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Abstract: To identify and screen the risk scenarios for the navigation risk of intelligent ships, the
analysis and evaluation of navigational risks were performed in this study. Risk scenarios were de-
veloped and evaluated by mapping the hierarchical holographic modeling (HHM) into risk filtering,
ranking and management (RFRM). In detail, considering the insignificant influences of some factors
on navigational activities, risk factors were filtered and ranked using the RFRM model. Seven final
factors were successfully determined, including traffic flow, navigation environment understand-
ing, ship–shore interaction capabilities, target recognition capabilities, communication equipment
reliabilities, professional skills, and situation judgments. The results indicated that cargo security
can be guaranteed by following navigational risk identification and screening steps, and thus our
findings provide theoretical guidance for the dynamic management of maritime organizations and
ship companies. In addition, the proposed methodology is desirable for making predictions on
maritime traffic risks.

Keywords: intelligent ships; risk identification; risk scenarios; HHM-RFRM

1. Introduction

The rapid development of artificial intelligence in the maritime industry has promoted
the probability of operating ocean-going intelligent ships. According to documents issued
by the Maritime Safety Committee (MSC) affiliated with the International Maritime Orga-
nization (IMO) [1–3], it can be reasonably speculated that intelligent ships would play an
important role in the sustainable development of the maritime industry. Obviously, the
capacity for the autonomous sailing of intelligent ships has the advantages of high effi-
ciency, energy saving and security. However, the safety issues associated with intelligent
ships challenge their application, which has to be addressed for the sustainable develop-
ment of artificial intelligence in the maritime industry. As early as 2006, “e-Navigation”
was presented by the IMO, indicated as the birth of intelligent ships [4]. Later, in 2007,
the new generation of ships, named unmanned surface vessels (USVs), made their first
appearance on the 98th MSC [5]. However, real-time information interactions between
shore-based stations and USVs present a serious challenge. When the sailing distance is
beyond the influence of a navigational communication system, the power of the USVs
would inevitably be lost. Subsequently, in 2018, the USV was further redefined as the
Maritime Autonomous Surface Ship (MASS) on the 99th MSC, able to sail autonomously
and receive/send information from/to stations [6]. According to the automation levels of
an operating system, the controlled performance of ships is divided into four levels. On the
first level, the ship operating system is directly controlled by crews, and only a small part
of the systems can run automatically. On the second level, the main system of the ship
can be operated automatically or controlled remotely by crews, while the failure diagnosis
depends on manual operations; as a result, some extra crews are necessary to guarantee
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navigational safety. On the third level, related operators are able to keep away from the
ship and make strategic decisions remotely. The desire of the final level is to remove all
manual operations on board the ship, in which case, navigational activities are completely
autonomic, and the attitude adjustments and decision-making of collision avoidance can
be performed by the ship’s intelligent system. The process of ship automation is essentially
the process of intelligent development [7]. At present, the USV system is widely studied
and applied, corresponding to the mentioned third and fourth intelligence levels. With this
background, navigational risk identification and screening of intelligent ships have been
researched in the present study.

Navigational safety is one of the important contents of intelligent ships’ develop-
ment and arouses great concerns from researchers [8]. Extensive studies associated with
navigational risk identification and screening of intelligent ships are presented both the-
oretically and practically [9]. To be specific, the work from Wrobel et al. [10] showed
that a navigational risk identification model can be established using human factor anal-
ysis and hypothesis analysis. According to more than 100 reports of ship accidents, the
MASS is selected as the accident objective, and the accident conditions are simulated.
Utne et al. [11] use system theory process analysis (STPA) to identify and analyze hazards,
and the results show that risk identification based on the Bayesian belief network (BBN)
is effective. Bolbot et al. [12] proposed a new network security evaluation method of a
ship system, where the analysis procedure of the initial network risks was enriched greatly.
The mentioned procedure supported the identification and evaluation of the network at-
tack scenarios. These datasets can be used to identify and evaluate the network risks for
intelligent ship navigation or ship propulsion systems of inland waterways. By utilizing
VBPO-HSET techniques, Fan et al. [13] established a navigational risk model with high
precision, and analyzed the ship safety via four navigation conditions and four risk types
of the MASS case. By combining with the STPA and the SynSS, Zhou et al. [14] developed a
new safety-comprehensiveness method (STPA-SynSS) to identify navigational risk, where
decision-making can be employed to eliminate and decrease hazards, and dangerous factors
can be tracked continuously and managed perfectly in a closed-loop. However, this cannot
overcome the difficulties of data shortage for identifying the navigational risks of cargo
ships. Data-mining technology and hypothesis analysis were employed by Yao [15] for the
navigational risks of cargo ships based on traditional ship accident reports. The naviga-
tional risks’ early warning is implemented by an intelligent evaluation model. Aiming at
the problem related to navigational safety of intelligent ships, much research has been
performed at the Dalian Maritime University and other institutions, including the key
technologies of shore-based monitoring and warning [16–18], detection and recognition
of maritime perils [19–21], and navigational risk evaluation for unmanned vehicles under
complex sailing conditions [22–24]. Recent advances in intelligent ships have been obtained
to provide an important guidance for the development of intelligent systems.

Compared with the traditional freight transportation, intelligent ships have more
advantages, but the potential problems related to navigational safety cannot be ignored.
Recent studies associated with navigational risks of intelligent ships are mainly focused
on fragmented aspects, such as optimal control for the navigational trace of intelligent
ships [25], automatic route design [26], and risk decision [27]. Few studies have been
implemented to evaluate the risks involved in the shipping operations for intelligent
ships, which are essential for the industrial operation of intelligent ships. Therefore, in the
present study, the risk scenarios involved in the shipping operations for intelligent ships are
developed and evaluated at a macroscopic level. Firstly, hierarchical holographic modeling
(HHM) and the risk filtering, ranking and management framework (RFRM) were combined
to establish a navigational risk identification model for intelligent ships. Secondly, the
navigational risk factors were identified and screened using the proposed model, and
the key factors were obtained by filtering data. Finally, the results provide theoretical
foundation for navigational safety, risk early warnings, and management measures of
intelligent ships.
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2. Principle for Mapping HHM into RFRM
2.1. HHM and RFRM

The HHM method was proposed by Haimes in 1981, and was regarded as a systematic
and comprehensive methodology [28,29]. The purpose is to capture and demonstrate
internal features and essences from different aspects, perspectives, views, dimensions, and
hierarchies of one system. For large-scale, multi-objective and multi-level risks, the HHM
method can solve problems by using multi-view and omnidirectional studies, and also
analyze the sub-scenario separated from the whole in different views. Around 1991, the risk
ranking and filtering (RRF) method was developed by the Center for Risk Management of
Engineering Systems (CRMES) [30]. On this basis, the RFRM model was further established
to meet the requirements of practical applications. Eight stages of this model are stated as
follows: scenario recognition, scenario preliminary filtration, double filtration standard,
multi-standard evaluation, quantitative rating, risk management, evaluation for filtering
scenario, and actual scenario feedback. Note that the foregoing five stages can perform
risk identification and filtration, and the last three stages can achieve risk management,
feedback and modification. The objectives of this study were to identify and filter the key
risk factors for the navigational safety of intelligent ships corresponding to the foregoing
five stages, which are listed as follows:

(1) Scenario recognition: The different risk scenes are described by generating the HHM
model for ship systems;

(2) Scenario preliminary filtration: This stage is achieved by filtering the risk scenes in
above stage. The decision-maker provides primary evaluation based on literature
reading and expert experience;

(3) Double filtration standard: First, the irrelevant risks are defined qualitatively ac-
cording to the results and possibilities from the stage 2; then, the irrelevant risks are
filtered based on the risk filtration matrix; finally, the sorting operation of effective
risks is performed to improve the accuracy in the next stage;

(4) Multi-standard evaluation: For each risk scene, the evaluation should simultaneously
consider results and possibilities of risk, reducibility, robustness and redundancy [31].
This stage focuses on measuring the risk factors’ ability of defeating the defense
system, where the rest risk scenes can be evaluated reasonably;

(5) Quantitative rating: A quantitative risk matrix is employed to evaluate the risk defined
in stage 4, and the evaluation rank of risk scenes is further presented to identify the
key risk factors.

2.2. Analysis for Risk Scenario

In 1981, Kaplan and Garrick [32] proposed the concept of risk scene generation to
explain the definition of three sets, including risk scenario, occurrence probability, and
damage degree. In general, the risk set is a complex multivariate set which cannot be
represented as a number or a vector. The risk Rrisk can be defined as:

Rrisk = {(Si, Pi, Xi)}c (1)

where Si is the risk scenario; Pi is the occurrence possibility of risk; Xi is the damage degree;
the subscript c is the risk set and represents a complete set containing all possible risk
scenarios (or all important risk scenarios). On this basis, the system normal scenario S0
is defined, which conforms to the actual plan. The risk scenarios S1 are evolved from the
normal scenarios and widely used in risk identification and evaluation.

The further development of risk scenarios provides basic platform for the risk view
construction. The risk views have evolved in various ways depending on the specific system
scene. There are four kinds of risk views in engineering: analysis view from the shore-
based operator (P); analysis view from the ship (S); analysis view from the environment (E);
analysis view from the management (M). These risk views have a significant effect on the
influence degree, occurrence probability and damage degree of the ship risk. Assuming that
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all systems’ risk scenarios are finite, A is defined as an ordinal set of the risk set {Si}.
To explain conveniently, the constraint condition can be described as:

Rrisk = {(Sa, Pa, Xa)}c, a ∈ A (2)

The risk views are constructed as:

RP = {Si, Pi, Xi} ∧ aP ∈ A
RS = {Si, Pi, Xi} ∧ aS ∈ A
RE = {Si, Pi, Xi} ∧ aE ∈ A
RM = {Si, Pi, Xi} ∧ aM ∈ A

 R = {Si, Pi, Xi}c (3)

In general, three properties of the risk set {Si} for the risk analysis are summarized
as follows:

(1) Completeness: The union of all parameters can be formulated as {aP ∪ aS ∪ aE ∪ aM} = A;
(2) Finiteness: The risk scenarios in navigation are finite;
(3) Separability: For i 6= j, ai ∩ aj = ∅.

To combine the risk scenarios and HHM model, each component involved in the
HHM model would be regarded as a description of the safety scenario of S0. The scenarios
deviating the boundary of S0 would be regarded as the risk scenarios. In addition, the risk
scenario established by the principle of scenario construction has to satisfy the requirement
of completeness on the basis of the risk factors’ identification. The objectives of risk
identification are specific, so a certain amount of the risk scenarios must be screened.
When the risk identification is carried out under the HHM framework, different views are
reflected from different scenarios, which is interpreted by the separability of the risk set
{Si}. Noting that multiple perspectives make the risk identification representative, as a
result, risk scenarios are not required to be completely independent from each other.

3. HHM Modelling for Navigational Risk Identification

The HHM is applied to identify the risk sources involved in the navigational activities
of intelligent ships. Practically, the operation of maritime shipping can be divided into
four stages: sailing plan decision; berthing and unberthing; port entry and exit; and open
water navigation. Before the risk identification, the risk evaluation system first needs to
be developed.

3.1. Identification of Risk Aspects

The composition and logical relationships of the risk aspects mainly embody the per-
mutation and association of each risk-influencing factor. A comprehensive and reasonable
composition is useful to classify and sort each risk factor; as a result, the overall risk levels of
shipping can be described objectively and comprehensively [33]. In the entire field of safety
research, safety and accidents are always studied in opposition to each other. In general,
there are many unsafe factors hiding behind the accidents’ backgrounds, leading these
accidents to seem safe [34]. However, it is common sense that the hidden risk factors still
exist objectively. These risk factors have not yet been triggered to arouse enough attention.
Therefore, in the specific research process, researchers consider the direct impact factors of
accidents as indicators of ship navigation safety, and those hidden potential impact factors
are also contained. Therefore, the structure of the risk aspects is illustrated as shown in
Figure 1.
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Figure 1. The distribution of risk aspects for intelligent ships.

According to the contents of Figure 1, it is noted that human, machine, environment
and management are the four basic elements for safe navigation [35]. Based on the classifi-
cation principles of these four elements, navigation risks are identified on the perspectives
of safety management, the shore-based operator, the ship, and the external environment.
By the aid of the aforementioned risk aspects, the hierarchical structure of these risk aspects
is shown in Figure 2.
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Different from traditional manned ships, intelligent ship risk identification is character-
ized by a certain degree of particularity. A lot of complicated factors need to be considered
when selecting risk factors. However, there are no relatively definite criteria or standards
when selecting these factors [36,37]. The selection of risk factors is mainly determined on
the basis of the researcher’s experiences according to their actual situation and require-
ments. Usually, it is necessary to select precise, feasible, and comparable risk factors, which
are able to maximize the impact of these factors as much as possible. Subsequently, the
maximum impact factor is considered as the main index to evaluate the overall risk levels
of intelligent ships. In addition, the selected risk factors should have practical reference
value, and can be compared with factors selected by other research methods, which can
illustrate the rationality and feasibility of the proposed method. In general, two kinds of
method were used in the present study to select risk factors: literature review and expert
survey [38].

3.2. Analysis of Navigation Risk Factors

As mentioned above, the expert survey method is also referred to as the Delphi
method [39]. When the risk evaluation index system is established, various risk impact
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indexes are firstly selected and listed according to the evaluation objectives. Secondly, these
indexes are made into questionnaires, and finally analyzed statistically by experts’ com-
ments. In addition, mathematical statistics can also be used to predict the expert recom-
mendations of the survey, with the aim of calculating the risk index factors recommended
by experts with a high degree of influence. In this study, we analyzed the navigation risk
factors of intelligent ships by consulting different pieces of research and experts’ opinions.
Based on the iterative idea of the HHM process, a specific iterative analysis flow of risk
factors is given, as shown in Figure 3. Moreover, two expert groups are employed in the
present study, and the details for these experts are summarized in Table 1.
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Expert group 1 included researchers from domestic and foreign maritime institutions,
staff engaged in maritime management, and ocean shipping captains. Because these
experts had more than ten years of work and management experience, and also had
a deep understanding of navigation risk management for traditional ships and modern
intelligent ships, the questionnaire survey was firstly conducted on them. The questionnaire
included two parts. The first part listed the risk factors which were screened out after
consulting the literature in the initial stage. The second part was designed with open
questions, listing the risk factors of intelligent ship navigation based on experts’ own
experiences. Then, the risk source framework was enriched and improved. Finally, the risk
factors of intelligent ship navigation were analyzed, and the preliminary analysis results
were concluded with the Delphi method by organizing a group of experts. Expert group
2 included researchers, engineers, and professors from well-known maritime colleges,
unmanned ship research institutes, ship design institutes, ship management institutes, etc.
This group of experts audited the preliminary analysis results from the previous step and
examined its comprehensiveness, feasibility and rationality. If the results were supported
by the expert group 2, the HHM model could be developed on the basis of the analysis
results. Otherwise, the improved suggestions would be given and the above procedures
be repeated.

According to the principle of iterative analysis illustrated in Figure 3, three iterations
were completed in this study, and relatively reasonable results based on the risk factor
analysis were obtained. These risk factors were divided into four perspectives, according to
the actual navigation condition of the intelligent ship, including human factors, ship factors,
environmental factors, and management factors. Worthy of note is that human-related risk
factors are produced by the shore-based operators of the remote-control center.
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Table 1. General information for the employed experts.

Expert Age Occupation Educational Level Certificate Rank Job Tenure

Expert group 1

E1 50 Maritime
investigator

Master of
navigation Captain

He was employed as captain
for 6 years before becoming a

maritime investigator in
maritime authority

E2 43 Shipping manager Master of
navigation Senior captain

He is currently in charge of a
project addressing safety

issues associated with
intelligent ships

E3 46 Seafarer Bachelor of
navigation Senior captain

He is an experienced captain
on an ocean-going ship which

is characterized by
high automation

Expert group 2

E4 53 Professor Doctor of
navigation Captain

He is a professor employed in
a maritime university, and his
research interests are focused

on safety issues for
intelligent ships

E5 45 Senior engineer Doctor of marine
engineering Chief engineer

He is employed by a high-tech
institute aimed at the

intelligent production of ships

E6 42 Associate
professor

Doctor of
navigation Captain

He has been focused on the
safety issues of intelligent

ships for more than 5 years

3.2.1. Human Factors

At present, human factors still account for most of the various maritime accidents,
such as the recent stranding incident of “Changci Vessel”. In the field of risk evaluation
research, the discipline of human factor engineering has emerged in recent years. The core
of this discipline is to study the risks caused by human control factors [40]. In addition,
Sotiralis et al. [41] proposed the theory of human error analysis, as well as error and
missing information theory, in detail, suggesting that missing information leads to errors
in decision-making, such as errors in judging the encounter distance and encounter time
with other ships. There is also a violation of maritime traffic rules by human operation
errors, such as failure to comply with maritime navigation rules or traffic separation rules
while navigating at sea. In this respect, the impact of intelligent ships on navigation safety
is much smaller than that of traditional ships’ human factors. Because intelligent ships
have introduced the concepts of remote controlling centers and shore-based operators,
some human factors of traditional manned ships have been transferred to the shore-based
operators. According to the definition and work restrictions of shore-based operators by
the IMO [42], the influencing factors are analyzed from the overall perspective of intelligent
ship’s shore-based operators, including skill trainings, psychological status, physiological
status, emergency responses, etc.

3.2.2. Ship Factors

For intelligent ships, the ship factors mainly include the ship’s own influence, stowage,
structure and performance, equipment and maintenance, perception and understanding,
etc. The risk factors of the ship itself usually include: ship dimension, ship tonnage, and ship
age [43]; the risks associated with ship stowage mainly refer to the full load rate of the cargo,
the degree of cargo securing, and the dangerous property of the cargo. While sailing at sea,
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the structure and performance, such as the ship speed, water tightness, and hull strength
of the ship are closely related to its collision risk and loss. Under complex navigation
conditions, especially in narrow waterways, shallow waters, bridge areas, high wind
and wave conditions, and other extreme conditions, the perception and understanding of
intelligent ships is particularly important. The perception system represents the traditional
observation of the environmental information of manned ships. Therefore, when the
intelligent ship is performing target recognition, various sensors are used to obtain multi-
source heterogeneous information associated with the environment to understand the
navigational environment, and then to make situational judgments, which are then entered
into the intelligent ship navigation decision-making system through semantic descriptions,
to make avoidance changes. The final goal of target recognition by making decisions
and plans is to realize navigational safety. Perception and understanding mainly include
target recognition ability, navigational environment understanding, situation judgment,
and semantic understanding. During the sailing of an intelligent ship, it is necessary to
maintain the contact and communication between the ship and the shore-based operation
center. Therefore, the reliability of maritime communication equipment is the main factor
that needs to be considered.

3.2.3. Environment Factors

Ocean environment factors have a great influence on the safe navigation of intelligent
ships. Statistical data shows that a considerable number of maritime traffic accidents are
caused by the complicated navigational conditions and/or harsh natural environments [44].
Due to the complexities of the marine environment, there are many uncertainties in hy-
drometeorological forecasts, traffic environment estimation, and other types of forecasts
associated with time. These are difficult for humans to control and judge, and it may also be
possible to erroneously judge the probability of accidents. In addition, in many cases, the
harsh environmental situation is unavoidable. By comprehensively analyzing and studying
various internal and external environmental factors, the environmental factors involved
in intelligent ship risk evolution analysis can be divided into five aspects: meteorological
conditions; hydrological conditions; navigational conditions; entry and exit conditions;
and other interference factors. According to the demand analysis of intelligent ships for
external navigation information, in the present study, the hydrometeorological indexes are
specifically considered as visibility, wind, rain, thunder and lightning, illumination, flow
rate and swell, etc. Simultaneously, the navigation conditions, entry and exit conditions
and other interference factors are divided into traffic flow, obstruction, navigational aid
condition, surplus water depth, berth utilization rate, port environment, floating debris of
offshore, shipwreck and reef, etc. Note that some extra environmental factors affecting the
navigational safety of the intelligent ships were not considered in this study.

3.2.4. Management Factors

Factors in the management of traditional manned ships mainly involve the manage-
ment of the crew on board and the process management of teamwork, as well as maritime
management departments and ship management companies. For intelligent ships, manage-
ment factors mainly include corresponding ship management companies and maritime
management departments. The focus of this study is mainly on the safe management
system of intelligent ship companies. The factors are determined as shipping company’s
safe management systems, departmental cooperation, maritime supervisions, maintenance
timeliness and maintenance cycles in maintenance plans, emergency management ca-
pabilities, technical support capabilities and ship–shore interaction capabilities. In the
present study, the influencing factors of ship management for traditional manned ships
and the characteristics of intelligent ship management were comprehensively considered
to determine the multi-factors involved in management aspects.
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3.3. Development of HHM Model

The navigational risk identification of intelligent ships is characterized by complexity,
large-scale, and multi-level. The interactions among internal risk factors are complicated.
The risk sources from different perspectives are generated on the interaction between the
external environment and the ships. If the risk factors are only partially considered in the
identification, the aim of controlling the risk effectively cannot be achieved. Therefore, it is
extremely effective to analyze the risk factors in an all-round and multi-perspective manner
by using an HHM model.

In order to select and reflect the risk sources comprehensively, the intelligent ship
navigational risk identification with the HHM model was established based on risk
factor analysis in this study. Firstly, four main scenarios were determined. Then, the
main scenarios were decomposed into 20 levels of hierarchical holographic sub-scenarios.
Finally, 20 hierarchical holographic sub-scenarios were decomposed into 38 sub-level holo-
graphic sub-scenarios. To sum up, there were 44 risk factors in total, decomposed from the
main scenarios, which are illustrated in Figure 4.
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4. Results and Discussion

In accordance with the general process of RFRM and the characteristics of intelligent
ship navigation, the identified risks were screened and evaluated, and the results are
as follows.

4.1. Screening for the Identified Risks

In the first step, according to the HHM model established above, four main risk
scenarios for the navigational safety of intelligent ships were identified, including shore-
based operator analysis scenarios, ship analysis scenarios, environmental analysis scenarios,
and management analysis scenarios.

The second step was to filter the main risk scenarios identified in the first step. The risk
sources identified in the first step were relatively comprehensive, and many risk subsystems
were constructed successfully. However, if each subsystem was refined, hundreds of risk
sources may be generated. In fact, not all risk sources have a direct impact on intelligent
ships’ navigational risk. Therefore, the risk filtering was performed according to the risk
scenarios that needed to be studied, and these scenarios were combined with the actual
investigation results to reduce the number of risks for the next step. In this study, based
on the survey opinions of 10 experts, 8 unimportant risk scenarios were screened out:
physiological status (P3); ship age (S13); cargo dangerous property (S23); hull strength
(S33); ship maintenance level (S42); lightning (E14); departmental cooperation (M12); and
maintenance period (M32). As a result, there were 36 risk scenarios remaining.

The third step was to use the risk matrix to filter. The identification and filtering of
risk scenarios cannot completely filter out the irrelevant risk scenarios. Therefore, it was
necessary to combine the risk filter matrix to further filter out some insignificant risks.
In order to improve the accuracy of the next analysis, the ranking of risks was performed
preliminarily. There are two criteria for risk matrix filtering: one is the possibility of the
risk occurrence, and the other is the influential consequence of the risk. The risk evaluation
levels for the possibility of occurrence and influential consequence are shown in Tables 2
and 3, respectively.

Table 2. Evaluation levels for the possibility of single factor risk.

Level Possibility of Occurrence Sign

High Almost certain to happen S
Higher The probability of occurrence is very large H

Medium The probability of occurrence is medium M
Lower The probability of occurrence is small L
Low Almost impossible to happen N

Table 3. Evaluation levels for the influential consequence of single factor risk.

Level Influential Consequence Sign

Serious Cause a catastrophic impact, and it takes lots of
manpower and resources to eliminate S

Higher Cause a greater impact, and it takes more
manpower and material resources to eliminate H

Medium Cause a certain impact, and it takes a certain
amount of manpower and resources to eliminate M

Lower Cause less impact, and less manpower and
resources to eliminate L

Neglected Cause a little impact, and humans and resources
can be ignored N

The severity of the risk is defined by combining the possibility of occurrence and
influential consequence for the risk. According to the severity of the risk, it can be di-
vided into four levels: high risk, relatively high risk, general risk and low risk. From the
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perspective of decision makers, there is no need to spend too much time and resources
addressing low risks, but high-risk and relatively high-risk events must be first consid-
ered. Therefore, when conducting risk management, the risk levels of low and general are
generally filtered out, and the risk filtering and ranking matrix are shown in Table 4.

Table 4. Risk filtering and ranking matrix.

Consequence
Possibility

Low Lower Medium Higher High

Neglected Low risk Low risk Low risk Low risk General risk
Lower Low risk Low risk Low risk General risk Higher risk

Medium Low risk General risk General risk Higher risk High risk
Higher General risk General risk Higher risk Higher risk High risk
Serious High risk High risk High risk High risk High risk

In the second step, the risk scenarios, possibilities of risk occurrence and influential
consequences of the risk were evaluated by the experts after their respective screenings.
For the consequences of risks, the following rules were developed: if the consequences
of risk were argued as serious by more than 6 out of 10 experts, then the consequences
of the risk were extremely serious; if the consequences were evaluated by 6 experts to
obtain a greater level, but did not reach a severity level which was regarded as a greater
consequence, the risk was not as serious; the evaluation indexes for the medium and lower
levels were similar, and other conditions could be ignored. The same rules were also
applied to the possibilities of risks. Considering the suggestions from 10 experts on the
consequences and possibilities of risks, a ranking on the possibilities of risk occurrence and
influential consequences of the risk could be obtained. The risks filtered in the second step
were put into the matrix, and the risks in the low-risk level and general-risk level were
removed, as shown in Table 5.

Table 5. Intelligent ship navigational risk identification matrix.

Consequence
Possibility

Low Lower Medium Higher High
Neglected S11 M11, M4 E12, E13, E15

Lower E42, E43 S12, S21
Medium P12, P2, E32 E51 E21, E22
Higher S32, E33 P41, P42 P11, M2, M5 E11, E31 S31
Serious E52, E41 S22, S41 M31, M6 S51, S52, S53, S54

Low risk General
risk

Higher
risk

High
risk

In the above risk identification matrix, after filtering out the low and general risks,
a total of 18 risk factors were retained as important factors including professional skills,
maritime supervision, technical support, visibility, ship speed, traffic flow, flow rate, swells,
shipwreck and reefs, surplus water depth, cargo securing, reliability of communication,
maintenance timeliness, ship–shore interaction, target recognition capabilities, environment
understanding, situation judgment, and semantic understanding. However, the other
18 risk factors that were not retained in this study were also considered. Because the
influences were not so high compared to the remaining 18 risk factors, they were regarded
as the minor factors for the navigational safety of the intelligent ships and could be screened
out. In order to simplify the research, we first analyzed the main risk factors for the
navigational risk analysis of the intelligent ships. This is also compatible with the nature of
the scenes set {Si} in the previous risk analysis. According to the contents of Table 5, the risk
scenarios stemming from surplus water depth and shipwreck and reef were negligible based
on perspective of probability; however, these two risk scenarios have to be paid attention
due to the serious possible consequences, which have been found as the main causes for ship
total loss according to Allianz [45]. In addition, it is interesting to find that the risk scenarios
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associated with human factors were considered as less important for the intelligent ships
than for regular ships, with similar results also obtained by Chang et al. [24], who argued
that human errors are ranked as the third most important factors for the safety of intelligent
ships. It was also noticeable that the technology-related factors represented by S51, S52, S53,
and S54 were critical for the safe operating of intelligent ships based on Table 5, especially
for the technologies associated with environmental perception and situation awareness,
which are also paid considerable attention by Luo and Shin [46], Thieme and Utne [47],
and Fan et al. [13].

4.2. Evaluation for the Screened Risks

The fourth step was multi-criteria evaluation. For the risk factors screened in the
previous step, except for the two influencing factors of possibility of occurrence and
influential consequence, the reducibility, redundancy and robustness of the system in each
scenario should also be considered [31]. Worthy of mention is that the three characteristics
are all risk elements that can defeat the system’s defense. The documents involved in [48]
are referred to for this study, and 11 criteria for the navigational risk evaluation of the
intelligent ships are proposed, which are shown in Table 6.

Table 6. Multi-criteria evaluation for navigational risk of the intelligent ships.

Number Criteria Description

S1 Unperceived An existence mode of the initial event in a scene refers to the
inability to discover before the accident

S2 Uncontrollability No control method to adjust and avoid or prevent damage

S3 Various failure modes Indicates that a certain factor has many ways to cause damage
to the ship’s navigation

S4 Irreversibility Indicates that when a certain factor has a problem, it cannot be
returned to the original normal state

S5 Duration of impact The duration of the adverse consequences

S6 Cascading influence Indicates that the influence of the impact factors of a certain
subsystem can easily spread to other subsystems

S7 Operating environment The sensitivity to unknown operating environment
S8 Loss The loss of the ship’s navigation system

S9 People/Organization Scenes where adverse effects and consequences are amplified
through the interface between multiple systems

S10 Complexity/Emergency Indicates that a certain factor has system-level behavioral
potential and has a certain degree of complexity

S11 Immaturity of design The proved deficiency or absence of the system design

The 11 risk scenarios listed in Table 6 are divided into three levels: “high (H)”,
“medium (M)” and “low (L)”, where corresponding scores are shown in Table 6. Each clas-
sification can be described according to the multi-criteria evaluation for navigational risk of
intelligent ships. In this manner, the risk scenarios filtered in the third step were evaluated
successfully, and the non-significant risks were removed.

It can be seen from Table 7 that the importance of these 11 evaluation criteria was not
exactly the same. Therefore, it was also necessary to determine the weight of each standard
and apply the weight analysis method to calculate the weight of each standard, as shown
in Table 8.
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Table 7. Evaluation description for navigational safety of intelligent ships.

Number (Criteria) H (10 Points) M (5 Points) L (0 Points)

S1 Unperceived Late unperceived Early unperceived
S2 Not control Difficult to control Easy to control
S3 A lot of A little A single
S4 Irreversible Partially reversible Reversible
S5 Long Medium Short
S6 Many knock-on effects Rarely contact No contact
S7 Highly sensitive Sensitive Not sensitive
S8 A lot of A little Seldom
S9 Highly sensitive Sensitive Not sensitive
S10 Highly complex Medium complex Low complex
S11 Highly immature Immature Mature

Table 8. Details of the weight for 11 evaluation criteria.

Criteria Si S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Weight 0.13 0.15 0.08 0.10 0.10 0.12 0.05 0.05 0.08 0.07 0.07

Through interviews with experts, evaluation results of 18 risk scenarios were obtained.
The evaluation results of experts were directly converted into the corresponding scores,
which were convenient for comparison and calculation. The results can be seen in Table 9.

Table 9. Results of risk evaluation.

Risk
(Ri)

Criteria ( Si)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

P11 10 5 0 5 5 10 5 0 10 5 0

S22 5 5 10 5 10 10 5 5 10 5 0

S31 0 0 0 10 5 10 0 5 5 5 0

S41 0 10 5 5 10 5 0 5 10 5 5

S51 5 5 10 5 5 10 10 5 10 10 5

S52 5 5 10 5 10 10 10 10 10 10 5

S53 5 0 5 10 5 5 10 5 10 5 5

S54 5 5 5 5 5 5 5 5 5 10 5

E11 0 10 5 10 5 5 0 0 0 0 0

E21 0 10 5 10 5 5 5 0 5 0 0

E22 0 10 5 10 5 5 0 5 0 0 0

E31 0 10 10 10 10 10 10 10 10 10 5

E41 0 5 0 10 0 0 0 0 0 0 0

E52 5 10 5 10 5 10 10 10 10 5 5

M2 0 0 0 5 5 5 0 0 0 0 5

M31 5 5 10 5 10 10 10 10 10 10 5

M5 0 0 5 0 0 5 0 5 5 5 5

M6 0 5 10 10 10 10 10 10 10 10 5
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First, the score of each risk was multiplied by their corresponding weights. Then, the
capacity scores of attacking the defense system for each scenario were obtained by combin-
ing these values. The capacity score function is described as:

Ri =
11

∑
i=1

riwi (4)

For example, the risk of the professional skill (P11) is expressed as: R1 = 10 × 0.13 + 5
× 0.15 + 0 × 0.08 + 5 × 0.1 + 5 × 0.1 + 10 × 0.12 + 5 × 0.05 + 0 × 0.05 + 10 × 0.08 + 5 ×
0.07 + 0 × 0.07 = 5.6. The final results are figured in Table 10.

Table 10. Results of capacity scores.

Risk
Ri

P11 S22 S31 S41 S51 S52 S53 S54 E11

Total score 5.65 6.55 3.7 5.75 7 7.75 5.4 5.35 4

Risk
Ri

E21 E22 E31 E41 E52 M2 M31 M5 M6

Total score 4.65 4.25 8.35 1.75 7.75 1.95 7.75 2.35 7.6

RiRi The scores of the observations in Table 10 represent the risk capacity for attacking
the defense system. The higher the scores are, the stronger the ability is, and vice versa.
In this study, the risk of scoring less than 5 points was screened out, and the risk of
scoring more than 5 points remained. On the basis of the third step, 7 risks were screened
out, including ship speed (S31), visibility (E11), speed (E21), swells (E22), surplus water
depth (E41), maritime supervision (M2) and technical support (M5), and 11 risks remained,
needing to be investigated in further.

The fifth step was risk quantitative ranking. The quantization and ranking of the
risks screened in the fourth step were carried out. The importance degree of the risk was
determined by using the quantitative criteria. In this way, the decision-maker can avoid
risk accurately, and the plan can be guaranteed to perform successfully. Tables 11 and 12
show the reference values of the possibility of occurrence and influential consequence of
single-factor risks.

Table 11. Reference values of the possibility of occurrence of single-factor risks.

Level Quantitative Criteria Sign

High (80%, 100%) S
Higher (60%, 80%) H

Medium (40%, 60%) M
Lower (20%, 40%) L
Low (0%, 20%) N

Table 12. Reference values of the influential consequence of single factor risk.

Level Quantitative Criteria Sign

Serious (80%, 100%) S
Higher (60%, 80%) H

Medium (40%, 60%) M
Lower (20%, 40%) L

Neglected (0%, 20%) N

By using the reference values in Tables 11 and 12, the numerical criteria of the possibil-
ity of occurrence and the influential consequence was determined to evaluate the rank of
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all risks. Table 13 shows the evaluation criteria. In this study, R = p · q, where R is the risk
ranks of the single factor.

Table 13. Comprehensive evaluation criteria of single-factor ranks (R).

Level Quantitative Criteria Influence Degree Sign

Significant risk (64%, 100%) High possibility, large loss, the impact and loss
are unacceptable S

Higher risk (36%, 64%) Higher possibility, larger loss, the impact and
loss are acceptable H

General risk (16%, 36%) Little possibility, little loss, and generally does
not affect the feasibility of the project M

Lower risk (4%, 16%) Small possibility, small loss, and the feasibility of
the project is not affected L

Minimal risk (0%, 4%) Very small possibility, very small loss, and the
impact on the project is small N

The concrete values of 11 risks screened from step 4 were calculated based on the
Bayesian method [49]. Bayesian’s equation is widely used in the field of natural science
and maritime traffic safety, and can be written as [50]:

P( A|E) = P(A)P(E|A )

P(E)
(5)

P(E) = P(E|A )P(A) + P(E
∣∣A )P(A) (6)

In the present study, the prior probability and conditional probability required by
Bayesian inference were obtained according to the judgment made by the six experts who
were introduced in Table 1. Then, the post probability for each risk was calculated by
Equations (5) and (6). As a result, the key risks were obtained, including traffic flow (E31),
navigation environment understanding (S52), ship–shore interaction capabilities (M6),
target recognition (S51), reliability of communication (S41), professional skills (P11) and
situation judgment (S53). Details are listed in Table 14. Therefore, these seven risk scenarios
should be paid much attention for the industrial operation of intelligent ships. For instance,
the potential failure of ship–shore interaction represented by M6 is regarded as the most
serious risk scenario, which is also supported by most scholars involved in intelligent
ship study [13,51]. The influence of traffic flow may determine the operation mode of
intelligent ships; for intelligent ships sailing in water of heavy traffic, the ships may have to
be manned to avoid maritime accidents. According to the results presented in Table 14, the
environmental understanding capacity denoted by S52 is critical for the safety of intelligent
ships; for this purpose, many advanced technologies have been proposed to improve
perception for intelligent ships, such as high-definition cameras [52], the multi-scale ship-
detection approach [53] and the intelligent collision-avoidance technique [54]. In addition,
even though the influence of human-related factors on the safety of intelligent ships is
alleviated by adapting intelligent technologies, the human-related factor of professional
skill denoted by P11 is still determined as one of key factors in this study. It should be noted
that the professional skill hereinafter is associated with operators in land-based centers
rather than the seafarers on board the ships. The risks stemming from the operators are also
considered greatly by Prison et al. [55], Jalonen et al. [56] and Fan et al. [13]. Overall, the risk
scenarios identified in Table 14 are essential for the sustainable development of intelligent
ships, which may be valued for the future research of the safety issues of intelligent ships.
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Table 14. Risk matrix for intelligent ships.

Consequence
Possibility

0 ≤ R ≤ 4% 4% < R ≤ 16% 16% < R ≤ 36% 36% < R ≤ 64% 64% < R ≤ 100%
Neglected

Lower
Medium
Higher E52, S22 M31, S54
Serious S51, S41, P11, S53 E31, S52, M6

Low risk General
risk

Higher
risk

High
risk

5. Conclusions

By the aid of the existing navigational risk research and case studies, this paper pro-
poses an HHM-RFRM-based risk identification and screening methodology for intelligent
ship navigation and, where feasible, scientific and reasonable factors were considered.
The risk evaluation criteria system of intelligent ship navigation was constructed, includ-
ing shore-based operators, ships, environment, and management. The risk factors were
screened out, and seven factors were determined as the key factors, including traffic flow,
navigation environment understanding, ship–shore interaction capabilities, target recogni-
tion capabilities, reliability of communication, professional skills, and situational judgment.
By comparison with practical cases, this research shows excellent adaptability and reli-
ability in risk management, thus providing a reference value. The results indicate that
the proposed method can provide theoretical guidance for decision-makers to take risk
measures and technology guidance for the safe navigation of intelligent ships. This is
valuable for the sustainable development of intelligent ships.
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