was N4 with −31.70 mV. Due to the electrophilic nature of Nap, a
more negative surface charge was more likely to occur during adsorption, so the surface of
microbial cells in N0, N2, and N3 were more likely to attach Nap.

3.4. Effects of Nap on EPS Production and Composition

EPS are secreted by microorganisms, which contain PS, PN, lipids, and various het-
eropolymers [28]. The variations of the PN contents, PS contents, and PS/PN of each
layer of the EPS at different Nap concentrations are shown in Figure 3b. EPS is not only
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involved in the microbial metabolism as an extracellular electron acceptor but also serves
as a barrier to protect cells from damage by toxic substances [29]. The total PS and PN
concentrations induced at 1000 mg/L Nap were 138.76 mg/L and 400.41 mg/L, respec-
tively, and the values were higher than those of the other groups, which could adequately
illustrate Nap toxicity on anaerobic microorganisms. This phenomenon was also found
in the partial nitrification process of CuO nanoparticle treatment by [28]. There are two
possible reasons for this result. Firstly, the microbes secreted more PS and PN in response
to the high concentration of Nap. Secondly, the high enrichment of lipophilic Nap led to
swelling and cleavage of the cell membrane, disrupting the ion gradient concentration,
and eventually led to cell lysis and the release of organic matter, which increased the PN
and PS of EPS [30,31]. Li et al. [32] stated that PS would form complex networks, which
might inhibit the efficiency of the mass transfer. Although the concentrations of PN and PS
both increased under 1000 mg/L Nap, the PN and PS had different responses to Nap. The
concentration of PN in the SAMP, LB-EPS, and TB-EPS all increased, while PS increased in
the LB-EPS and TB-EPS. It could be inferred that PS became more compact to protect the
microbe against Nap toxicity.
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Figure 3. Zeta potential of different systems (a), the composition (b), and the EEM spectrum (c1−c4)
of EPS.

Tay et al. [33] mentioned that the higher the PS content in EPS, the more hydrophilic
the microorganisms are, which, in turn, leads to sludge foaming and caking phenomena.
Moreover, Liu et al. [34] showed that, as the sludge granulation and aggregation enhanced,
the PN concentration increased accordingly. PS/PN can be applied as the index of sludge
granulation. During the experiment, the best sludge settling property was found in N3 and
the worst in N4, which coincided with the results that PS/PN was only 0.18 in N3 and up
to 0.36 in N4.

The results of EEM were compared with [35] to analyze the effect of the Nap concentra-
tion gradients on the cell surface material. The control group showed two distinct peaks for
SMP and HA. The abundance of SMP, tyrosine-like, and tryptophan-like in N3 decreased
by 21.65%, 38.58%, and 60.55%, respectively, compared to N0 (Figure S2). However, N4
showed significant fluorescence peaks in regions I, III, and IV with volume integral values
of 1.76, 3.09, and 1.73 times higher than N0. This is because low concentrations of Nap
facilitated the full utilization of PN by microorganisms, but with the concentration of Nap
reaching 1000 mg/L, PN could not be effectively utilized, and the system was accompanied
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by cell lysis leading to the enhancement of both peaks ultimately. In addition, high concen-
trations of Nap (1000 mg/L) resulted in the rupture of cell membranes and the efflux of cell
contents including PN, which led to a significant enhancement of those fluorescence peaks.

3.5. Effects of Nap on the Activity of Key Enzymes

When the starch is the carbon source, amylase as a hydrolase can accelerate the pro-
duction of reducing sugars and oligosaccharides. N1 had the highest amylase activity of
1.35 mg/g, which suggested that 30 mg/L Nap could increase the amylase activity and
promote the conversion of substrate. Consequently, the metabolic rate of methanogens was
elevated, and the methane yield was increased. It has been reported that amylase hydrol-
ysis produced more sugars to facilitate single fermentation for methane production [36].
Moreover, starch is also a major chemical component in biofilm formation, and the process
of biofilm breakdown requires the participation of amylase [37,38]. In Section 3.4, it was
demonstrated that there was a general cell membrane rupture in N4. This was why the
hydrolysis efficiency of N0, N3, and N4 was similar, but the amylase activity in N4 was the
highest among the three at 1.08 mg/g.

To reveal the stress feedback of ATPase in the anaerobic microorganisms to Nap stress
and the effect of Nap concentrations on the hydrolytic enzyme, the ATPase and amylase
activities were explored at 142.5 h (Figure 4a). Overall, the addition of Nap resulted in
different degrees of enhancement of ATPase activity. Fan et al. [39] found that when the
toxic substances acted on Ralstonia solanacearum, the bacteria regained their growth via
stress responses such as elevated Na+K+-ATPase activity. The Na+K+-ATPase activities
of N1, N3, and N4 were 1.15, 2.36, and 2.09 times higher than those of the control group,
indicating that Nap had the least stress on microorganisms in N1, and the microorganisms
responded most strongly to N3 (300 mg/L Nap).

Moreover, the Ca2+Mg2+-ATPase activity in N4 was the lowest among the experi-
mental groups, only 1.18 times higher than that of the N0, which implied that excess Nap
inhibited cell-activating Ca2+Mg2+-ATPase. This thereby inhibited Ca2+ efflux, leading
to an increase in the intracellular Ca2+ concentration. This phenomenon was associated
with a previous report that the cytoplasmic Ca2+ concentration rises briefly to provoke a
cellular response after an external stimulus (PAH), at which time Ca2+Mg2+-ATP on the
cytoplasmic membrane expels Ca2+ to maintain its intra-concentration homeostasis [40].
Furthermore, the results obtained coincided with studies reporting that toxic metabolites of
Nap accumulated in organisms could induce apoptosis [11,12].

To better understand the interactions mechanisms of Nap and transmembrane channel
ATPase, amylase, and three key enzymes of the methanogenic pathway, MOE was used for
simulating the special binding sites (Figure 4c). The simulation results showed that Nap
was mainly bound to the enzyme active site with π-hydrogen bonding force and had the
greatest effect on lysine (Lys) and glycine (Gly). The formation of the π-hydrogen bond can
enhance the aromaticity, which makes Nap an inhibitory factor [41].

The specific results of the docking are listed in Table S2. For Ca2+Mg2+-ATPase, Nap
interacted with Lys 133 with the highest binding free energy of -2.9 kcal/mol. Additionally,
for the amylase interactions, Site 1 contained amino acid residues Phe 14, Thr 15, and Gly
16. Site 2 contained residue Lys 211. Site 3 contained residues Phe 14, Thr 15, and Gly
16. As shown in Figure 4c, the benzene ring of Nap formed four π- hydrogen bonds with
amino acid residues at Site 1, which led to significant ligand–bioreceptor interactions and
the inhibition of amylase activity in N3 (Figure 4a). Furthermore, compared to F420, Nap
attack Lys 55 of acetyl-CoA at a long distance of 4.34 Å. Due to the weak interactions, the
effect of Nap on the metabolic activity of acetate was not significant (Figure 4b).

3.6. Microbial Community Variation Responsed to Nap Concentration
3.6.1. Genus Level

As shown in Figure 5, the dominant phyla were Chloroflexi, Bacteroidetes, Firmicutes,
Proteobacteria, Synergistetes, Thermotogae, Patescibacteria, Euryarchaeota, Caldiserica,
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and Atribacteria. Firmicutes accounted for 16.00% in N4, which was reported as typical
acid-forming bacteria in AD [42]. Moreover, the microbial community have a significantly
different abundance, as listed in Table S3.
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Figure 4. Key enzymes activities in different systems (a). Cumulative biomethane yield and pathway
activity (maximum methanogenic rate) from in situ metabolic assays (pathways I, II, and III refer to
formate, acetate, and propionate metabolism tests, respectively) (b). Results of molecule docking of
different enzymes (c).

At the genus level, the primary methanogen was hydrogenotrophic Methanolinea with
the relative abundance of 11.12% in N0, followed by acetoclastic Methanosaeta (Methan-
othrix) (5.30%). The authors of [43] also found that Methanosaeta predominates in a
medium-temperature reservoir environment. With the increase of Nap, the abundance of
Methanolinea and Methanosaeta decreased to 3.60% and 3.18% in N4, which suggested that
methanogens were highly sensitive to Nap. The decrease in hydrogenotrophic Methanolinea
indicated a deterioration in biomethane production through an interspecific hydrogen
transfer. Therefore, the poor performance in N4 might mainly derive from a significant
reduction of Methanolinea and Methanosaeta. It has been reported that phosphate in the
buffer selectively inhibited the activity of acetoclastic methanogens [44]. Presumably, this
was why Methanosaeta was enriched, but the acetate metabolic test was the lowest level of
biomethane production of the three activity tests (Figure 4b).

To examine deeply the impacts of Nap on methanogenic pathways, an abundance of
potentially functional genes of the dominant methanogens in the system were analyzed
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in Figure 5d. The genes in both methanogenic pathways decreased with the increasing
Nap concentration, except for K00204 (4Fe-4S ferredoxin). The relative abundance of most
genes was less than 1 × 10−4 in N4, which demonstrated the inhibitory effect of Nap on the
methanogenic metabolic activity in the hydrogenotrophic and acetoclastic methanogens.
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Figure 5. PCoA analysis (a), the abundance of microbes at the phylum level (b) and genus level (c),
and abundances of potentially functional genes of the dominant methanogens (d).

Several functional genera that were significantly enriched upon the addition of a suit-
able amount of Nap, namely Anaerolinea, Bacteroides, and Candidatus Caldatribacterium. The
abundances of Anaerolinea related to sludge aggregation and granulation had the highest
abundance with 6.66% in N3 [45]. It is consistent with the sludge aggregation and granu-
lation phenomenon in N3. Bacteroides was heavily enriched in N0 with an abundance of
4.35%, which were recognized for the ability to degrade organic matter into acetic acid [46].
Bacteroides played an important role in providing substrate for acetoclastic methanogens
in the N1 with an abundance of 5.23%. In contrast, Bacteroides almost disappeared in N3
and N4 at 0 and 0.64%, indicating that it was unable to adapt to high concentrations of
Nap. Candidatus Caldatribacterium was reported to be a group of thermophilic bacteria that
produce acetate through glycolysis [47], which maintained a high relative abundance of
about 9.69% in all groups with obvious resistance to the stress of excess Nap (1000 mg/L).
In addition, Syntrophobacter, which could oxidize propionate via the methyl–malonyl–CoA
pathway had a high abundance in N0, N1, and N3 with the values of 7.68%, 7.26%, and
7.57%, respectively.

Moreover, the PCoA of taxonomy by Bray–Curtis showed that components PC1 and
PC2 interpreted 75.7% and 20.7% of the data variance at the genus level, respectively (Fig-
ure 5a). It was worth noting that the composition of the community was shifted in the anaer-
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obic system with the addition of Nap, with samples of N3 and N4 significantly different
from the other samples. This suggested that Nap could reshape the microbial community.

3.6.2. Potential Functions Analysis

The potential functional pathways of the microbial community in four groups were
classified into three levels. The functional pathways related to anaerobic microorganisms
were further explored at level 2 (Figure 6b).
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Carbohydrate metabolism was the most abundant (9.79–10.41%), which indicated that
carbohydrates were the main metabolic substrate as the major carbon source. Furthermore,
the abundance of genes related to energy metabolism decreased from 5.73% to 4.59% with
the addition of Nap. It showed the negative effect of Nap on energy conversion and transfer
during the AD process, which might be responsible for the poor methanogenesis. Addi-
tionally, membrane transport in environmental information processing was significantly
promoted from 7.21% in N0 to 9.57% in N4, which could explain the marked increase
in transmembrane ATPase activity under Nap stress in Figure 4a. On the other hand,
alterations in the cell membrane structure and function in N4 (demonstrated in Section 3.4)
made the membrane selective permeability weak, leading to enhanced membrane transport.
Last, but not least, all the pathways included in genetic information processing were in-
creasingly inhibited with the Nap concentration going up, indicating that Nap blocked the
pathway of genetic information processing. The abundance of xenobiotics biodegradation
increased with the increasing concentration of Nap. Moreover, the abundances of Nap
degradation were 2.29 and 2.54 times higher in N3 and N4 than that in N0. The higher
potential functional gene abundance of Nap degradation and other xenobiotics biodegrada-
tion pathways in N3 and N4 provided evidence for the enrichment of Nap-disintegrating
microorganisms under high Nap stress.

4. Conclusions

This study assessed the dose–effects of Nap on the AD process. A significant improve-
ment of the biomethane yield (181.99 mL/gVS) was achieved in N1 (30 mg/L Nap), and an
obvious inhibitory effect was obtained with an excessive concentration (over 100 mg/L).
Meanwhile, the optimized dosage of 30 mg/L Nap significantly promoted the hydrolysis
and acetogenesis efficiencies. Moreover, the highest ATPase activity in N3 (1.98 U/mg prot
for Na+K+-ATPase and 1.68 U/mg prot for Ca2+Mg2+-ATPase) represented the strongest
stress responses to maintain the intracellular homeostasis. The lipophilic Nap led to cell
lysis at 1000 mg/L, with the total PS and PN concentrations reaching 138.76 mg/L and
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400.41 mg/L, respectively. The abundance of Methanolinea and Syntrophobacter decreased
greatly with Nap added. Furthermore, the enrichment of Bacteroides in 30 mg/L Nap proved
that moderate Nap could facilitate hydrolysis. Furthermore, the addition of Nap mainly
inhibited the potential functional genes related to energy metabolism, translation, and
metabolism of cofactors and vitamins. The presented research provided a comprehensive
discussion for the response of anaerobic microorganisms to Nap from trace to excess.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su142416377/s1, Materials and Methods: Figure S1. Changes
of SCOD during AD; Figure S2. Volume integral results obtained by the FRI analysis of EPS; Table
S1. Composition of inoculum, substrate, and naphthalene; Table S2. MOE docking profiles of
ATPase, amylase, F420, acetyl-CoA, and methylmalonyl-CoA; Table S3. The abundance of the
microbial community.
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