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Abstract: (1) Background: Every day, human beings fall victim to accidents. We implement solutions
aimed at reducing accidents in everyday life, but we are not able to eliminate all accidents from our
life. This article addresses the issue of forecasting accidents at work in the steel industry in Poland.
Particular attention is paid to other accidents, given that those events are most often recorded in
the sector under analysis. (2) Methods: The process of predicting quantitative data on the number
of persons injured in other accidents in 2009–2018 employed Holt’s models: with an additive and
multiplicative trend, with the trend smoothing effect in the multiplicative and additive formula.
(3) Results: The forecasts prepared on the basis of Holt’s models and the combined model show a
decreasing trend in the number of persons injured in other accidents in the steel sector, which is a
positive development in the area of occupational safety and health. (4) Conclusions: The number
of persons injured in other accidents at work in the steel sector shows a downward trend, which
is significant and valid information for managers. The analysis of the results indicated that the
combined forecast model best reflects the accidents at work in the steel industry.

Keywords: occupational health and safety; accident at work; Holt’s model; combined model; steel
sector in Poland

1. Introduction

Ensuring safety in the workplace is one of the basic duties of the organizers of the
work process—employers. Employers should limit and eliminate all occupational hazards
and nuisances related to the performed work that cause accidents at work and occupational
diseases. The occurrence of accidental events in enterprises generates social and economic
costs [1,2] to be borne by all entities, including those that cooperate with the enterprise.
Anyone who performs work may potentially sustain a work-related injury [3]. It seems
appropriate to clarify at the outset what events are classified as accidents at work. Under
Polish law [4], an accident at work is a sudden event caused by an external factor arising
from work performed that results in injury or death. All the above features of the accident
must occur simultaneously for an event to be considered an accident at work. The definition
of the accident varies across different countries. There is agreement as to the urgency of
the event and the external cause. The differences relate to the further part of the definition
regarding damage, injury, or loss [2,5].

The investigation of accidents at work is still a relevant issue examined by many
researchers. It concerns, among others, safety in individual sectors of the economy im-
portant for the country, such as construction [6,7], mining [8,9], food industry [10], steel
industry [11], and agriculture [12]. Researchers also show interest in the influence of ex-
ternal factors, such as the economic situation, e.g., recession [13], on the accident rate in
enterprises. In the case of high unemployment, workers are more likely to be dismissed
and, therefore, fewer accidents are reported [13]. The culture of work safety (safety climate)
plays an important role in the creation of safe working conditions aimed at reducing the
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number of accidents at work. Safety culture significantly affects the attitudes and behavior
associated with increasing or reducing risk [14], and it hasanimpact on workers’ attitudes
and behavior related to the current safety performance of the enterprise [15,16]. It is there-
fore hugely important that all workers engage in activities aimed at improving safety,
which may lead to a reduction in the number of accidents at work because safety culture
also applies to the value system of all participants of the work process [17].

The investigation of the accident rate subject to analysis [1,11,18,19] is based on the
determination of accident rates—so-called accident indices. The determined values of
the indices make it possible to compare enterprises, industries, and countries in terms
of the number of reported accidents at work. The so-called accident indices (frequency
index and severity index) are used for the purposes of an evaluation of the accident
rate. The determination of the values of accident indices under investigation is related
to the analysis of historical data. The conducted investigation provides top management
with valuable information to be used both for informative and motivating purposes. The
provision of information to workers on the in-house accident rate and comparing it between
departments (branches) may be one of the elements of developing safety awareness and
building a culture of work safety [20]. However, the provided information is still of a
historical nature. Given the above, this study presents the possibility of adaptation of the
forecasts in the area of occupational safety and health—analysis of accident statistics. The
obtained forecasts will give employers information on how their activities (carried out over
a long period of time) in the area of occupational safety and health relate to the number of
accidents at work. The forecast analyses will provide employers with information in the
form of a numerical value on what number of accidents is forecast for the period under
investigation. The information thus obtained may serve as a warning, prompting the
employer to action in the event that an increase in accidents at work is indicated (numerical
values of the produced forecasts), which is above all the basic function of forecasts [21–24].

The term prognosis is derived from the Greek prognosis and means making a pre-
diction based on specific data [23]. Prognoses are built on the basis of experts’ opinions
or models that best describe, according to a “specific criterion”, the issue under analysis.
The prognostic model provides a more or less accurate reflection of the real subject to
analysis. Depending on the type of prognosis, its purpose, and the nature of the forecast
phenomenon, various forecasting methods are used in practice. Given the above, in order
to analyze the use of forecasting methods, a review of bibliometric databases was made,
namely: Web of Science, Scopus, Google Scholar. Keywords “forecasting models”, “adapta-
tion models”, “Holt’s model”, “Winters’ model”, “ARIMA model”, were entered in those
databases. Prognostic models were applied to, inter alia, forecasting the processes of: steel
production volume [25], Euro selling rate [26], exchange rates [27], economic cycles [28],
revenue [29], sales of motorcycles [30], livestock and wheat prices [31], consumption of
materials [32], forecasting of load in the electric industry [33], emission of organic water
pollutants [34], telecommunication data [35], network anomaly detection [36], electric
load [37], customer-credit evaluation [38], predicting lung cancer cases [39]. The bibliomet-
ric analysis, the type of the model, and its practical application are presented in Table 1. It
does not list exhaustively all the possible applications of forecasting to the investigation of
various phenomena.

The occurrence of accidents at work has a significant impact on the day-to-day opera-
tions of the enterprise, and consequently on its functioning. Understanding why accidents
happen at work is the first step in preventing them. A favorable and competitive working
environment may help the company in its day-to-day operations, as well as in achieving
strategic goals [40]. This study, therefore, presents the possibility of adaptation of prog-
nostic models in the area of accident rates as an option for planning and assessing the
effectiveness of implemented preventive solutions aimed at improving work safety. The na-
tionwide effectiveness of the implemented preventive solutions (technical, organizational)
is assessed in the number of people injured in accidents at work, e.g., in the years for which
forecasts have been made. Therefore, the designated forecasts may constitute important
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information enabling the assessment of the activities already implemented by employers in
the field of improving working conditions. This study presents the possibilities of using
prognostic models in terms of the number of people injured in accidents. However, the
prediction can also be used in the scope of forecasting: the number of days of incapacity for
work, causes of accidents, or accident rates.

Table 1. Selected applications of prognostic models—literature review.

Authors, Year of Publication Type of Model Application

Gajdzik et al., 2016 [25]
Holt’s model

forecasting the volume of steel
production

Halicka et al., 2013 [26] forecasting the Euro sales rate

Agapie et al., 1997 [28] forecasting economic cycles

Rachman et al., 2016 [29]
Yang et al., 2017 [32]

revenue forecasting
forecasting for air material

consumption

Putharn et al., 2014 [30]
Ramos et al., 2013 [33]

Holt–Winters model/
Winters model

forecasting motorcycle sales
forecasting of load in the

electric industry

Paraschiv et al., 2015 [34]
Ortiz 2016 [27]

forecasting emission of
organic water pollutants

forecasting exchange rates

Madden et al., 2007 [35] linear model telecommunications data
forecasting

Wah et al., 2021 [39] Bayesian spatio-temporal
models predicting lung cancer cases

Pena et al., 2013 [36] ARIMA
neutral networks

forecasting the detection of
network anomalies

Kohzadi et al., 1996 [31] forecasting of livestock and
wheat prices

Wang et al., 2010 [37]
Zhu et al., 2016 [38] combined model

electric load forecasting
forecasting customer-credit

evaluation

The most common causes of accidents in the steel industry in Poland (including
other accidents) include incorrect behavior of an employee, ignorance of health and safety
hazards and regulations, disregard for hazards in the workplace, lack of experience, lack of
concentration of employees [41]. Therefore, an important element is the implementation of
preventive measures aimed at reducing the causes of accidents at work in the form of a
combination of technical and organizational solutions. The assessment of the effectiveness
of the implemented solutions is possible to observe thanks to the possibility of using the
forecasted number of people injured in accidents, where the designated forecasts (number
of injured persons) will indicate a probable trend (decreasing, increasing) or fluctuations
(increasing, decreasing).

2. Materials and Methods
2.1. Research Subject

Other accidents (accidents resulting in short-term absenteeism) are events that were
most often recorded in the steel sector in Poland in the years 2009–2018 under analysis.
Those events are marked by fluctuations, i.e., an increase and decrease in the number of
persons injured, which may not be viewed as positive information for managerial staff. The
recorded fluctuations were due to the changes that occurred in the employment structure
in the steel sector in Poland in the analyzed period. The largest number of persons injured
in other accidents was reported in 2011 (1109 injured persons). Since that year, a decrease
in the total number of persons injured in accidents was observed. In the years 2012–2016,
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the number of persons injured in other accidents did not exceed 900 cases. The year 2017
saw an increase in injuries—973 persons, followed by a decrease in 2018—i.e., 915 persons
injured in other accidents. The number of persons injured in other accidents in the steel
sector is presented graphically in Figure 1. Given the fact that those events prevail in the
accident statistics of the steel sector in Poland, they were subjected to analysis in terms of
forecasting the number of such events for the years 2019–2022.

Figure 1. Number of people injured in accidents remaining the steel sector in Poland in 2009–2018
(own elaboration based on Statistic Poland [41]).

The choice of the time period (ten years) was conditioned by the availability and
consistency of data on accidents in the remaining steel sector in Poland. Since 2009, there
have been changes in the classification of economic activities in Poland, and so, in 2008
the production of metals and metal products was mentioned, while from 2009, the area
was related to the production of metals, which made it possible to compare the number of
people injured in other accidents with each other.

2.2. Purpose and Methodology of Research

The aim of this study is to present the possibility of adapting Holt’s models in the
process of forecasting the number of persons injured in other accidents (so-called minor
accidents) in the steel sector in Poland. In connection with the above, a research method-
ology was developed, allowing the achievement of the objective pursued in this study.
The research process was divided into steps (four-step process). The first step involved
the development of prognostic models based on empirical data on the number of persons
injured in other accidents (so-called minor accidents) in the steel sector in Poland—data
obtained from Statistics Poland for the years 2009–2018 [41]. For the purposes of this study,
the following models were developed [22–24,42,43]: Holt’s square model (M1), Holt’s
model with a multiplicative trend (M2), Holt’s model with an additive trend (M3), Holt’s
model for the trend smoothed in the additive formula (M4) Holt’s model for the trend
smoothed in the multiplicative formula (M5).

In the second step, the accuracy of forecasts was assessed by means of ex post forecast
errors used in the relevant literature on forecasting [21–24,26,43–49]:

• adjusted average relative ex post error Θ (1):

Θ =
1

n−m
·

n

∑
t=m+1

∣∣∣∣ yt − y∗t
(yt + y∗t )/2

∣∣∣∣ (1)

• mean error ψ (2):

ψ =
1

n−m

n

∑
t=m+1

|yt − y∗t |
yt

(2)
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• mean absolute error MAE (3):

MAE =
1
n
·

n

∑
t=1
|yt − y∗t | (3)

• Rot Mean Square Error RMSE (4):

RMSE =

√
1

n−m
·

n

∑
t=m+1

(yt − y∗t )
2 (4)

where: yt, empirical data; yt*, forecasts value; n, number of elements of the time series; m,
number of initial time moments t. For the listed errors, the following limiting assumptions
were made [21,23,42,49]:

• adjusted average relative ex post error Θ—the error value should be in the range
from <0–200%>;

• mean error ψ, the error value should not exceed 10%;
• mean absolute error MAE, the error value should satisfy the relationship that occurs

between the measures—MAE ≤ RMSE;
• root mean square error (RMSE) takes values less than or equal to the standard deviation

of the Se model residuals. The standard deviation of the model residuals is determined
from the relationship (5):

Se =

√
1

n− 2
·

n

∑
i=1

(yt − y∗t )
2 (5)

The third step consisted in a qualitative analysis of expost forecasts and assessment of
the validity of the developed forecasting models. The validity of the model was assessed
using the Janus coefficient (J2), which determines the matching ratio of the forecasts and
the model to the actual data. The econometric model is considered valid when the value
J2 ≤ 1. Only a model for which the Janus coefficient is estimated at J2 ≤ 1 may be used for
exante forecasts. Otherwise, it must be changed [22]. The Janus coefficient was determined
on the basis of mathematical dependency (6):

J2 =
1

T−n ∑T
t=n+1(yt − y∗t )

2

1
n ∑n

t=1 (yt − y∗t )
2 (6)

where T is the number of the least period.
The fourth step involved the production of exante forecasts of the number of persons

injured in other accidents for the models that fulfill the assumptions made in the second
stage concerning the acceptability of expired forecast errors and the third stage dedicated
to the assessment of the validity of the developed models. A combined forecast model
defined by dependency (7) was constructed on the basis of the developed models. The
combined model built on the basis of the developed Holt’s models contained “W” weights
that were assigned to the exante forecasts. The sum of the weights was 1. The values of the
weights depended on the value of expost forecast errors for the developed models (Table 2).
The lower the expost error values, the higher the value for the “W” weight.

y∗t =
m

∑
i=1

λi·y
∗(i)
t (7)

where: yt*, combined forecast per period t; λi, weight assigned to the forecast made by i-th
method; yt*(i), forecast per period t made by i-th method; m, number of methods used to
produce the forecast [22].
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Table 2. Values of ex post forecast errors and Janus coefficient J2 (own elaboration).

Forecasting Model
(Model Designation)

Designated ex Post Forecast Errors
Se

Coefficient Values J2

Ψ, % Θ, % RMSE MAE 2015 2016 2017 2018

1 2 3 4 5 6 7 8 9 10

Holt’s square model (M1) 6.3 1.5 92.9 58.4 105.4 0.000 0.082 0.471 0.438
Holt’s model with a multiplicative

trend (M2) 6.1 1.5 86.2 56.5 97.7 0.128 0.065 0.529 0.400

Holt’s model with an additive trend (M3) 6.1 1.5 87.1 56.2 98.7 0.155 0.077 0.577 0.433
Holt’s model for the trend smoothed in the

additive formula (M4) 6.2 1.5 84.1 57.9 95.3 0.171 0.097 0.689 0.569

Holt’s model for the trend smoothed in the
multiplicative formula (M5) 5.8 1.4 83.1 53.9 94.2 0.117 0.061 0.604 0.453

3. Results
3.1. Error Analysis and Evaluation of the Validity of the Developed Models

In compliance with research methodology (Section 2.2—Purpose and methodology of
research), prognostic models were constructed (Table 2) for which ex post forecast errors
were determined (Table 2, column 2–4). The analysis of Holt’s models, i.e., quadratic
model (M1), model with a multiplicative trend (M2), additive trend (M3), and models
with the trend expiration effect (M4 and M5) showed that the values of ex post forecast
errors (Table 1) make it possible to consider the forecasts as acceptable. The values of the
estimated errors were as follows:

• the mean errorψwas in a range between 5.8% for model (M5) and 6.3% for model (M1);
• the adjusted average relative ex post error Θ was in a range between 1.4% for model

(M5) and 1.5% for the other Holt’s models (M1–M4);
• Root Mean Square Error RMSE values of expost forecast errors were in a range between

83.1 and 92.9 and did not exceed the values set for the standard deviation of the
residuals of model Se (Table 2, column 6);

• the values of mean absolute error MAE were lower than the values of RMSE errors.

The developed models were also subject to a validity assessment. The values of the
Janus coefficient (J2) were established for that purpose. In order to establish the value of
the coefficient, the ex post period was divided into the trial period (the numerical value
of the trial period was 5) and the testing period (the numerical value of the testing period
was 4). The determined values of the Janus coefficient (Table 2, column 7–10) were lower
than one (the highest value of the coefficient was J2 = 0.689 − model M4). Given the above,
the models must be considered as valid and may be used for the determination of the value
of ex ante forecasts.

3.2. Forecasts of the Number of Persons Injured in Other Accidents in the Years 2019–2022

Exante forecasts of the number of persons injured in other accidents in the steel sector
in Poland were prepared (Table 3, column 2–5) on the basis of the developed prognostic
models. The forecasting of the number of persons injured in other accidents with the use of
Holt’s model involved the minimization of the mean error of expired forecasts ψ (Table 2,
column 2). The optimal values for the smoothing parameters α, β as well as the trend
expiration parameter Φ were selected on an individual basis for each model using Solver
software (Table 3, column 6–8).
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Table 3. Forecasts of the number of persons injured in other accidents (minor accidents), smoothing
parameters α, β, and trend expiration parameter Φ (own elaboration).

Forecasting Model
(Model Designation)

Forecasts Model Parameters

2019 2020 2021 2022 α β Φ

1 2 3 3 5 6 7 8

Holt’s square model (M1) 903 836 728 579 0.85 0.05 0.60
Holt’s model with a multiplicative trend (M2) 913 907 901 895 0.65 0.12 -

Holt’s model with an additive trend (M3) 909 901 893 886 0.63 0.12 -
Holt’s model for the trend smoothed in the

additive formula (M4) 896 896 896 897 0.96 0.16 0.39

Holt’s model for the trend smoothed in the
multiplicative formula (M5) 894 873 853 833 0.69 0.01 0.99

The determined values of exante forecasts of the number of persons injured in other
accidents show a decreasing trend in relation to empirical data (Figure 1):

• model (M1) shows a decline in the number of persons injured in other accidents
throughout the whole period considered. A drop of 1.3% is indicated in 2019 in
relation to 2018, but in 2022, a significant drop of 36.7% is revealed in relation to 2018,
which must be viewed as a very unlikely event;

• model (M2) shows a decreasing trend. A decline of 0.21% is indicated in 2019 in
relation to 2018, whereas the year 2022 brings a drop of 2.2% in relation to 2018;

• model (M3) shows a decreasing trend in 2019–2022. A decline of 0.65% is indicated
in 2019 in relation to 2018, whereas the year 2022 brings a decline of 3.2% in relation
to 2018;

• model (M4) shows a decreasing trend in 2019–2021 (a drop of 2.1% in relation to 2018),
but an increase in the number of persons injured in other accidents is indicated in 2022,
i.e., 897 injured persons are recorded;

• model (M5) shows a decline throughout the whole period considered, in 2019, a drop
of 2.3% in relation to 2018, whereas in 2022, a drop of 8.9% is revealed in relation
to 2018.

The developed forecasting models allow for the conclusion that the number of persons
injured in other accidents shows a downward trend, which is a positive forecast for the
steel industry in Poland (Figure 2). In connection with the above, measures should be taken
to improve occupational safety, ensuring that the forecast trend for the number of persons
injured in other accidents (so-called minor accidents) is maintained.

Figure 2. The number of persons injured in other accidents in the steel sector in Poland, with regard
to forecasts produced on the basis of Holt’s models, M1–M5 (own elaboration).
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3.3. Combination of Forecasts

A combination of forecasts of the number of persons injured in other (minor) accidents
in the steel industry in Poland was carried out using mathematical dependency (7), which
prescribes that the value of a combined forecast for a given year (Table 4, column 2–5) is
the sum of the values of exante forecasts (Table 3), taking into account the assigned values
of weights “λ”. The values of weights “λ” depend on the value of determined ex post
errors (Table 2, column 2–5) calculated for models M1–M5. The adopted values of the
weights were as follows: λ1 = 0.3 (model M5); λ2 = 0.25 (model M2); λ3 = 0.20 (model M3);
λ4 = 0.15 (model M4); λ5 = 0.10 (model M1). Table 4 shows combined forecasts prepared for
the number of persons injured in other accidents in the steel sector in Poland in 2019–2022.

Table 4. Combined forecast values(own elaboration).

Forecasting Model
(Model Designation)

Forecasts

2019 2020 2021 2022

1 2 3 3 5

Combined model (Mc) 904 888 869 845

The analysis of the combined forecasts for the number of persons injured in other
accidents shows a downward trend (Figure 3), as is the case with the developed Holt models
(M1-M5). As regards the combined model, the differences in individual years between the
number of persons injured in other accidents may be considered acceptable due to the lack
of significant declines. The forecast values provide guidance for the managerial staff and
confirm the forecast trend of changes disclosed due to the analyses of models M1-M5. The
combined forecasts show a decline in the number of persons injured in other accidents in
relation to 2018 of, respectively, 1.2% in 2019, 2.9% in 2020, 5.0% in 2021, and 7.7% in 2022.

Figure 3. The numberof persons injured in other accidents in the steel sector in Poland with regard to
forecasts prepared on the basis of the combined model (Mc).

4. Discussion

The issue of work safety plays an important role in the functioning of every enterprise.
This study presents the adaptation of Holt’s models to forecast the number of persons
injured in other accidents in the steel sector in Poland. The developed prognostic mod-
els M1–M5 made it possible to prepare exante forecasts which may be subjected to an
assessment once the data concerning the number of persons injured in other accidents in
2019–2022 is published. The obtained forecast values provide significant information for
the managerial staff. The developed models show the continuation of the downward trend
in 2019–2022, although significant decreases in the number of persons injured in other
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accidents are also revealed—model (M1) in 2022. Notably, the other models (M2–M5) do
not indicate such a case. The knowledge on the accident rate suggests that this situation is
unlikely to occur. In order to avoid the selection of the best model, a model of combined
forecasts was developed. Its forecasts are more probable and may thus predict the number
of persons injured in other accidents in the steel sector in Poland.

Analyzing the numerical values of the forecasts of the number of persons injured in
other accidents in 2020, a scenario of models showing a visible decline in the number of
injured persons in 2020 may be likely (Holt’s square model, Holt’s model with the trend
expiration effect in the additive and multiplicative formula, combined model). These
models show, respectively, M1 = 836, M4 = 873, M5 = 873, Mc = 888 persons injured in
other accidents. That situation is probably due to the occurrence of infections caused by
SARS-CoV-2 all over the world and in Poland, which led to production limitations and
work stoppages. For example, steel production from January to June 2020 decreased by
about 16% compared to 2019 [50]. The downward trend is also recorded in the years
2021–2022, in respect of which we do not have the necessary knowledge at present on what
the situation related to infections, restrictions, and thus the implementation of production
tasks will look like. The registered downward trend indicates the effectiveness of the imple-
mented protective prophylaxis in relation to the most common causes of accidents at work
(e.g., OHS training, shaping the health and safety culture, occupational risk assessment,
technological improvements). It may also be useful to apply the other solutions provided,
for example, in the lean manufacturing concept (e.g., 6S, TPM, OPL, VM, Kaizen) [51].

5. Conclusions

Analyzing the numerical values of the forecasts of the number of persons injured in
other accidents in 2020, a scenario of models showing a visible decline in the number of
injured persons in 2020 may be likely (Holt’s square model, Holt’s model with the trend
expiration effect in the additive, and multiplicative formula, combined model). These
models show, respectively, M1 = 836, M4 = 873, M5 = 873, and Mc = 888 persons injured
in other accidents. That situation is probablydue to the occurrence of infections caused
by SARS-CoV-2 all over the world and in Poland, which led to production limitations
and work stoppages. For example, steel production from January to June 2020 decreased
by about 16% compared to 2019 [50]. The downward trend is also recorded in the years
2021–2022, in respect of which we do not have the necessary knowledge at present on what
the situation related to infections, restrictions, and thus the implementation of production
tasks will look like.

The issue of work safety plays an important role in the functioning of any enterprise.
The relative risk of accidents in the industrial sector (including steel) in Poland is estimated
at the level of RR = 0.33. However, in other countries it is significantly lower: Latvia
(RR = 0.15), Lithuania (RR = 0.12), and Bulgaria (RR = 0.052) [52]. Therefore, the risk of an
accident at work is higher in Poland, and therefore all measures should be taken to reduce
the number of accidents at work.

This study presents the adaptation of Holt’s models to forecast the number of persons
injured in other accidents in the steel sector in Poland. The developed prognostic models
M1–M5 made it possible to prepare exante forecasts that may be subjected to an assessment
once the number of persons injured in other accidents in 2019–2022 is published. The
obtained forecast values provide significant information for the managerial staff. The
developed models show the continuation of the downward trend in 2019–2022, although
significant decreases in the number of persons injured in other accidents are also revealed—
model (M1) in 2022. Notably, the other models (M2–M5) do not indicate such a case. The
knowledge on the accident rate suggests that this situation is unlikely to occur. In order to
avoid the selection of the best model, a model of combined forecasts was developed. Its
forecasts are more probable and may thus predict the number of persons injured in other
accidents in the steel sector in Poland.
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