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Abstract: This study utilized the multi-channel convolutional neural network (MCNN) and applied
it to wind turbine blade and blade angle fault detection. The proposed approach automatically and
effectively captures fault characteristics from the imported original vibration signals and identifies
their state in multiple convolutional neural network (CNN) models. The result obtained from each
model is sent to the output layer, which is a maximum output network (MAXNET), to compute the
most accurate state. First, in terms of wind turbine blade state detection, this paper builds blade
models based on the normal state and three common fault types, including blade angle anomaly,
blade surface damage, and blade breakage. Vibration signals are employed for fault detection. The
proposed wind turbine fault diagnosis approach adopts a triaxial vibration transducer and frame
grabber to capture vibration signals and then applies the new MCNN algorithm to identify the state.
The test results show that the proposed approach could deliver up to 87.8% identification accuracy
for four fault types of large wind turbine blades.

Keywords: multi-channel convolutional neural network; wind turbine; fault detection; triaxial vibration

1. Introduction

As wind turbines are exposed outdoors for long periods, there is a high probability that
their parts will become aged and worn after long-term operations. According to historical
data, a number of wind turbine damage incidents have been recorded so far [1–13]. Common
wind turbine faults include engine room overtemperature, gearbox damage, blade break-
age, and bearing damage. However, wind turbines must often be removed from service
for a long time when key components become faulty, thereby reducing their green power
generation efficiency. A literature review found that most prior studies on wind turbine
troubleshooting focus on wind turbine gearboxes [1,2], bearings [3–7], generators [8,9], and
blades [10–15]. Malik et al. [12] proposed a wind turbine state monitoring approach based
on an artificial neural network (ANN) and empirical mode decomposition (EMD) and
modeled a wind turbine by applying MATLAB/Simulink. This approach was applied to
analyze whether wind turbines were balanced and stable by analyzing the blades, engine
rooms, tails, rotors, and other aerodynamic parts. Further, Yang et al. [13] proposed a blade
vibration dynamics and frequency analysis approach based on frequency indexes, which
was applied to low-speed wind turbine blades made of 29-inch glass fibers. When cracks
are present on a blade, this approach can clearly identify their positions. Sahoo et al. [14]
proposed the use of machine-learning algorithms, such as k-nearest neighbor (KNN), sup-
port vector machine (SVM), and decision tree, together with accelerometers for capturing
vibration signals at different speeds and for the fault detection of wind turbine blades.
The fault types were a healthy blade, a bent blade, a cracked blade, and an eroded blade.
According to the results, the identification accuracy of SVM was the highest (87%), followed
by the decision tree (82%) and KNN (80.8%). Liu et al. [15] proposed a method combining
the deep belief network (DBN) with batch normalization for the vibration signal fault
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detection of wind turbine gearboxes and stated its advantage of avoiding overfitting of
the training model. The fault types were normal, wear, and tooth broken. According to
the results, the identification accuracy of this method (Normal: 100%; Wear: 99%; Tooth
broken: 98%) was higher than that of the BPNN, SVM, and Softmax functions. Yu et al. [16]
proposed a new fast deep graph convolutional network (FDGCN) to carry out the wavelet
packet transform (WPT) on the original vibration signals of wind turbine gearboxes and
then transformed the signals from the time domain features into graphs, which were input
into the FDGCN for the gearbox vibration signal analysis. The fault types were normal,
chipped tooth gear, eccentric gear, missed tooth gear, ball fault on a bearing, inner raceway
fault on a bearing, outer raceway fault on a bearing, and composite fault on a bearing.
According to the results, the accuracy rate of this method was 93.09%, which was higher
than WDCNet (87.66%), LeNet (88.33%), ResNet (90.43%), and GCNet (90.25%). Firuzi
et al. [17] transformed phase-resolved partial discharge (PRPD) images into grayscale
images to express different partial discharge types, which were followed by feature ex-
traction employing the traditional histogram of oriented gradients (HOG) method and
the local binary pattern (LBP) method. Finally, the SVM classifier was utilized to identify
partial discharge types. While most studies focus on cracks on the blade surface, few
have proposed a wind turbine simulation and detection platform built based on the IoT
and AI for blade pitch anomalies (mechanical failure) and blade breakage. Hu et al. [18]
proposed a multichannel 2D convolutional neural network (CNN) model that included
three parts of the 2D CNN architecture in parallel with a fully connected hidden layer to
classify 3D task-based functional magnetic resonance imaging (fMRI) data. The method
transforms 3D fMRI images into multichannel 2D (M2D) images for learning with an M2D
CNN network and integrates multichannel information from three 2D CNNs. Schwenk
et al. [19] proposed an adaptive boosting method to enhance the performances of neural
networks for auto-associative (Diabolo) networks and multi-layer neural networks (MLPs)
on character recognition tasks. The results showed that the weighted training of the adap-
tive boosting operates well for MLP but needs more training epochs. Saghafinia et al. [20]
presented an online trained fuzzy logic controller (FLC) and adaptive continuous wavelet
transform (CWT) high precision fault detection for a three-phase squirrel cage induction
motor (IM) with broken rotor bars. The results found that the method can accurately detect
IM faults based on the motor’s current signal at different fault and load conditions. Juan
et al. [21] proposed a novel data-driven diagnosis methodology based on autoencoder deep
feature learning (unsupervised neural network) used to diagnose and identify bearing
faults, including metallic, ceramic bearings, and hybrid in electromechanical systems. The
approach can overcome the challenge of noise immunity and consider it as a part of the
condition-monitoring strategies. Jiang et al. [22] introduced a new feature representation
learning approach called the stacked multilevel-denoising autoencoders to learn robustly
and distinguish fault feature expressions for feature extraction and classification of wind
turbine gearbox fault diagnosis. The results showed that the method could improve the
conventional stacked denoising autoencoder and achieve good diagnosis accuracies.

Therefore, this study constructed blade models for wind turbine blade state detection
based on the normal state and three common fault types, including blade angle anomaly,
blade surface damage, and blade breakage. This study built an intelligent detection system
for wind turbines based on a multi-channel convolutional neural network (MCNN) and
designed wind turbine blade models based on four states of fiber-reinforced plastic (FRP)
blades. Data were captured using an NI PXI high-speed data acquisition (DAQ) instrument.
Wind turbine troubleshooting was performed based on data processing and MCNN. The
proposed wind turbine blade fault characteristic learning model was expected to identify
blade fault types accurately so that early maintenance and preventive measures could be
taken to prevent accidents. The proposed MCNN model is an improvement on traditional
CNN due to the integration of multiple CNN models. It implements fault diagnoses based
on different input data and can identify the state type in multiple CNN models while
directly and automatically generating characteristic diagrams from the original vibration



Sustainability 2022, 14, 1781 3 of 17

signals. The proposed MCNN can deal with different cases of wind turbine models with
an unknown nonlinear input and under unknown wind velocity conditions. It has a
multi-channel learning capability that provides two advantages over traditional CNN:
(1) the layered learning structure based on multiple convolutional and pooling layers can
effectively identify fault characteristics; and (2) multi-channel learning provides a better
identification capability for different data. Therefore, the proposed approach could improve
the fault identification rate.

2. System Architecture

The proposed approach aimed to detect the fault types of wind turbine blades and
blade angles. Figure 1 shows the architecture of the proposed system. The wind turbine is
mainly driven by a servo motor to control the situation of wind rotating the blades (the
wind turbine operating speed is 12 rpm), and a triaxial vibration sensor (KS943B.100) was
installed on the rotor bearing near the blades to measure their vibration signals. Wind
turbine blade fault types were built based on the normal state, blade angle anomaly, blade
surface damage, and blade breakage. Front-end vibration signals were captured and then
imported through the signal processing unit to the MCNN to generate signal characteristic
diagrams and identify the fault types. The following section explains the capture of the
wind turbine vibration signals and the fault modeling.
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Figure 1. Architecture of the proposed system.

2.1. Capture of Wind Turbine Blade Fault Signals

To detect abnormal vibration phenomena caused by wind turbine blade faults, this
paper developed a human–machine interface system for wind turbine vibration analysis
and detection in LabVIEW, as shown in Figure 2. Signals were first converted into voltage
signals through a triaxial vibration transducer. The vibration signals were then sent to the
human–machine interface by the NI PXI high-speed data acquisition instrument, and lastly,
the MCNN identified the blade and blade angle.

2.2. Wind Turbine Blade Fault Modeling

Dao et al. [23] pointed out that after running in a harsh environment for an extended
period, wind turbine blades may be subject to surface damage and breakage, and the blade
angle system may become abnormal due to mechanical fatigue. To this end, this paper
built wind turbine blade models (State 1) based on the normal state and three common
blade faulty state models (State 2 to State 4) to discuss the vibration signals generated when
wind turbine blades are in different states. Further, a signal processing and conversion
system was used to filter the vibration signals. The blades in this paper were customized by
the wind turbine manufacturer according to actual commercial wind turbines. The blades
were made of fiber-reinforced polymer (FRP), had a length of 70 cm, and were solid inside.
Lastly, MCNN was used to identify the state. The built wind turbine blade models are
described in the following subsections.
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2.2.1. Normal Wind Turbine Blades (State 1)

Currently, most wind turbine manufacturers adopt composite materials to manufac-
ture wind turbine blades and use FRP to manufacture the shells. Therefore, this paper
employed wind turbine blades made of FRP, as shown in Figure 3. These blades were
70 cm long and had an efficient rotating blade shape. Figure 4 shows blades installed on a
wind turbine and run at a blade angle of 30◦.
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2.2.2. Blade Angle Anomaly (State 2)

Wind turbines must often cope with high wind loads and asymmetric wind directions.
After a wind turbine runs for a long period, the blade angle system will become worn,
and parts may be damaged [24,25]. That is, if a wind turbine runs outdoors for a long
period, the blade angle will become abnormal, or the angle will become unbalanced due to
mechanical fatigue. Therefore, defects caused by angle system faults were constructed and
analyzed in this paper. Current blade angle systems are designed using speed-varying rotor
and collective pitch control (CPC) technologies. However, these technologies contribute to
limited improvement. If the blade angles of three blades on a wind turbine run differently
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for a long period, the wind turbine system will become imbalanced. As a result, the system
may be damaged, and the wind turbine could even collapse. Therefore, in this paper, one
blade angle of the three blades was adjusted to 45◦ to simulate the blade angle control and
generate and record vibration signals when one blade angle failed to be synchronized, as
shown in Figure 5.
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2.2.3. A Blade Suffering a Lightning Strike (State 3 and State 4)

As wind turbines are often erected in open areas, there is a high probability that they
will suffer lightning strikes. According to [26–28] and IEC 61400-24 [29], the part of a wind
turbine most likely to suffer a lightning strike is its blades. A lightning strike will severely
damage the blade structure and surface materials, resulting in high repair costs. According
to the statistics in [30], the front and rear parts of a blade are most likely to be damaged.
Meanwhile, based on an analysis of the number of blades damaged by a lightning strike,
one blade is highly likely to be damaged. Therefore, this paper analyzed models (State 3
and State 4) simulating the surface damage and breakage of one blade.

According to the investigation of a large-scale wind turbine blade failure report [26],
it is pointed out that blade surface cracks and breakages often occur on the front part of
a blade. Therefore, this study employed 70-cm blades for modeling and made surface
damages at an 8.4 cm position. Figure 6 shows the model of the surface damage, and
Figure 7 shows the broken blade.
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3. Proposed Fault Diagnosis Algorithm

During blade state detection, the vibration signals measured by vibration sensors will
inevitably be interfered with by the surrounding environment or affected by the detection
instruments. All of these will add difficulty to the detection of faults. Therefore, a front-end
signal processing unit was adopted to filter noise interference and improve signal analysis
and identification. The proposed MCNN was used to import the triaxial vibration signals
of the normal state and three faulty states into the system to generate three sets of signal
characteristic diagrams for different blade states, and then MCNN identified the states.
Figure 8 shows the wind turbine fault diagnosis process. The following explains CNN
and MCNN.
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3.1. Convolutional Neural Network

In recent years, CNN has been widely applied to signal processing and image analysis
in areas such as face recognition [31], medical imaging [32], and troubleshooting [33], and
it has shown good performance. Classical CNN models include LeNet, AlexNet, VGG,
GoogLeNet, and ResNet. In particular, LeNet [34] is considered the ancestor of the CNN
models, as all CNN models have evolved from the LeNet architecture. Figure 9 shows the
architecture of LeNet. The main architecture of a CNN model mainly comprises multiple
convolutional layers, pooling layers, fully connected layers, and activating layers. The
following introduces the layers in detail.
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3.1.1. Convolution Layer

Convolutional layers in the CNN architecture are mainly responsible for capturing
characteristics. They execute convolution computations through convolution kernels (also
called filters) of different sizes and apply spatial filtering to extract or enhance the character-
istics of images. The convolution kernel size has a direct effect on the characteristic detection
performance. If the size of a convolution kernel is insufficient, the image identification
performance may be poor. Meanwhile, if the size of a convolution kernel is excessively
large, the time cost of computation will be increased. Generally, a 3 × 3 convolution kernel
is employed for convolution computations of 7 × 7 images.

3.1.2. Pooling Layer

After an image passes through the convolutional layers and its characteristics have
been obtained, the characteristics are added to the pooling layers to effectively reduce the
size of the characteristic parameters and maintain their homogeneity. This can also simplify
the computation over the network and make the pooled information focus on whether
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consistent characteristics exist in the image. Commonly-used pooling methods include
max pooling and average pooling.

3.1.3. Fully Connected Layer

The architecture of the fully connected layers represents an artificial neural network
comprised of flat, hidden, and output layers. These layers work to obtain the convolution
computation and pooling results and adjust the errors between inputs and outputs through
backpropagation. Finally, they employ the results to classify the images.

3.1.4. Activation Layer

The activation layers work to enhance the nonlinearity of the network. Commonly
adopted activation functions are Sigmoid, Hyperbolic Tangent (tanh), Rectified Linear Unit
(ReLu), and the recently-proposed Swish. Sigmoid was widely applied in the early days.
However, the saturation phenomenon occurs when its variables are too small or too large,
which likely results in the absence of gradient during backpropagation; hence, the network
parameters cannot be effectively trained. In addition, complex computations will extend
the network training duration.

3.2. Multi-Channel Convolutional Neural Network

Multi-channel convolutional neural network (MCNN) is an algorithm proposed in
this paper and can be applied to fault diagnoses with multiple inputs. Unlike traditional
approaches, it can identify the state type in multiple CNN models while directly and
automatically generating characteristic diagrams from the original vibration signals. The
MCNN then sends the identification result for each model to the back-end MAXNET for
computation. Multiple signal sets can be input and generate a characteristic diagram to
produce multiple CNN models at the input layer, to be classified by MAXNET. The design
and parameters selection of MCNN, including layers, convolutional kernel size, activation,
and pooling, are in Table 1.

Table 1. The design and parameters selection of MCNN.

Channel Layers of CNN Convolutional
Kernel Size Activation Pooling

1st CNN channel
XY axis 11 3 × 3 ReLu Max pooling

2nd CNN channel
YZ axis 11 7 × 7 ReLu Max pooling

3rd CNN channel
XZ axis 11 7 × 7 ReLu Max pooling

The state type selected by most frameworks is determined as the final identification
result. The following subsection explains the architecture of MCNN and the generation of
signal characteristic diagrams.

3.2.1. MCNN Architecture

The MCNN-based modeling proposed in this paper is an improvement over CNN
through the integration of multiple CNN models. It executes troubleshooting based on
different input data. Its architecture can be divided into three parts. Part 1 is the input
layer, where different types of data are imported into the algorithm, and multiple signal
characteristic diagrams are automatically generated. Part 2 involves identification and
diagnosis, in which different types of designed signal characteristic diagrams are employed
to train CNN models. The architecture of the network model mainly comprises multiple
convolutional layers, pooling layers, fully connected layers, and activating layers. Lastly,
Part 3 involves diagnosis result classification. In this paper, multiple signal characteristic
diagrams generated on the front end were imported into the trained CNN models for
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identification. The identification results of these models were then summarized by the
system, and MAXNET calculated the most accurate identification result.

3.2.2. Signal Characteristic Diagrams of MCNN

The proposed MCNN in this study is a neural network developed for multiple types
of inputs. Captured signals are filtered by the back-end signal processing unit before
being imported. First, the data of the original signals of each axis are imported into the
MCNN, which then identifies the data types and generates a corresponding type of signal
characteristic diagram, as shown in Figure 10. Figure 10a shows the signal characteristic
diagram after the data of the original signals of the X-axis and Y-axis are imported into the
MCNN. Figure 10b shows the signal characteristic diagram after the data of the original
signals of the X-axis and Z-axis are imported into the MCNN. Figure 10c shows the signal
characteristic diagram after the data of the original signals of the Y-axis and Z-axis are
imported into the MCNN. Lastly, different types of signal characteristic diagrams are
learned and identified and signal characteristic diagrams of different types corresponding
to the number of imported data types can be generated. The number of types of signal
characteristic diagrams to be generated by the system is calculated in Equation (1):

N = {w
2 =

w!
2!(w− 2)!

(w ≥ 2) (1)

where N represents the number of types of signal characteristic diagrams; w represents the
number of input data types.
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Figure 10. Signal characteristic diagrams generated by MCNN for each axis. (a) Signal characteristic
diagram for the X-axis and Y-axis; (b) Signal characteristic diagram for the X-axis and Z-axis; (c) Signal
characteristic diagram for the Y-axis and Z-axis.

Therefore, the original signals measured by the three axes (X-axis, Y-axis, and Z-axis)
are input into the MCNN and calculated by Equation (1) to obtain the paired data (X-axis
and Y-axis, X-axis and Z-axis, and Y-axis and Z-axis). The original signals of any two kinds
of data are then input into the same single image by the plot command of MATLAB, and
the signal characteristic diagrams are drawn, as shown in Figure 10.

3.2.3. MCNN Diagnosis Result Classifier

The diagnosis result classifier adopted in this paper was the adaptive resonance
theory (ART) artificial neural network [35]. At the input layer of the ART network, the
identification results of multiple CNN models are imported. Input data is sent to the output
layer through the neural population and weights. On the other hand, the ART output
layer employs a maximum output network (MAXNET). Neurons on the ART output layer
feed their respective signals back to enhance their signals while sending a signal that can
relatively suppress other neurons. Through the competition in the network, the output
layer can diagnose the most accurate fault type. MAXNET is a single-layer artificial neural
network proposed by Lippmann in 1987 that can inhibit the feedback structure, and it has
a lateral inhibition mechanism that uses a neuron (each value to be input for comparison)
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to inhibit other neurons. In this paper, the original measurement signals measured by
the three axes (X-axis, Y-axis, and Z-axis) were input into the MCNN and calculated by
Equation (1) to obtain three sets of data (X-axis and Y-axis, X-axis and Z-axis, and Y-axis and
Z-axis). There were three CNN models, and the identification results of these CNN models
were input to MAXNET for lateral inhibition calculation [36], as shown in Equation (2),
in order to select and determine the final output identification results. Next, the original
blade vibration signals that were actually measured at the wind field could be input into
the trained MCNN model for identification.

Wij =

{
1, i = j
−ε, i 6= j, ε < 1/M, and i ≥ 1, j ≤ M

(2)

where Wij is the weight of MAXNET; i and j are nodes of MAXNET; M is the number of
classes, and all weights from each node to itself are 1. Weights between nodes are inhibitory,
with a value of −ε where ε < 1/M.

4. Results
4.1. Wind Turbine Blade and Blade Angle Signal Measurement

In this paper, the wind turbine blade states included normal, blade angle anomaly,
blade surface damage, and blade breakage. During state detection, the wind turbine blades
rotated at a speed of 12 RPM. Vibration signals were measured every 50 ms. The sampled
frequency was 51.2 kS/s. Each set of data had a length of 51,200 points, and 250 sets of
data of the vibration signals for each of the four blade state types were measured and
obtained. The vibration signal and the different faults are shown in Table 2. Therefore, a
total of 1000 sets of data were obtained. The wind turbine signals were measured using a
triaxial vibration transducer with a high-speed data capture card and were filtered by a
signal processing unit. The filtered signal data were imported into the MCNN for learning
and identification. Figures 11–14 show the original vibration signals generated during
the running of the wind turbine blades and the vibration signals filtered by the signal
processing unit.

Table 2. The vibration signal and the different fault types.

Fault Type Description

State 1 Normal wind turbine blades
(The angle of each blade is 30◦)

State 2 Blade angle anomaly
(One of the blades has an angle of 45◦)

State 3 A blade suffering a lightning strike
(Surface damages at an 8.4 cm position)

State 4 Broken blade
(The 8.4 cm front part of a blade was cut off)

Vibration Signal Information Description

Wind turbine operation speed 12 RPM
Vibration signal acquisition time 50 millisecond

Sampling frequency 51.2 kS/s
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4.1.1. Model of the Turbine Blades in the Normal State

Figure 11 shows the triaxial vibration signals in the normal state. Normally, slight
vibrations would occur during the running of the engine room. Therefore, the measured
signals indicated that the wind turbine was in its normal state.

4.1.2. Model of the Wind Turbine Blades in the Blade Angle Anomaly State

Figure 12 shows the triaxial vibration signals in the blade angle anomaly state. By
comparing the signals with those in the normal state, it could be found that the vibration
signals on the X-axis greatly varied with the signals on the other two axes. The measured
highest vibration amplitude was about 0.15 G.

4.1.3. Model of the Wind Turbine Blades in the Blade Surface Damage State

Figure 13 shows the triaxial vibration signals in the blade surface damage state. It
could be found that the vibration signals on the Z-axis greatly varied with the signals on
the other two axes. The measured highest vibration amplitude was about 0.38 G.

4.1.4. Model of the Large Wind Turbine Blades in the Blade Breakage State

Figure 14 shows the triaxial vibration signals in the blade breakage state. It could be
found that the vibration signals on the Z-axis greatly varied with the signals on the other
two axes. The measured highest vibration amplitude was about 0.48 G.

4.2. MCNN Identification System

This paper proposed the MCNN algorithm, which was an improvement over CNN
as it could read the vibration signals on the X-axis, Y-axis, and Z-axis at the same time for
learning and identification. A total of 3000 sets of vibration data were generated during the
running of the measured wind turbine blades. The X-axis, Y-axis, and Z-axis accounted
for 1000 sets of data, respectively. Each axis had four blade state types, and each type
had 250 sets of data. First, the triaxial vibration signals were imported into the MCNN
to generate three types of signal characteristic diagrams: XY, XZ, and YZ. Each type had
250 signal characteristic diagrams. For each type, 150 diagrams were randomly selected for
training, and the remaining 100 were employed as test samples for MCNN learning and
identification. The following explains the signal characteristic diagrams and identification
results.

4.2.1. Signal Characteristic Diagrams of MCNN

Vibration signals were measured in four wind turbine blade models during the running
of the wind turbines and were then captured and filtered by the back-end signal processing
unit. Then, the X-axis, Y-axis, and Z-axis data were imported into the MCNN to generate
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three types of signal characteristic diagrams (XY, YZ, XZ), as shown in Figures 15–17. By
observing the signal characteristic diagrams generated in different wind turbine blade
states, it could be found that the points on the signal characteristic diagrams of different
states were dispersed in different positions and at different densities. Therefore, based on
this feature, MCNN was applied for training and identification.
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4.2.2. MCNN Identification Results

To train CNN models suitable for identifying the wind turbine blade state and blade
angle, this paper adopted the XY, YZ, and XZ signal characteristic diagrams generated by
MCNN to determine the optimal CNN model for each type through different numbers of
layers, convolution kernel sizes, the activation function, and the pooling method. Then, the
three models were integrated into the MCNN model. The test environment was MATLAB
2019b with an Intel Core (TM) i7-9700 CPU@3.0GHz processor, an NVIDIA GeForce RTX
2080 SUPER graphics card, and the Windows 10 operating system.

Figure 18 shows the MCNN model designed in this paper for wind turbine blade
state identification. There were a total of three CNN models, and each model had five
convolutional layers, five pooling layers, one fully connected layer, the ReLu activation
function, and max pooling. The three CNN models only had different convolution kernel
sizes. CNN model 1 had a 3 × 3 convolution kernel size, CNN model 2 had a 1 × 1 convo-
lution kernel size, and CNN model 3 had a 7 × 7 convolution kernel size. Lastly, the three
models were integrated into the MCNN model and used for wind turbine troubleshooting,
and the results showed it had up to an 87.8% identification accuracy.

The original signals measured by the three axes were input into the MCNN to gain
the paired data and CNN models, and the identification results of these CNN models were
input to MAXNET for lateral inhibition calculation to determine the final output results.
According to the test results of this study, the recognition accuracy rate of the proposed
method was as high as 87.8% after filtering, whereas the recognition accuracy of the original
signal without filtering was only 81.3%, meaning that the filtering signals performed better
at enhancing recognition accuracy. In this study, the filtering signals were be used for
analysis. As listed in Table 3, after the three types of signal characteristic diagrams were
imported into the MCNN for identification, the identification accuracy reached up to 87.8%,
representing the highest level using this approach. The accuracy for the XY vibration
signals in CNN was 86%, while that for the XZ vibration signals was 82%. The accuracy for
YZ vibration signals in CNN was 84%. In addition, this paper used HOG with BPNN, SVM,
and KNN for image feature extraction and identification. For HOG+BPNN (XY, XZ, and
YZ), the recognition accuracy was 77.5%, 52%, and 65.25%, respectively. For HOG+SVM
(XY, XZ, and YZ), the recognition accuracy was 78.75%, 77.25%, and 78%, respectively.
For HOG+KNN (XY, XZ, and YZ), the recognition accuracy was 77.5%, 78%, and 77%,
respectively. In terms of the average recognition accuracy, MCNN had an 87.8% average
recognition accuracy, which was the highest among these detection methods, followed by
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91.9% for CNN, 77.83% for HOG+SVM, 77.5% for HOG+KNN, and 64.92% for HOG+BPNN.
Regarding the average recognition time, while traditional CNN and HOG+BPNN could
both quickly complete classifier training, CNN could complete the average recognition
time in 1.73 s, while HOG+BPNN required only 1.01 s to complete the recognition, which
was the fastest among these methods. HOG+KNN and HOG+ SVM could respectively
complete the recognition in 2.98 s and 3.21 s, which was the most time-consuming. MCNN
required 2.02 s to complete the recognition. In view of the above, the accuracy of using
traditional detection methods and CNN was below that of MCNN. Therefore, for the blade
states detected in this paper, vibration signals must be detected on three axes instead of
only one. The proposed algorithm not only had the highest accuracy compared with the
traditional methods but also required only 2.02 s for identification.
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Table 3. Comparison of recognition performance between MCNN and traditional detection methods.

Methods
Vibration

Signals
(axis)

Training Time
(second) Accuracy (%) Average

Accuracy (%)
Recognition Time

(second)

Average
Recognition Time

(second)

MCNN X, Y, Z 100 87.8 87.8 2.02 2.02

CNN X, Y 100 86

84

1.56

1.73CNN X, Z 100 82 1.69

CNN Y, Z 100 84 1.95

HOG+BPNN X, Y 10,000 77.5

64.92

1.02

1.01HOG+BPNN X, Z 10,000 52 1

HOG+BPNN Y, Z 10,000 65.25 1

HOG+SVM X, Y X 78.75

77.83

3.36

3.21HOG+SVM X, Z X 77.25 2.94

HOG+SVM Y, Z X 78 3.32

HOG+KNN X, Y X 77.5

77.5

2.95

2.98HOG+KNN X, Z X 78 2.92

HOG+KNN Y, Z X 77 3.08

The recognition result of wind turbine blades is displayed in a confusion matrix, as
shown in Figure 19, where the x-axis is the actual fault type, and the y-axis is the predicted
fault type. The green and red grids of the confusion matrix indicate the number of accurate
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recognitions and the number of misrecognitions, respectively. Among the 100-test data
of type 3, the proposed method identified 71 data as type 3, 1 data as type 2, and 28 data
as type 4, so the recognition rate of type 3 was 71%. Similarly, the recognition of type 1
and type 4 of the proposed method were all 100%, and that of Type 2 was 80%. Finally, the
value of green grids was divided by the sum of the green and red grid values, and the total
recognition accuracy rate was 87.8%.
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5. Conclusions

This paper developed a wind turbine blade and blade angle troubleshooting system,
which can be applied to intelligent wind turbine blade state detection. Further, this paper
selected three common blade and blade angle fault types according to the statistics of prior
studies. Models were built based on the normal state and the three faulty states. Signals
measured on any two axes of a triaxial vibration transducer were combined and adopted
to generate signal characteristic diagrams. Meanwhile, signals measured on any axis of
a triaxial vibration transducer were imported into CNN. By comparing the identification
accuracy of the two, it was found that the proposed approach had an accuracy up to 87.8%,
demonstrating that it can be adopted for effective troubleshooting of wind turbine blade
and blade angle. In the future, the proposed approach could also be applied in other electric
power and energy-related fields, such as generators, bearings, gearboxes, power capacitors,
gas-insulated switchgear (GIS) switches, lightning arrestors, transformers, and motors.
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