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Abstract: Chlorophyll-a plays an essential biochemical role in the eutrophication process, and is
widely considered an important water quality indicator for assessing human activity’s effects on
aquatic ecosystems. Herein, 20 years of moderate resolution imaging spectroradiometer (MODIS)
data were applied to investigate the spatiotemporal patterns and trends of chlorophyll-a concentration
(Chla) in the eutrophic Lake Taihu, based on a new empirical model. The validated results suggested
that our developed model presented appreciable performance in estimating Chla, with a root mean
square error (MAPE) of 12.95 µg/L and mean absolute percentage error (RMSE) of 29.98%. Long-term
MODIS observations suggested that the Chla of Lake Taihu experienced an overall increasing trend
and significant spatiotemporal heterogeneity during 2002–2021. A driving factor analysis indicated
that precipitation and air temperature had a significant impact on the monthly dynamics of Chla,
while chemical fertilizer consumption, municipal wastewater, industrial sewage, precipitation, and air
temperature were important driving factors and together explained more than 81% of the long-term
dynamics of Chla. This study provides a 20 year recorded dataset of Chla for inland waters, offering
new insights for future precise eutrophication control and efficient water resource management.

Keywords: chlorophyll-a; spatiotemporal dynamics; long-term trends; driving factors; remote sensing;
Lake Taihu

1. Introduction

The serious eutrophication and severe water quality degradation caused by the over-
loading of large amounts of agricultural and anthropogenic effluents rich in nutrients into
surface waters leads to the proliferation of phytoplankton growth [1–3]. Eutrophication
can lead to a series of negative ecological consequences, such as frequent cyanobacterial
blooms, toxin release, water acidification, and biodiversity degradation [4–6]. Chlorophyll-
a is a biochemical pigment in water eutrophication and one of the most useful metrics of
eutrophication level, and its total amount markedly affects the change in nutrient level,
photosynthetic potential, and net primary productivity of waters [7,8]. Therefore, moni-
toring chlorophyll-a concentrations (Chla) has been widely recognized as a proactive and
effective strategy for assessing eutrophication status and restoring aquatic ecosystems [5,9].

Numerous attempts, with various monitoring technologies, have been made to de-
termine the Chla in water bodies [7,10–15]. Conventional Chla monitoring measures,
primarily based on ground sampling and laboratory spectrophotometric analysis, are time-
consuming and labor-expensive, and the corresponding results are confined to limited
spatiotemporal scales, hindering the ability to understand the overall health of an aquatic
ecosystem [7,8,16]. In comparison, the remote sensing technique is characterized by its
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high-efficiency, convenient data acquisition, and widespread coverage, affording spatially
continuous views of various water quality parameters in a low-cost manner [17–20].

Previous studies have monitored the Chla using various remote sensing data, includ-
ing medium resolution imaging spectrometer (MERIS, from 2003 to 2012) [10], ocean and
land color imager (OLCI, from 2016 to present) [21], moderate resolution imaging spectrom-
eter (MODIS, from 2000 to present) [22,23], and Landsat images (from 1984 to present) [7,24],
while the latter two can provide data for more than 20 years. Some attempts have been
made to document long-term Chla using Landsat series images in various settings [7,24].
However, due to the significant short-term variations in Chla and image unavailability
caused by cloudy and rainy periods, the semi-monthly revisits of Landsat series images
are not sufficient to track the long-term dynamics of Chla in inland waters, limiting their
application in aquatic environments. With a high revisit frequency (1 day), MODIS images
provide an encouraging opportunity to investigate and to track the dynamics of water
quality parameters in more depth [25–27]. However, to date, no studies have used MODIS
images to estimate long-term Chla, for up to 20 years.

Lake Taihu is a large and hypereutrophic inland water located in the Eastern Plain
Region (EPR), China, providing a range of ecological and economical services to the
region’s ecological and social systems, including nourishing organisms, transportation, and
aquaculture activities [27,28]. Over the past two decades, it has been exposed to the threat
of severe aquatic ecosystems degradation, due to the overloading of abundant terrestrial
nutrients and extreme climatic conditions [17,29]. As a consequence, severe and frequent
cyanobacterial blooms have occurred in Lake Taihu, causing undesirable ecological damage
and aquatic environmental disasters [30,31]. As Chla is a crucial indicator for assessing
water quality conditions [32,33], monitoring the long-term spatiotemporal dynamic of Chla
in Lake Taihu and elucidating its drivers are of particular significance for water resource
management and ecological restoration.

Therefore, this study aimed to (1) establish and validate a robust model for estimating
Chla in eutrophic waters; (2) apply the proposed model to the eutrophic Lake Taihu, to
obtain the spatiotemporal patterns of Chla based on 20 years of MODIS observations
(2002–2021); and (3) clarify the driving factors of Chla, to improve future water quality
management.

2. Study Area and Data Collection
2.1. Study Area

Lake Taihu (119◦55′–120◦37′ E, 30◦57′–31◦34′ N, Figure 1) is located in the eastern part
of China. It has a total water area of ~2340 km2, a lakeshore of 393.2 km, and a shallow
mean depth (~1.9 m). It has a multi-year average air temperature of ~17.5 ◦C and an annual
mean precipitation of 1000 mm [19,34]. Based on the geographical topography and aquatic
ecosystem conditions, Lake Taihu was divided into five lake segments, including the Open
Area, Zhushan Bay, Xukou Bay, Meiliang Bay, and Gonghu Bay. The southeastern region of
Lake Taihu was excluded, because of the abundant submerged aquatic vegetation (Figure 1).
In recent decades, environmental changes and economic development in the surrounding
watershed have exerted tremendous pressure on the water quality of Lake Taihu.

2.2. Field-Measured Data

Three field measurements were made in Lake Taihu from August 2013 to Decem-
ber 2021 (Figure 1). Surface water samples (~30 cm) were obtained using well-washed
Niskin bottles and stored at low temperature (±4 ◦C). Within the next few days, the Chla
concentrations was determined [14,16]. The data measured in December 2021 (N = 60)
and August 2013 (N = 34) were used to establish an optical estimation model, while the
remaining data measured in September 2015 (N = 60) were applied to validate the model.
Furthermore, another dataset (N = 30), collected in Lake Chaohu, was used to validate the
model’s portability (Figure 1).
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Figure 1. The locations of the studied Lake Taihu and Lake Chaohu. The red star is the location of
Dongshan meteorological station.

Three optical radiometric parameters, including the total surface radiance Lt, the
radiance of sky Lsky, and the gray panel reflectivity Lp were collected using an ASD field
spectroradiometer [35,36]. Subsequently, the remote sensing reflectance Rrs(λ) could be
derived, as shown below:

Rrs(λ) = ρp

(
Lt − rawLsky

)
/
(
πLp

)
(1)

where raw is the skylight reflectance between air and water, which is valued to 0.022 for calm
weather [20,34]. To establish and validate the optical estimation model, the field-measured
reflectance was calculated using corresponding simulated satellite reflectance, using the
spectral response function [37,38].

Monthly hydro-meteorological data, covering air temperature (°C), sunshine duration
(h), wind speed (m/s), and rainfall (mm) for the period 2002–2021 and collected by the
meteorological station (red star, Figure 1) were freely downloaded from the National
Meteorological Data Center archive (http://data.cma.cn/(accessed on 9 May 2022)). The
anthropogenic activities data of the Taihu Basin, including amount of chemical fertilizer
consumption (t), industrial sewage (t), and municipal wastewater (t) were also collected
from the statistical yearbook of Jiangsu Province.

2.3. Satellite Data

A total of 1514 MODIS-Aqua images with time coverage from 2002 to 2021 were
used to track temporal dynamic and long-term trends in the Chla concentration of the
studied Lake Taihu, which can be freely downloaded from the NASA Goddard Space Flight
Center archive (GSFC) (http://oceancolor.gsfc.nasa.gov/ (accessed on 9 May 2022)). With a
modest spatial resolution of 250 m and fine revisit frequency of 1 day, MODIS-Aqua images
are widely believed to represent superior satellite data for inland water quality variable
estimation [39–41]. To ensure a high quality for latter applications, images containing
significant clouds, thick aerosols, and sun glint were excluded and subsequently pre-
processed to generate reflectance products, following the methods in prior studies [17,42].
In addition, the floating algae index (FAI) developed by Hu [43] was applied to capture
and mask the image pixels with surface cyanobacterial blooms areas.

2.4. Statistical Analysis and Accuracy Assessment

Pearson’s correlation analysis was performed in SPSS software with a significance
level of significant (t-test, p ≤ 0.05) or insignificant (p > 0.05). To quantitatively assess
the implementation of the established algorithm, indicators including the coefficient of

http://data.cma.cn/(accessed
http://oceancolor.gsfc.nasa.gov/
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determination (R2), root mean square error (RMSE, µg/L), and mean absolute percentage
error (MAPE, %) were adopted:

MAPE=
1
n

n

∑
i=1

(∣∣∣yi
m − yi

p

∣∣∣/yi
meas

)
∗ 100% (2)

RMSE =

√
∑n

i=1

(
yi

m − yi
p

)2

n
(3)

where n is the number of water samples, and yi
m and yi

p are the field-measured and predicted
values, respectively.

To calculate the potential driving factor(s) and quantitatively assess the contribution
rates of the six explanatory variables to the long-term variations in Chla, a multiple gener-
alized linear regression (MLR) and variation partitioning model was constructed followed
the methods in previous studies [18,44].

3. Results
3.1. Model Establishment and Validation

To establish a high accuracy model for deriving Chla concentrations in Lake Taihu
using MODIS atmospherically-corrected wavebands, three steps were adopted: (1) choos-
ing the band/bands combinations as the spectral index, which is significantly related
with Chla concentrations (p < 0.05); (2) establishing the corrections between the optimized
spectral index and Chla using various mathematical functions; (3) determining the optimal
relationship, by assessing the implementation of various mathematical functions.

Following the above-mentioned methods, the normalized spectral index of
(Exp(Rrs(645) − Exp(Rrs(859))/(Exp(Rrs(645) + Exp(Rrs(859)) was found to have the
highest correction coefficient with field-measured Chla (r = −0.82), and the empirical
relationship model had the best estimated performance (R2 = 0.69, p < 0.05) (Figure 2a):

CPP = −7561.8∗Index + 144.07 (4)

Index = (Exp(Rrs(645))− Exp(Rrs(859)))/(Exp(Rrs(645)) + Exp(Rrs(859))) (5)

where Rrs(645) and Rrs(859) are the MODIS atmospherically corrected bands at 645 and
859 nm, respectively.

In addition, the remaining field-measured data, collected in July 2021 (N = 20), were
used to independently validate the developed model (Figure 2b). Three evaluating metrics,
including R2, RMSE, and MAPE, were applied to quantitatively assess the developed model.
The developed model showed an appreciable prediction performance with R2 = 0.69, MAPE
= 29.98%, and RMSE = 12.95 µg/L, suggesting that the constructed model had great
potential for Chla estimation and could be implemented to acquire and quantitatively
analyze the spatiotemporal distribution patterns of Chla in Lake Taihu.

At the same time, many attempts have been made to investigate Chla in other wa-
ters [7,10,16,45] that have similar climate conditions to Lake Taihu. To examine whether
the developed model would be applicable to other waters, we validated the algorithm
using another field-measured dataset collected in Lake Chaohu (N = 30, Figure 1). The
validated results showed that the MAPE and RMSE of the matching points between the
field-measured and predicted Chla were 30.41% and 12.42 µg/L, respectively (Figure 2c),
demonstrating that the developed model performed well and had promising applicability
for the estimation of Chla in other waters.
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transferability in Lake Chaohu.

3.2. Temporal Dynamics of Chla

The temporal dynamics of Chla in Lake Taihu were acquired based on the new al-
gorithm (Figure 3, Table 1), demonstrating considerably spatiotemporal heterogeneity in
spring (from March to May), summer (from June to August), autumn (from September to
November), and winter (from December to February) during the studied period. The maxi-
mum value of monthly Chla was found in August (35.55 ± 7.81 µg/L), while the minimum
was found in January (13.16 ± 7.51 µg/L). The seasonal average Chla in spring, summer,
autumn, and winter were 22.31 ± 5.52 µg/L, 28.27 ± 7.43 µg/L, 25.74 ± 6.91 µg/L, and
20.52 ± 5.49 µg/L, respectively. Overall, the seasonal Chla values of Lake Taihu were
highest in summer and lowest in winter.

The annual satellite-derived Chla products for the studied area are shown in Figure 4,
indicating an overall increasing trend but a fluctuating variation of Chla during the ob-
servation period (2002–2021). An obvious increasing trend was found between 2002 and
2007, followed by a significant decrease between 2007 and 2009, a slow and insignifi-
cant increase between 2009 and 2014, and an obvious increasing trend between 2014 and
2017, indicating that these four years, including 2007, 2009, 2014, and 2017, were special
turning point years. The maximum value for the entire lake was observed in 2017 at
35.75 ± 7.94 µg/L. In addition, moderate values were found in 2007, 2011, and 2019, at
31.12 ± 5.08, 32.58 ± 6.23, and 31.83 ± 4.25 µg/L, respectively. However, the lowest Chla
was found in 2009 at 23.38 ± 4.13 µg/L. These results revealed that Lake Taihu experienced
interesting inter-annual variations in its Chla concentrations.
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Table 1. Annual, seasonal, and monthly Chla of Lake Taihu from 2002 to 2021.

Years Chla (µg/L) Months and Seasons Chla (µg/L)

2002 25.86 ± 5.38 January 13.16 ± 7.51
2003 27.62 ± 6.24 February 21.78 ± 6.95
2004 28.47 ± 6.39 March 24.01 ± 6.87
2005 28.89 ± 6.62 April 26.17 ± 6.52
2006 27.83 ± 6.15 May 26.89 ± 5.96
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Table 1. Cont.

Years Chla (µg/L) Months and Seasons Chla (µg/L)

2007 31.12 ± 5.08 June 32.71 ± 6.74
2008 28.19 ± 5.81 July 32.93 ± 7.28
2009 23.38 ± 4.13 August 35.55 ± 7.81
2010 30.24 ± 7.53 September 33.99 ± 7.52
2011 32.58 ± 6.23 October 30.65 ± 6.82
2012 32.48 ± 5.87 November 27.78 ± 5.42
2013 29.59 ± 6.42 December 16.1 ± 5.35
2014 30.99 ± 6.82 Spring 22.31 ± 5.52
2015 28.75 ± 5.63 Summer 28.27 ± 7.43
2016 32.86 ± 5.37 Autumn 25.74 ± 6.91
2017 35.75 ± 7.68 Winter 20.52 ± 5.49
2018 29.85 ± 6.83
2019 31.83 ± 4.25
2020 27.98 ± 5.63
2021 26.65 ± 5.34

3.3. Spatial Distribution Characterization of Chla

The corresponding mean spatial distribution pattern of Chla was also determined by
averaging all the satellite-obtained Chla products from 2002 to 2021, indicating an overall
increasing gradient from the southern to northern parts of the lake, and from the center
area to the edges of the lake (Figure 5a). The mean value across Lake Taihu for 20 years
reached 29.26 µg/L, with a standard deviation (SD) of 5.42 µg/L. Specifically, relatively
lower values were found in the Xukou Bay (18.95 ± 3.48 µg/L), whereas higher values
were observed in the three northern regions, with means of 28.23 ± 6.83, 30.99 ± 9.65, and
33.51 ± 7.49 µg/L in Gonghu Bay, Meiliang Bay, and Zhushan Bay, respectively. According
to the biological conditions in Lake Taihu, a high phytoplankton coverage with strong
metabolic activity is distributed in these regions, which may have contributed to the higher
Chla compared to that in the other regions. In addition, the north-northwest dominant
wind directions in Lake Taihu may be another important reason for this phenomenon. The
path of the wind in the three northern regions is longer than in the other areas, resulting
in a smaller wind force, triggering more phytoplankton proliferation and leading to a
higher Chla. Moreover, upstream runoff and inflowing rivers are mostly located in the
western and northern parts of the lake, which may contribute to the massive nutrient and
suspended matter levels in nearby areas, leading to higher Chla in these parts.
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The corresponding spatial distribution information of the coefficient of variation (CV)
was obtained based on all MODIS-derived Chla products during the observation period
(Figure 5b). The CV values ranged from 0.25 to 88.35%, with a mean value of 10.01%,
demonstrating a substantially spatial variation in the Chla of Lake Taihu. A relatively high
CV for Chla was found in the northern three bays, the Meiliang, Gonghu, and Zhushan
Bay, with the maximum values >80%, indicating that these regions experienced significant
variations in Chla from 2002 to 2021. In contrast, a relatively lower CV was found in the
southern and eastern parts (e.g., Xukou Bay), with a mean value of 4.83%, demonstrating
the stable dynamic patterns of Chla in these areas, where the sediment aquatic ecosystem
is stable and less susceptible to disturbance factors [20,36].

4. Discussion
4.1. The Intra-Annual Response of Chla to Drivers

Substantial multi-temporal dynamics of Chla were found in Lake Taihu during the
observations period, exhibiting a relatively higher Chla in summer and autumn months,
with lower Chla in the spring and winter months (Figure 4), which could be controlled
by a variety of nature factors. Hydro-meteorological factors are considered important in
explaining the temporal dynamics of Chla, particularly in hypereutrophic inland waters,
where nutrient conditions are no longer the dominant limiting factor affecting the growth of
phytoplankton [8,46]. In general, higher air temperatures and large amount of precipitation
favor the growth of phytoplankton [16,25]. Previous studies revealed that Lake Taihu,
similarly to other subtropical eutrophic waters on the Yangtze Plain, experiences typical
temporal cyclic fluctuations in climatic conditions [47–49], which was further confirmed by
the field-measured climatic data in this study (Figure 6). However, little information was
obtained regarding their effect on monthly variations in Chla.
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To assess the effect of drivers on the monthly dynamics of Chla, a correlation analysis
between the satellite-estimated monthly Chla and the potential driving factors was per-
formed (Figure 7). The relationships between monthly Chla and anthropogenic factors were
not included in this section, due to unavailability of monthly anthropogenic data. Chla
has a high and positive correlation with air temperature (r = 0.86, p < 0.05), demonstrating
that air temperature may have a significant impact on the variations of Chla at monthly
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scale, which is consistent with prior studies [8,24]. High air temperatures are conducive to
growth of phytoplankton and result in high Chla levels in the water column [50,51]. A sig-
nificant positive relationship was also observed between Chla and precipitation, suggesting
that precipitation is another important meteorological factor in the monthly dynamics of
Chla. At the same time, a relatively weaker correlation coefficient value (r = 0.04, p < 0.05)
was observed between wind speed and Chla, indicating that wind disturbance-induced
sedimentation has little effect on monthly-scale Chla.
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4.2. The Inter-Annual Response of Chla to Driving Factors

Over the last two decades, Lake Taihu has experienced significant fluctuations in
climatic and anthropogenic conditions [27,52]. These findings suggested that an intense
turbulence of environmental conditions and human activities occurred in Lake Taihu;
however, what is the dominant driving factor of the long-term dynamics of Chla? To
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answer this question, Pearson correlation and multiple linear regression analyses between
the satellite-derived annual mean Chla and driving factors were performed.

The annual mean Chla presented a significant and positive correlation with chemical
fertilizer consumption, municipal wastewater, and industrial sewage, with correlation
coefficients of r = 0.62, 0.68, and 0.41, respectively (Figure 7, Table 2), suggesting that
these anthropogenic activities had a large impact on Chla variations. At the same time,
Chla had close relationships with air temperature (r = 0.68, p < 0.05) and wind speed
(r = 0.60, p < 0.05), which corroborated prior findings that shallow lakes are prone to
increased wind speeds and higher air temperatures, resulting in the release of large amounts
of nutrients from bottom sediments [18,37] and ultimately increasing Chla [53,54]. In
contrast, a relatively weaker relationship was observed between the annual mean Chla and
precipitation (r = 0.26, p < 0.05), suggesting that precipitation had less effect on the annual
mean Chla during the observation period (2002–2021).

Table 2. The relationships between Chla and chemical fertilizer consumption (CF), municipal wastew-
ater (MW), industrial sewage (IS), precipitation (PR), wind speed (WS), and air temperature (AT)
during 2002–2021. The statistical significance (p < 0.05) is marked by “*”.

Chla CF MW IS PR WS AT

Chla 1 62 0.68 0.41 0.26 0.6 0.68
CF * 1 0.81 0.85 0.38 0.7 0.06

MW * * 1 0.71 0.53 0.63 0.17
IS * * * 1 0.14 0.55 −0.13
PR * * 1 0.41 −0.12
WS * * * * * 1 0.05
AT * 1

The long-term satellite-derived Chla was fit with all possible combinations of the six
explaining variables using MLR, and five models were chosen based on the significance
of the model and variables (Table 3). There were 6, 5, 5, 3, 2, 1 explanatory variables
contained in Model 1, Model 2, Model 3, Model 4, Model 5, and Model 6, respectively. The
findings suggest that these factors were promising predictors, which could explain the
long-term dynamics of Chla. For example, in Model 6, municipal wastewater played an
important role in the long-term dynamics of Chla, and could explain 48.8% of the Chla
variation. Furthermore, the most appreciable model (Model 1), consisting of all the driving
factors, explained 85.25% of the dynamics of the long-term trend of Chla, while only 14.75%
was unexplained, suggesting a limited contribution from other factors to the changes in
Chla. Of the 85.25% explained variation, precipitation accounted for 20.01%, municipal
wastewater 11.66%, industrial sewage 21.85%, chemical fertilizer consumption 23.03%, and
air temperature 7.49%, suggesting that human activities, rather than hydro-climatic change,
play the dominant driving roles in the long-term dynamics of Chla in Lake Taihu.

Table 3. The relative contributions of the driving factors to the long-term change of Chla.

PR WS AT MW CF IS Residual

Model 1 20.01% 1.17% 7.49% 11.66% 23.03% 21.85% 14.75%
Model 2 18.16% - 8.16% 16.07% 18.03% 19.87% 19.69%
Model 3 9.56% - 8.60% 17.17% 19.80% 22.27% 22.59%
Model 4 5.79% - - 26.39% 22.19% - 45.61%
Model 5 20.24% - - 36.16% - - 43.58%
Model 6 - - - 48.82% - - 51.17%

4.3. Implications for the Results

In recent decades, with the rapid economic development and intense human activities
in the watershed, the water quality of Lake Taihu has experienced substantial changes,
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leading to a series of ecological problems. Therefore, effective eutrophication control and
efficient water resource management require rapid understanding of the overall health
of aquatic ecosystems at the scale of decades. In this study, compelling temporal cycling
patterns of Chla in Lake Taihu were obtained, based on a 20 year MODIS observation, and
overall increasing trends of Chla were found over the past 20 years, which may be related to
anthropogenic disturbances and significant climate changes. Furthermore, the relationship
analysis of the driving factors and distribution characteristics of the long-term dynamics of
Chla in Lake Taihu can provide a basis for other inland waters disturbed by eutrophication
problems, such as the inland waters in the lower reaches of the Yangtze River Plain, Lake
Gaoyou, and Lake Chaohu. Undoubtedly, these results can provide precious baseline data
for water conservation activities and scientific management decision-making, and thus the
restoration of the aquatic ecosystem in Lake Taihu.

5. Conclusions

In this study, we developed an optical model for Chla estimation in Lake Taihu
based on 20 year MODIS and analyzed the spatiotemporal dynamics of Chla in the lake
from 2002 to 2021. The validations indicated that the constructed model, based on the
independent field-measured data, could be applied to estimate Chla with a satisfactory
performance (MAPE = 29.98%, RMSE = 12.95 µg/L). The long-term MODIS observations
demonstrated an overall increasing trend, but with a fluctuating variation, of Chla over the
past two decades, and relatively higher mean values in summer (28.2 ± 7.43 µg/L) and
autumn (25.7 ± 6.91 µg/L), while being lower in spring (22.3 ± 5.52 µg/L) and winter
(20.5 ± 5.49 µg/L). The driving factor analysis showed the importance of the regulatory
factors of industrial sewage, chemical fertilizer consumption, precipitation, air temperature,
wind speed, and municipal wastewater for the Chla in Lake Taihu. The research results can
provide some suggestions for the establishment of nutrient mitigation and eutrophication
control strategies in inland waters.
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