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Abstract: The method of fully mechanized top-coal caving mining has become the main method of
mining thick-seam coal. The process parameters of fully mechanized caving will affect the recovery
rate and gangue content of top coal. Through numerical simulation software, the top-coal recovery
rate and gangue content, under different fully mechanized caving process parameters, were simulated,
and the influence law of different fully mechanized caving process parameters on top-coal recovery
rate and gangue content was obtained. A decision model for top-coal caving process parameters was
established with a BP neural network, and the optimal top-coal caving parameters were obtained for
the actual situation of a working face. On this basis, a in-lab similarity simulation test of the particle
material was carried out. The results show that the top-coal recovery rate and gangue content were
86.56% and 3.45%, respectively, and the coal caving effect was good. A BP neural network was used
to study the decisions optimizing fully mechanized caving process parameters, which effectively
improved the decision-making efficiency thereabout and provided a basis for realizing intelligent,
fully mechanized caving mining.

Keywords: top-coal caving mining; process parameters; decision model; BP neural network; similarity
simulation test

1. Introduction

The ‘World Energy Statistics Review’, released in 2020, shows that although global
coal consumption has decreased, coal still accounts for about 27% of primary energy, which
is still the main source of energy [1]. Especially for China, with its characteristic ‘rich coal,
lack of oil and less gas’, the status of coal is unshakable. According to statistics, thick-seam
coal accounts for 44% of the proven workable coal reserves in China, and nearly half of the
coal consumption in China is provided by thick-seam coal mining [2,3].

Although the loads of hydraulic supports should be monitored in the process of
fully mechanized top-coal caving mining to ensure continued safe production [4], this
method has become the main strategy for thick-seam coal mining because of its low energy
consumption, high output, strong geological adaptability and economic benefits [5–7].
It has gradually become the main method of thick-seam coal mining in China, Vietnam,
Australia, Turkey and other countries [8–14]. Improving the recovery rates for top coal
and reducing the gangue content of top coal are two key points in the study of fully
mechanized caving mining techniques. Zhang NB et al. studied the influence of the arch
formed by top coal and gangue on top-coal recovery rates and put forward the method

Sustainability 2022, 14, 1340. https://doi.org/10.3390/su14031340 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14031340
https://doi.org/10.3390/su14031340
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su14031340
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14031340?type=check_update&version=2


Sustainability 2022, 14, 1340 2 of 17

of eliminating these arches to improve recovery rates [15]. Yasitli, NE and Unver B used
the FLAC 3D software to simulate the top-coal caving process and granular, fine-sand
materials in simulations thereof, and proposed that presplitting blasting technology could
improve top-coal recovery rates [9,16]. Ghosh AK et al. believed that compressive strength,
advance abutment pressure and top-coal seam thickness are important factors affecting
top-coal recovery rates and proposed using the combination of blasting and vibration to
destroy coal arches and thereby improve recovery rates [17], while Klishin VI and Klishin
SV explored the relationship between the support opening sequence and the subsequent
top-coal recovery rate [18,19].

However, there are few quantitative studies on the process parameters of fully mech-
anized caving mining. In recent years, thanks to rapid developments in science and
technology, advanced artificial intelligence and machine learning algorithms have been
increasingly applied to coal production [20–22]. Fan YJ et al. used a BP neural network to
establish a safety evaluation model for coal mines and put forth an effective safety evalua-
tion method for them [23]. Meng XZ et al. proposed an early warning method for coal mine
safety, based on a BP neural network, that could effectively extract the characteristics of a
coal mine’s fault state and issue early warnings thereabout for coal mine safety [24]. The
application of artificial neural networks provides a new scientific method for conducting
research in the field of coal mining.

Therefore, this paper took the No. 12309 working face of the Wangjialing mine
in Yuncheng City, Shanxi Province, China as its engineering background, adopting the
research methods of numerical simulation, similarity simulation and BP neural networks
to establish an optimization decision model of the process parameters for fully mechanized
caving mining of thick-seam coal. So as to realize optimized decisions concerning the
parameters for the fully mechanized caving mining technique in thick-seam coal mining,
we obtained the optimal process parameters for such mining. Finally, we used them to
improve mining and caving efficiency and the efficacy of coal caving.

2. Engineering Background

At the No. 12309 working face of the Wangjialing coal mine, which has adopted the
fully mechanized, low-caving method of coal mining, its advancing length and width are
1320 m and 260 m, respectively. The buried depth of the main coal seam is about 400 m,
its average thickness is 6.1 m, its dip angle is 2◦ and the hardness coefficient of its top coal
is 1.8 (f < 2). There, the interlayer thickness is 0.2 m, the mining height is 3.1 m and the
top-coal caving height is 3 m. Thus, the ratio of mining height to top-coal caving height
is 1.03:1. The coal caving step is 0.865 m for one cutting with one caving. In the normal
operation cycle, after each coal cutting, the tail beam is recovered and the coal opening is
opened for coal caving operations. When the immediate top rock is discharged from the
coal caving opening, the opening is closed, to stop coal caving. The first pressure step is
35 m, and the natural caving method is used to control the roof of the goaf. The properties
of the roof and floor rock in the working face of the coal seam are shown in Figure 1, and
the layout of the working face is shown in Figure 2.

The top coal falls from the working face in a relatively timely manner, generally, just
after the top beam of the support. At the Wangjialing mine, the size of the lumpiness of top
coal, mostly, is approximately 40 cm × 30 cm × 30 cm. Occasionally there are larger pieces,
but they can all be released smoothly. Field observations of the top-coal caving process are
shown in Figure 3.
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Figure 3. Top-coal caving condition of working face. (a) Broken top coal between supports; (b) coal
caving at the top of the working face; (c) top-coal caving behind the conveyor at the front and rear of
coal caving.

3. Methodology
3.1. Numerical Simulation Design

The two core indicators of the fully mechanized caving process are top-coal recovery
rates and gangue content. Reasonable fully mechanized mining process parameters can
effectively improve the top-coal recovery rates and reduce the gangue content. In order to
study the influence of different fully mechanized caving process parameters on top-coal
recovery rates and gangue content, the numerical simulation software PFC was used to
conduct numerical simulation experiment schemes of different fully mechanized caving
process parameters, with varying coal caving methods and procedures. The numerical
simulation experiments of different fully mechanized top-coal caving process parameters
were carried out by using the orthogonal experimental design method. By combining the
principle of probability and statistics with computer technology, not only can the number of
tests and calculation workload can be reduced, but the distribution of various influencing
factors of fully mechanized top-coal caving mining is also more uniform within the test
range, so as to achieve ideal results.
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This numerical simulation study mainly focused on the top-coal releasing law without
considering its crushing process. The top coal and immediate roof were assumed to be in
a loose state. Therefore, both top coal and immediate roof adopted a linear constitutive
model for ‘Ball–Ball’ and ‘Ball–Facet’ connections in numerical simulations. The elastic
model was adopted for the bottom coal and main roof, and the linear contact model was
adopted for each part and its internal contact model. The buried depth of the main coal
seam was 400 m and the height of the numerical model was 18.84 m. Therefore, in the
process of initial balance simulation, the weight of the 381.16 m-thick rock stratum should
be applied to the upper surface of the model, and the average unit weight of the rock
stratum was 25 KN/m3, such that a boundary stress of σz = 9.529 MP was applied to the
upper boundary of the model. Rigid walls slightly larger than the model were set up at the
front, rear, left, right and bottom of the model, and its velocity was fixed at 0 m/s to server
as a displacement boundary. The contact parameters are shown in Table 1, and the unit
parameters are shown in Table 2.

Table 1. Contact parameters.

Contact Type Constitutive Model Firc dp_Nratio dp_Sratio kn ks

Immediate roof

Liner

0.5 0.3 0.3 4 × 108 4 × 108

Top coal 0.4 0.3 0.3 3 × 108 3 × 108

Ball–Ball 0.4 0.3 0.3 3 × 108 3 × 108

Ball–Facets 0.3 0.3 0.3 5 × 108 5 × 108

Table 2. Unit parameters.

Rock Stratum Unit Type Elastic
Modulus/GPa

Bulk
Density/kg·m−3

Poisson’s
Ratio

Local
Damping

Main roof Zone 15.0 2660 0.34 /
Immediate roof Ball 13.6 2660 / 0.7

Top coal Ball 2.3 1400 / 0.7
Bottom coal Zone 2.3 1400 0.26 /

The numerical simulation schemes of different fully mechanized caving process pa-
rameters with varying coal caving methods have considered various factors, such as coal
seam thickness, mining and caving ratio, number of coal caving rounds, coal caving se-
quence, number of coal caving openings and top-coal particle size. Each factor was divided
into three levels, as shown in Table 3. According to the orthogonal test method, a total of
18 models were established, and the numerical simulation schemes are shown in Table 4.
The numbers 1, 2 and 3 in Table 4 refer to the corresponding factor level in Table 3.

The factors considered in the numerical simulation schemes of different fully mecha-
nized top-coal caving process parameters with varying coal caving procedures include coal
seam thickness, mining and caving ratio, coal caving procedure and top-coal particle size.
Each factor was divided into three levels, as shown in Table 5. According to the orthogonal
test method, a total of 9 models were established, and the numerical simulation schemes
are shown in Table 6. The numbers 1, 2 and 3 in Table 6 correspond to the corresponding
factor level in Table 5.

Table 3. Factor levels for the coal caving method.

Level Coal Seam
Thickness (m) Caving Ratio Number of Coal

Caving Rounds
Coal Caving

Sequence
Number of Coal Discharge
Openings at the Same Time

Top-Coal Particle
Size (m)

1 6 1:1 Single round Sequential Single opening 0.15–0.3
2 8 1:1.5 Two rounds Group interval Two openings 0.25–0.4
3 10 1:2 Three rounds Interval return Three openings 0.35–0.5
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Table 4. Orthogonal simulation schemes for coal caving method.

Scheme No Coal Seam
Thickness Caving Ratio Number of Coal

Caving Rounds
Coal Caving

Sequence
Number of Coal

Discharge Openings
Top-Coal Particle

Size

1 1 1 1 1 1 1
2 1 2 2 2 2 2
3 1 3 3 3 3 3
4 2 1 1 2 2 3
5 2 2 2 3 3 1
6 2 3 3 1 1 2
7 3 1 2 1 3 2
8 3 2 3 2 1 3
9 3 3 1 3 2 1

10 1 1 3 3 2 2
11 1 2 1 1 3 3
12 1 3 2 2 1 1
13 2 1 2 3 1 3
14 2 2 3 1 2 1
15 2 3 1 2 3 2
16 3 1 3 2 3 1
17 3 2 1 3 1 2
18 3 3 2 1 2 3

Table 5. Factor levels for the coal caving procedure.

Level Coal Seam
Thickness (m) Caving Ratio Coal Caving

Procedure
Top-Coal Particle

Size (m)

1 6 1:1 One cutting with
one caving 0.15–0.3

2 8 1:1.5 Two cutting with
one caving 0.25–0.4

3 10 1:2 Three cutting with
one caving 0.35–0.5

Table 6. Orthogonal simulation schemes for coal caving procedure.

Scheme No Coal Seam
Thickness Caving Ratio Coal Caving

Procedure
Top-Coal Particle

Size

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

3.2. Numerical Simulation Calculation
3.2.1. BP Neural Network

The artificial neural network is a nonlinear and adaptive information processing
system composed of a large number of standardized neurons, which is capable of simulating
a biological neural network, and it has been deeply studied and widely used all over the
world [25]. At the same time, due to the different connections of artificial neurons, a
variety of artificial neural network models have been developed. Among them, the BP
neural network is the most widely used model in artificial neural networks, which is a
multi-layer feedforward neural network trained according to the algorithm of error back
propagation [26]. The BP neural network is composed of an input layer, hidden layer and
output layer and based on Sigmod function for operation and application, and has a strong
nonlinear mapping ability and flexible network results [27]. Therefore, we can establish
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a nonlinear evaluation model by using this technology to better solve the randomness
of weight definition, and ensure the accuracy and scientificity of evaluation results and
activities [28,29].

The neural network program was developed using Matlab platform; the program flow
is as follows:

• Loading initialized training sample parameters, input array P and output array A, and
randomly selecting 80% of the samples as the training group (P1, A1) and 20% of the
samples as the test group (P2, A2).

• Defining a series of neuron parameters such as the number of neural network layers, the
number of neurons per layer, the maximum number of trainings (net.trainParam.epochs)
and the training target error (net.trainParam.goal).

• Using the feedforwardnet function in Matlab to establish the neuron model, and using
the train function to train the input and output array of the samples, such that a
corresponding network is obtained.

• Using the Sim function to calculate the error between the input data P2 of the verifica-
tion group and the output A2 of the verification group in the network. According to the
error condition, returning to the second step to adjust the neural network parameters
and continuing to train until the error requirements are met.

• Taking the target parameters into the Sim function, calculating the output of the neural
network net, the predicted results of the target parameters are obtained.

3.2.2. Cross-Validation

Cross-validation can obtain as much effective information as possible from limited
learning data, so as to obtain more appropriate two-layer weights. Additionally, this
method learns samples from multiple directions, which can effectively avoid falling into
local minima. Dong L et al. [30] established a microseismic event and blasting event
identification model based on a convolutional neural network by using cross-validation.
The collected microseismic and blasting event waveforms were composed of a training set,
test set and verification set, respectively. Compared with other machine learning methods,
this method has high identification accuracy. In addition, Dong L et al. [31] proposed the
LM-CAG-CDR method and recommended 16 combined methods to evaluate the level of
clean and safe production of phosphate rock, which improved the development level of the
clean and safe mining of phosphate rock.

In order to verify the effectiveness of the BP neural network, the parameter design
and simulation results of 18 orthogonal experimental models described above were used as
samples to train the BP neural network and obtain a neural network model (14 models as
training set and 4 models as test set). The objective laws hidden beneath the orthogonal
test samples can be discovered, the coal caving rates and gangue content of all mining
conditions and fully mechanized top-coal caving process combinations can be predicted
without numerical simulation (a total of 729 combinations were used as the verification
set), and the effectiveness of the neural network program can be verified with reference to
the analysis of the numerical simulation results.

3.2.3. Optimized Decision

Based on the function and characteristics of the BP neural network, an optimized
decision-making model for top-coal caving mining process parameters based on the BP
neural network was established. The model could make decisions on top-coal caving
mining process parameters according to the actual mining conditions of the coal mine, and
obtain the optimal mining process parameters.

According to the actual situation of the mine, the input vector P was the natural factors
affecting the mining and recovery rates of top coal, mainly including the average thickness
of coal seam X1 (m), firmness coefficient of top coal X2, development degree of interlayer
joint fracture X3, buried depth X4 (m), lithology and thickness of coal seam roof X5, and
dip angle of coal seam X6 (◦). The output process parameters of top-coal caving mainly
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included coal caving sequence Y1, mining to caving ratio Y2, and coal caving step Y3 (m).
In order to make the decisions on top-coal caving process parameters more universal,
the conceptual description in input and output was numerically processed based on the
geological and process parameters of working faces in multiple coal mines. The processing
results are shown in Table 7.

Table 7. Learning samples.

Sample Parameter Concept Description Neural Network
Assignment Range

Interlayer and
joint fracture

development degree

Interlayer thickness > 0.5 m,
Joint fissure less developed 0–0.33

Interlayer thickness 0.2–0.5 m
Joint fracture development general 0.34–0.66

Interlayer thickness < 0.2 m
Joint fracture development 0.67–1.0

Roof lithology
and thickness

Pressure step < 25 m
Immediate roof thickness > 10 m 0.75–1.0

Pressure step 25–50 m
Immediate roof thickness 5–10 m 0.5–0.75

Pressure step 25–50 m
Immediate roof thickness < 5 m 0.25–0.49

pressure step > 50 m
Immediate roof thickness < 3 m 0–0.24

Coal caving sequence

Multi-round sequential coal caving 0.76–1.0

Interval caving coal among
multi-cutting 0.51–0.75

Single-round sequential coal caving 0.26–0.50

Single round interval coal caving 0–0.25

A 6-layer neural network was established, with 10 neurons, 6 input parameters and
3 output parameters in each layer, as shown in Figure 4. The three output parameters were
the optimized process parameters.
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3.3. Similarity Simulation Test

According to the geological conditions of the No. 12309 working face of the Wangjial-
ing coal mine and the determined optimal fully mechanized top-coal caving process pa-
rameters, the similarity simulation test system for top-coal caving was designed and tested
in the laboratory. The model frame was 2000 mm in length, 200 mm in width and 2500 mm
in height, and the simulated material was composed of sand, lime and Bali stone. The
height of the laid simulation material was 130.5 cm, and the geometric similarity ratio of
the simulation experiment was C = 30/318 = 1: 10.6. According to the field observation,
the top coal is easy to release, and there are few cases of large coal blocking. Therefore,
the top coal, immediate roof and main roof in the experiment were laid into loose bodies,
the coal seam was simulated by black particles, and the immediate roof was simulated
by white particles. The similar material simulation test bench is shown in Figure 5, and
the particle arrangement position is shown in Figure 6. The top coal was divided into
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upper, middle and lower layers by using marker particles. A 10 MPa uniformly distributed
load was applied on the top layer of the model to simulate the load on the actual rock
stratum (calculated according to the buried depth of 400 m). The opening and closing of
the coal discharge opening were simulated by pulling out and pushing in the separator
plate interposed between the supports, and the coal discharging was started and stopped
under the action of the load.
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4. Results and Discussion
4.1. Numerical Simulation Experiment
4.1.1. Coal Caving Mode

The coal caving method mainly included three methods: sequential coal caving, group-
ing interval and interval return coal caving. The description with respect to Figures 7–9
is as follows: the coal–gangue boundary refers to the boundary between the top coal
and the immediate roof; that is, the green particles represent the immediate roof and
the blue particles represent the top coal. Residual coal refers to the part of coal left after
top-coal caving.

(1) Sequential coal caving

In order to study the flow characteristics of top coal under different simulation schemes,
the representative scheme of the six numerical simulation schemes was selected for analysis,
namely Scheme 1 in Table 4. The simulation process is shown in Figure 7.
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The geological conditions and process parameters for simulation scheme 1 are as
follows: the thickness of the coal seam is 6 m, the mining to caving ratio is 1:1 (mining
height is 3 m, caving height is 3 m), single-round sequential coal caving, the number of
caving openings is 1, and the particle size of top coal is 0.15~0.3 m. After the upper coal
above 1# support is released, there is an obvious funnel-shaped caving space above the
support (Figure 7a). When the support top coal was released in sequence, the boundary
of the coal gangue dropped gently. After discharging all of the coal, the top-coal recovery
rate and gangue content were 90.72% and 2.72%, respectively. Therefore, a single round of
sequential caving could achieve a better caving effect for a short top-coal caving height.

(2) Group interval coal caving

Six representative numerical simulation schemes with coal caving sequence 2 were
selected for analysis, namely Scheme 8 in Table 4. The simulation process is shown in Figure 8.
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(b) 10# support coal caving end; (c) end of the first round of coal caving; (d) 1# support end of second
coal caving; (e) 10# support end of second coal caving; (f) end of the second round of coal caving.



Sustainability 2022, 14, 1340 11 of 17

Geological conditions and process parameters of simulation program 8: coal seam
thickness 10 m, mining to caving ratio 1:1.5 (mining height 4 m, caving height 6 m), multi-
round interval caving, the number of caving openings is 1, and the particle size of top coal
is 0.35~0.5 m. Due to the use of multiple rounds of coal caving, the boundary between coal
and gangue in the first round of coal caving decreased evenly (Figure 8a–c), preventing
gangue from mixing into adjacent coal caving openings in advance. When the remaining
top coal above the support continued to cave out, the flow characteristics of top coal were
similar to those of simulation scheme 1 (caving height 3 m) due to the thin thickness of the
remaining top coal. After all the supports were placed, there was less top coal missing in
the goaf (Figure 8d–f). The top-coal recovery rate and gangue content were 91.88% and
4.05%, respectively. The coal caving effect was good. Thus, when the top-coal caving height
is large (6 m), multiple rounds of coal caving should be adopted to ensure the uniform
descent of the coal-gangue boundary and to prevent the gangue above the coal caving
support from entering the adjacent coal caving opening too early.

(3) Interval return coal caving

Six representative numerical simulation schemes with coal caving sequence 3 were
selected for analysis, namely scheme 13 in Table 4. The simulation process is shown in Figure 9.
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the second round of coal caving.

The geological conditions and process parameters of simulation scheme 13 are as
follows: coal seam thickness is 8 m, mining to caving ratio is 1:1 (mining height is 4 m,
caving height is 4 m), the number of caving openings is 1, and the top-coal particle size
is 0.35~0.5 m. Due to using group interval caving, the boundary line of coal and gangue
descends unevenly after the first round of caving (Figure 9a,b), and the remaining top coal
thickness is obviously different. There is more top coal left in the goaf after the second round
of coal caving with all supports (Figure 9c,d). The top-coal caving rate and gangue content
were 85.77% and 2.72%, respectively. In addition, compared with scheme 5 with the same
coal thickness, the caving ratio (1:1) of scheme 13 was greater than that of scheme 5 (1:1.5),
and the top-coal recovery rate of scheme 13 was better than that of scheme 5. Consequently,
choosing a smaller caving ratio is conducive to top-coal caving under the condition of the
same coal thickness.

The top-coal recovery rate and gangue content of different simulation schemes with
varying coal caving methods were counted, as shown in Figure 10. Through the analysis
of the 18 coal caving schemes, the top-coal recovery rate ranges from 73.43% to 95.41%,
and the gangue content ranges from 1.09 to 10.21%. The difference for top-coal recovery
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rate and gangue content is obvious when adopting different coal caving sequences and
different process parameters. Therefore, in order to obtain the ideal top-coal caving effect,
the top-coal caving sequence and process under specific geological production conditions
need to be analyzed. In addition, if schemes 7 and 11 are ignored, there is a positive
correlation between the top-coal recovery rate and the gangue content. That is, with the
increase in gangue content, the top coal release rate will also increase accordingly. On the
other hand, as the gangue content decreases, the top-coal recovery rate will also decrease.
Hence, properly increasing the gangue content could improve the top-coal recovery rate,
and the critical point for gangue content needs to be determined according to the specific
coal caving process parameters and actual production situation.
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4.1.2. Coal Caving Procedure

According to Tables 3 and 4, different simulation schemes with varying coal caving
procedures were simulated. The top-coal recovery rate and gangue content of different
simulation schemes were counted, as shown in Figure 11. The top-coal recovery rate ranged
from 71.52% to 92.59% and gangue content ranged from 1.79% to 8.08%, respectively. There
are great differences in top-coal recovery rate and gangue content when adopting different
coal caving procedures and different process parameters. Consequently, in view of specific
geological production conditions, in order to obtain an ideal coal caving effect, the coal
caving step and coal caving procedure should be considered in detail. In addition, if scheme
4 is neglected, there is also a positive correlation between the top-coal recovery rate and
the gangue content. That is, with the increase in gangue content, the top-coal recovery rate
will also increase accordingly. On the other hand, as the gangue content decreases, the
top-coal recovery rate will also decrease. When the coal caving step was taken as a single
variable, it was found that with the increase in coal caving step, the top-coal recovery rate
decreased and the gangue content increased; as the coal caving step decreased, the top-coal
recovery rate increased and the gangue content decreased. Therefore, selecting a small
caving step and appropriately increasing the gangue content could improve the top-coal
recovery rate, and the critical point for gangue content needs to be determined according
to specific caving process parameters and actual production conditions.
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4.2. Cross-Validation Results

All 729 possible model parameter combinations were input into the trained neural
network model, and the optimized coal caving process parameters under different coal
caving modes were obtained after ranking according to the comprehensive evaluation
indexes, as shown in Table 8. The effectiveness of the BP neural network was verified.

Table 8. Optimized top-coal caving process parameters under different top-coal caving modes.

Parameters Coal Seam
Thickness

Caving
Ratio

Number of
Coal Caving

Rounds

Coal Caving
Order

Number of Coal
Caving Openings

Top-Coal
Particle Size

Top-Coal
Recovery Rate

Gangue
Content

Input parameters 1 1 0.5 0.5 0.5 0.25 92.48% 2.16%

Actual parameters 10 m 1:1 Three rounds Three ports Interval return
coal caving 0.15–0.3 m / /

4.3. Optimized Process Parameters

According to the occurrence conditions of the coal seam in the Wangjialing coal mine,
the main parameters of the Wangjialing coal mine were brought into the decision-making
model (Figure 4) to obtain the decision-making process parameters thereof, as shown
in Table 9. The optimized technological parameters for fully mechanized mining in the
Wangjialing coal mine were single-round sequential coal caving, mining and caving ratio
1.09:1, and coal caving step distance 0.78 m.

Table 9. Determination of fully mechanized caving process parameters.

Coal Seam Occurrence Conditions (X) Optimized Process Parameter (Y)

Coal seam thickness (X1) 6.1 m Coal caving sequence Single-round sequential
Top-coal firmness coefficient (X2) 1.8

Interlayer and joint fissure (X3) 0.4 Caving ratio 1.09
Depth of embedment (X4) 400 m

Roof lithology and thickness (X5) 0.4 Coal caving step 0.78 m
Top-coal dip angle (X6) 2◦

4.4. Coal Caving Effectiveness

Figure 12 shows the experimental process of single-round sequential coal caving.
Additionally, Table 10 shows the top-coal recovery rate and gangue content for each coal
caving opening in single-round sequential coal caving.
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Table 10. Single-round sequential coal caving results.

Coal Caving Opening Number 3 4 5 6 7 8 9 10 11 12 13 Sum

Coal quantity (kg) 2.82 2.82 2.82 2.82 2.82 2.82 2.82 2.82 2.82 2.82 2.82 31.02
Coal output (kg) 2.83 2.45 2.43 2.44 2.37 2.38 2.32 2.45 2.32 2.44 2.42 26.85

Gangue output (kg) 0.11 0.2 0.21 0.05 0.12 0.1 0.03 0.02 0.03 0.08 0.12 1.07
Top-coal recovery rate (%) 100.35 86.88 86.17 86.52 84.04 84.40 82.27 86.88 82.27 86.52 85.82 86.56

Gangue content (%) 3.90 7.09 7.45 1.77 4.98 4.26 1.06 0.71 1.06 2.84 4.26 3.45

Analysis of Figure 12 and Table 9 shows that the similarity simulation results of single-
round sequential caving in the No. 12309 working face of the Wangjialing coal mine are
consistent with the results of numerical simulations. When the top-coal caving height was
small, the single-round sequential coal caving could achieve a better coal caving effect. When
the first support (3# support) carried out coal caving, there was an obvious funnel-shaped
coal caving space above the support (Figure 12b). When the top coal of the caving support
was caved out sequentially, the coal gangue boundary descended gently; only a small part
of top coal was left after caving all of the coal (Figure 12d). The top-coal recovery rate was
86.56% and the gangue content was 3.45%, with good caving effect. Thus, compared with the
analysis and decision making of process parameters through industrial experiments, which
takes a lot of time and consumes a certain amount of manpower and material resources,
using the BP neural network to optimize the decision-making process of fully mechanized
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caving process parameters can effectively improve the decision-making efficiency and
provide a basis for the realization of intelligent, fully mechanized caving mining.

5. Conclusions

In this study, the effects of different fully mechanized top-coal caving process parame-
ters with different caving methods and different caving procedures on top-coal recovery
rates and gangue content were studied. According to the occurrence conditions and actual
production situation of the Wangjialing coal mine, the decision-making model for fully
mechanized top-coal caving mining process parameters was established by using the BP
neural network, and the optimized fully mechanized top-coal caving process parameters
of Wangjialing coal mine were obtained. The in-lab similarity simulation experiment was
carried out to verify the coal caving effect of the optimized fully mechanized top-coal
caving process parameters. The following conclusions were drawn from the whole process:

(1) For different coal caving process parameters, the top-coal recovery rates and gangue
content are obviously differen, the top-coal recovery rate could be improved by
appropriately increasing the gangue content, and the critical point for the gangue
content should be determined according to the specific coal caving process parameters
and the actual production situation.

(2) In top-coal caving mining, the selection of a small caving step distance was conducive
to top-coal caving.When the top-coal caving height was small, a better coal caving
effect could be achieved by single-round sequential coal caving.When the top-coal
caving height was large (6 m), using multiple rounds of coal caving was conducive to
ensuring that the boundary between coal and gangue dropped evenly, and preventing
the gangue above the coal caving support from entering the adjacent coal caving
opening prematurely.

(3) Through the in-lab similar simulation experiment, it was indicated that the BP neural
network can be used to study the optimized decision making of mining process
parameters and can obtain good results, improving the benefit of process parameter
decision making, and provide the basis for realizing the intelligent mining of fully
mechanized top-coal caving.

(4) There are many factors affecting the top-coal recovery rate and gangue content in
addition to the fully mechanized caving process parameters studied in this paper. The
calculation of a relaxed ellipsoid can also be considered in future research.
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