
����������
�������

Citation: Cerbaro, M.; Morse, S.;

Murphy, R.; Middlemiss, S.;

Michelakis, D. Assessing Urban

Vulnerability to Flooding: A

Framework to Measure Resilience

Using Remote Sensing Approaches.

Sustainability 2022, 14, 2276. https://

doi.org/10.3390/su14042276

Academic Editor: Michalis Diakakis

Received: 21 December 2021

Accepted: 11 February 2022

Published: 17 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Assessing Urban Vulnerability to Flooding: A Framework to
Measure Resilience Using Remote Sensing Approaches
Mercio Cerbaro 1,* , Stephen Morse 1 , Richard Murphy 1 , Sarah Middlemiss 2 and Dimitrios Michelakis 2

1 Centre for Environment & Sustainability, University of Surrey, Guildford GU2 7XH, UK;
s.morse@surrey.ac.uk (S.M.); rj.murphy@surrey.ac.uk (R.M.)

2 Ecometrica Limited, Orchard Brae House, 30 Queensferry Road, Edinburgh EH4 2HS, UK;
sarah.middlemiss@ecometrica.com (S.M.); dimitrios.michelakis@ecometrica.com (D.M.)

* Correspondence: m.cerbaro@surrey.ac.uk

Abstract: Assessing and measuring urban vulnerability resilience is a challenging task if the right
type of information is not readily available. In this context, remote sensing and Earth Observation
(EO) approaches can help to monitor damages and local conditions before and after extreme weather
events, such as flooding. Recently, the increasing availability of Google Street View (GSV) coverage
offers additional potential ways to assess the vulnerability and resilience to such events. GSV is
available at no cost, is easy to use, and is available for an increasing number of locations. This
exploratory research focuses on the use of GSV and EO data to assess exposure, sensitivity, and
adaptation to flooding in urban areas in the cities of Belem and Rio Branco in the Amazon region of
Brazil. We present a Visual Indicator Framework for Resilience (VIFOR) to measure 45 indicators
for these characteristics in 1 km2 sample areas in poor and richer districts in the two cities. The aim
was to assess critically the extent to which GSV-derived information could be reliable in measuring
the proposed indicators and how this new methodology could be used to measure vulnerability
and resilience where official census data and statistics are not readily available. Our results show
that variation in vulnerability and resilience between the rich and poor areas in both cities could
be demonstrated through calibration of the chosen indicators using GSV-derived data, suggesting
that this is a useful, complementary and cost-effective addition to census data and/or recent high
resolution EO data. Furthermore, the GSV-linked approach used here may assist users who lack the
technical skills to process raw EO data into usable information. The ready availability of insights on
the vulnerability and resilience of diverse urban areas by straightforward remote sensing methods
such as those developed here with GSV can provide valuable evidence for decisions on critical
infrastructure investments in areas with low capacity to cope with flooding.

Keywords: vulnerability; flooding; remote sensing; Earth Observation (EO); Google Street View
(GSV); climate change

1. Introduction

Floods are one of the most common and severe hazards to disrupt people’s livelihoods
globally [1]. The effects of climate change and widespread flooding can exacerbate urban
challenges and make it more difficult to tackle issues and help vulnerable communities in
informal settlements [2]. The Intergovernmental Panel on Climate Change (IPCC) outlines
that climate-related risks for natural and human systems are higher for global warming of
1.5 ◦C than at present, but risks depend on the magnitude and rate of warming, levels of
development and vulnerability, and on the choices of adaptation [2]. Given that the world
will further urbanize during the next decade, from 56.2% in 2020 to about 60.4% by 2030 [3],
these vulnerabilities are likely to intensify. Climate change can cause events such as flooding
with higher frequency, intensity, and variability, affecting urban areas where density of
housing is high and widespread [4,5]. Given that urban areas are expanding, along with
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the proportion of a population living and working within them, there is a growing need for
assessing their vulnerability to disasters such as flooding. Indeed, there have been various
international initiatives to address issues of uneven development and vulnerabilities within
urban areas, and the New Urban Agenda (NUA) of the United Nations Human Settlement
Programme (UN-Habitat) adopted in Quito, Ecuador, in October 2016 is one example of a
core commitment for a transformative agenda in urban areas [4].

Implementation of the New Urban Agenda and promoting actions on urban-related
Sustainable Development Goals (SDGs), such as the development of land use policies for
climate resilience and adaptation to climate change, housing and slum upgrading policies,
and preparation of existing institutions for disasters will require significant mobilization of
financial resources to improve infrastructure and services [4]. Making cities and human
settlements inclusive, safe, resilient, and sustainable (SDG11), and enhancing urban re-
silience in cities with rapid population growth, informal settlements, unplanned public
services, and extreme income inequality requires several coordinated efforts [4,5]. The
World Cities Report 2020 reaffirms that unplanned urban living leaves people vulnerable,
and the COVID-19 pandemic has exposed deep inequalities which suggest that tackling
the virus is more challenging in urban areas [3].

Vulnerability involves an individual or group’s exposure to, capacity to cope with, and
potentiality to recover from crises [5–7], and there are several international programmes
and frameworks designed to assess vulnerability to disasters. One example is the Disaster
Recovery Framework (DRF) of the World Bank’s Global Facility for Disaster Reduction
and Recovery’s (GDDRR), and another is the UN Sendai Framework for Disaster Risk
Reduction 2015–2030 [5]. The Sendai framework includes a set of global targets and
indicators, but these operate mainly at the national level policies rather than being focused
on local strategies [6,7]. Another example of a specific framework to assess vulnerability
is provided by the Notre Dame Global Adaptation Index (ND-GAIN); a free open-source
index that shows a country’s current vulnerability to climate disruptions [8]. The aim of the
index is to support the private and public sector in prioritizing climate adaptation [9]. The
details of the ND-GAIN methodology are not covered here, but it assesses the vulnerability
of a country by considering six life-supporting sectors: food, water, health, ecosystem
services, human habitat, and infrastructure [10,11]. The index is based on over 74 variables,
which are used to create 45 indicators spanning critical environmental, economic, and
social aspects designed to measure vulnerability and readiness of 192 UN countries [11].
The inclusion of social aspects towards assessing vulnerability is included in all these
frameworks and is important [12].

According to the United Nations Office for Disaster Risk Reduction (UNDRR), re-
silience of vulnerable communities is associated with various factors, including poverty
and inequality [12]. De Almeida et al. [13] demonstrated that counties in the Amazon
region face serious conditions of susceptibility to natural hazards (e.g., floods, landslides,
flash floods, droughts) and this is magnified by high levels of socioeconomic inequality. In
addition, the Amazon region has a very low capacity to recover and adapt to future environ-
mental and social scenarios because of climate change [13]. All these frameworks require
good quality information, and the same type of information is often required irrespective
of the type of disaster (e.g., storms, floods, landslides, etc.) [8]. The need for information
to enhance preparedness and plans to mitigate the impact of disasters in communities is
an important dimension and examples of such initiatives include The Use of Social Work
Interventions to Address Climate and Disaster Risk [12]. Traditional approaches to data
collection have relied upon availability of data collected via surveys, census, tax returns,
etc., but some of these can be time-consuming and expensive.

Another approach that has generated much interest is the use of Earth Observation
(EO) via satellites, aircraft, and drones. However, a third approach that has been gaining
some prominence in the literature is the use of tools such as Google ‘Street View’ (GSV) [14].
GSV images are available for several cities, as are open EO data, such as Sentinel 1- radar
that supply day and night all-weather EO data [15], or Sentinel 2- optical EO data available
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every five days under cloud free conditions [16]. GSV has been used to develop differ-
ent conceptual frameworks and methodologies for different purposes. Wang et al. [17]
developed a new machine learning method based on GSV to assess the quality of green
spaces in Guangzhou, China. They also examined exposure and access to green spaces
associated with socioeconomic inequalities in urban areas, and how neighbourhoods with
high socioeconomic status may have better access to quantity and quality of green spaces.
Feldmeyer et al. [18] used Open Street Map (OSM) and machine learning to generate so-
cioeconomic indicators where the availability of quality data is limited at specific temporal
and spatial resolution. GSV and deep learning have been used to measure the relationships
between a Green View Index (GVI) and walking behaviour [19]. Li et al. [20] assessed urban
greenery using GSV for monitoring and measuring street greenery that people can see on
the ground in different streets. Other examples include virtual tree surveys [21], the use of
GSV to identify the elements that affect the probability that individual buildings may suffer
flooding in urban areas [22], and the assessment of damage after hurricanes [14]. Hence,
GSV has been used for several applications, and proves to be a useful tool for virtual field
observation, especially when combined with EO. Giuliani et al. [23] used a combination
of free Earth Observation (EO) and crowdsourced (e.g., OSM) EO data to model physical
accessibility to urban green spaces in four European cities (Geneva, Barcelona, Goteborg,
and Bristol). Unlike other studies [17–22], Giuliani et al. [23] incorporated the use of EO
data but measured only one specific indicator associated with green areas.

Using GSV to populate indicators has advantages in terms of cost, but it also has
limitations. For example, GSV imagery may not necessarily be up-to-date; in addition, the
indicators that can be populated with the tool have to be amenable to a visual assessment
(e.g., quantity and quality of infrastructure). EO can also be used in conjunction with
GSV, but it too is limited to addressing indicators that can be passively ‘seen’ using visual
wavelengths or the use of ‘active’ EO such as the use of radar. Image resolution can also
be an important factor in EO. Hence, the assessment of urban greenspace has often been
a focus with GSV- and EO-based systems in urban spaces, but there are no published
examples as yet of using these tools to assess vulnerability to disasters such as flooding.
The research set out in this paper addressed that gap in knowledge and sought to develop
and apply an alternative method to assess vulnerability in urban area primarily using
GSV along with a framework for assessing vulnerability based on the Notre Dame Global
Adaptation Initiative (ND-GAIN).

The ND-GAIN approach defines adaptation as ’adjustment to the changing climate
that minimize negative impacts on humans and on built and natural systems‘, and this
involves both a mitigation of risk along with an exploration of opportunities [24]. In order
to assess vulnerability to climatic hazard events such as flooding, the ND-GAIN framework
uses three dimensions:

• Exposure: The size of the population and critical infrastructure (e.g., transport links,
health care facilities) which may potentially be exposed to a climatic hazard event.

• Sensitivity: The extent to which a population or infrastructure may be affected by a
climatic hazard event. This could be influenced by many factors such as the quality of
construction of key infrastructure.

• Adaptive capacity: The ability to respond to the consequences of climate hazards, for
example, the presence of emergency services or the ability to bring in support from
outside the area affected.

A series of indicators may be chosen or developed to assess the three dimensions, and
these can be populated in part using existing datasets such as census data [25] as well as
via primary data. The logic at the heart of the ND-GAIN framework is that vulnerability
to hazardous events is influenced by all three of these and is maximized when all three
are weak. There are nuances, however. For example, a population may have a high level
of exposure to flooding events because of geography, but the sensitivity to damage may
be low, perhaps because of physical mitigations employed in construction of housing
and infrastructure. Similarly, exposure and sensitivity may both be high, but there are
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good adaptations in place to ensure that affected populations are supported quickly and
effectively. The latter could, for example, include early warning systems coupled with
rapid evacuation systems. Hence, an appreciation of vulnerability needs to draw upon
an understanding of all three of these dimensions. The ND-GAIN approach includes a
fourth dimension—readiness—which in essence is the ability to enhance adaptive capacity
and includes ability to attract funding as well as the ability of governance structures to
make the best use of that funding. There may be various barriers at play that influence
these, and one example is linked to the effectiveness of communicative tools to addressing
key municipal barriers to climate adaptation [26]. One of the key findings of research
based in the Netherlands is that barriers experienced by municipalities are lack of urgency,
lack of knowledge of risk and measures, and actions by authorities, which are limiting
their adaptation planning and implementation [26]. Enabling factors for ‘readiness’ can
include communication and transportation infrastructure, local laws and regulations, and
community-based behaviours during flooding [27].

The research reported here focuses on assessing the vulnerability of relatively rich
and poor areas in the cities of Rio Branco (state of Acre) and Belem (state of Para), Brazil,
to flood events. The approach is a visual interpretation and does not include machine
learning or algorithms to process large numbers of images. The research followed several
steps, and these are set out in the methodology section of the paper. Firstly, two cities
were selected to explore resilience to flooding, and the choice of Rio Branco and Belem was
based upon a series of preliminary experiences and field work visits in Brazil. Within each
city, two areas that were especially prone to flooding were selected, one of them regarded
as being a poorer area while another was seen as being a comparatively wealthier area.
Once cities and areas were chosen and demarcated on maps, GSV was used to populate
an indicator framework based upon the ND-GAIN approach set out above. The indicator
values for the two cities and areas within the cities were then analysed and conclusions
drawn about vulnerability to flooding, the utility of the approach taken, and its potential
for further development.

2. Material and Methods
2.1. Study Background—Rio Branco (Acre State) and Belem (Para State) in Brazil

The locations in Brazil of the two cities chosen for this research (Rio Branco and
Belem) are shown in Figure 1. Both cities are located within the relatively high-rainfall
Amazon region.

The two cities were recommended by experts based at the National Institute of Space
Research of Brazil (INPE), The Brazilian Agriculture Research Corporation (EMBRAPA), the
National Centre for Disasters and Alerts and Monitoring (CEMADEN), and the Geological
Service of Brazil (CPRM), which are responsible for mapping flood hazard risk areas in
vulnerable areas in Brazil. All the experts consulted noted the importance and timeliness of
the research, as flooding is one of the most severe natural disasters that affects livelihoods
in several regions of Brazil. The specific locations within the two cities were based on
suggestions provided by experts from CPRM; the cities and locations were known to
have a frequency of flooding of at least two or three events in the last ten years. The
Brazilian Disaster Risk Indicators (DRIB-Index) proposal by Almeida et al. [28] was also
consulted to select the best locations in the Amazon region. The DRIB-Index served as a
tool to help assess 32 indicators that include different levels of exposure, vulnerability, and
risks in Brazil [28]. DRIB aims to capture and measure four major components: exposure
to natural disasters, susceptibility of the exposed communities, coping capacities, and
adaptive capacities [28]. The DRIB-Index showed a high level of vulnerability and low
capacity to cope and adapt to socioenvironmental changes imposed by disasters and
climate changes for several cities in the North (Amazon) and Northeast regions [2] of Brazil.
Indeed, some places in the Amazon region were identified by the index as being greatly
exposed to multiple hazards such as landslides, floods, flash floods, and droughts [29–31].
The Amazon region also has a very high social-vulnerability index based on indicators
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associated with employment, social dependency, race and ethnicity, availability of quality
sanitation, and housing structures, amongst others [32,33]. However, the DRIB-Index does
not use visual tools at the local level to evaluate specific socioeconomic features.
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Figure 1. Study area showing two cities in the Amazon region (grey shading) in Brazil: Rio Branco
(Acre State) and Belem (Para State).

The city of Rio Branco, the capital of the state of Acre in southwestern Amazon
(Figure 1), is an example of an area of almost annually recurrent extreme events (e.g., floods,
droughts, and forest fires) [34]. Since 1988, the city has been flooded (River Acre (the
main river running through the city) levels exceeding 14.0 m [34]) several times, with 2015
being the most severe in recent history when the River Acre flooded for 32 consecutive
days and reached 18.4 m in March that year. The 2015 flood affected 100,000 people, or
about one-third of the city’s population [34]. Rio Branco’s population was estimated at
413,418 in 2020 as compared with 336,038 in the last 2010 census [35]. Rio Branco has 57%
of adequate sewage, and 20% urbanization of public roads, which shows some limitations
in infrastructure in additional to population growth in the past decade [35]. Belem has
an estimated population of about 149,964 in 2020 compared with 139,300 in the 2010
census [36]. In addition to the high population density, Belem has 68% of adequate sewage,
and 36% urbanization of public roads [36].

The first author visited both locations for two weeks each in February and March
2020. In this period, the aim was to collect local data from local authorities (e.g., civil
defence, local council, urban planning agencies, local environmental authorities). However,
access to data emerged as a major challenge, despite visits to over ten local institutions in
each location, including federal institutions such as EMBRAPA, federal universities, and
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the Brazilian Geological Survey (CPRM), and local institutions such as the fire brigade,
civil defence, and environmental agency authorities. We assumed that talking directly to
personnel in both cities would facilitate data collection. However, it was often mentioned
by senior researchers in different federal institutions (e.g., CPRM, EMBRAPA, University
of Para) that data availability and access to local institutions are major challenges for local
researchers, and there are various reasons for this. For example, it was often mentioned by
informants that federal, state, and local authorities are from different political parties and
interest in climate change mitigation was at the time not part of the political agenda. Thus,
access to data that shows poverty, vulnerability, exposure of minorities within flooding
areas was limited or appeared not to be in the interest of local authorities to provide. This
issue may have been exacerbated at the time of the fieldwork by political debates and
sensitivities regarding forthcoming elections for mayoral posts. It should also be noted that,
at the time of fieldwork (and also in 2021), IBGE had postponed the demographic census of
2020 due to the ongoing COVID-19 pandemic, and so the last set of available census data
were from 2010 [37].

These factors and the challenging circumstances illustrate the difficulties for many
researchers and authorities in accessing ‘conventional’, timely, and relevant data to assess
local vulnerability and resilience. This reinforced the aim of this research to seek alterna-
tive, open, remote sensing approaches to assess these characteristics in the local context.
Following the approach taken in the ND-GAIN framework summarized above, where
vulnerability to events such as flooding is assessed via an appreciation of exposure, sensi-
tivity and adaptation, the aspects chosen for remote sensing evaluation were designed to
explore aspects such as the likelihood of floods generating material and nonmaterial losses
(e.g., destruction of public and private infrastructure, reduction of accessibility to various
locations, disruption of traffic flow, families losing their homes or access to dwellings) [37].

2.2. Choice of Areas in the Two Cities

In this study, two 1 km2 areas within each city that were known to flood regularly
(Figures 2 and 3) were identified. Within each city, one area was selected as being ‘poor’ and
one that was ‘rich’ on the advice of experts at CPRM based on several technical geological
surveys. We used several criteria for selection (e.g., average income, house prices, number
of banks, shopping malls) as indicators of poor and richer areas. However, it should
be noted here that these are relative rather than absolute categorizations. Other factors
such as the number of hospitals, schools, and churches were considered as indicative of
the adaptive capacity to provide accommodation, psychological assistance, and shelter
available locally to support dislodged people [33]. The following neighbourhoods were
chosen for the research:

1. Rio Branco: Cidade Nova and Preventorio—poor area;
2. Rio Branco: City Center, Base and Seis de Agosto—richer area;
3. Belem: Terra Firme—poor area;
4. Belem: Umarizal—richer area.

The suggestions above were confirmed by advice from EMPRABA, local universities,
civil defence, and other local institutions. Figure 2 gives an EO image for the poor area in
Rio Branco (A), which is subject to both flooding and landslides due to unsustainable land
use occupation near the river, and the richer area (B) with high levels of infrastructure (e.g.,
banks, government buildings, pharmacies) and also proximity to river.

The areas were demarcated using Google Earth Pro (GEP) and measured using its
toolbox. The blue lines in Figures 2 and 3 are the streets available on GSV and the user can
zoom in to access the street option view, or swipe up and down on the blue line. Users
can move the ’yellow man‘ pegman and can switch between Google Earth (GE) using
EO data from unique sources of Google Street View. EO imagery built into GE for every
specific location provides the date, geographical coordinates, and elevation at the point
of observation. In Google Earth, complete 360 degrees is available at the street level, and
the user can move readily up and down the street (Figure 3). Both long and short streets
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were considered as single units of analysis. As the purpose of this study was to identify
the overall vulnerability of a particular area, we used imagery available for throughout the
period 2012 to 2020.
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2.3. Indicator Framework

The indicator framework for assessing vulnerability and resilience followed the logic
set out in the ND-GAIN framework outlined above [10]. Vulnerability to flooding was
assumed to have three dimensions:

1. Exposure (E—factors that influence exposure to flooding);
2. Sensitivity (S—sensitivity to flooding events);
3. Adaptation (A—adaptations made to limit incidence or damage from flooding events).

The indicators and variables were then selected based on relevance to flooding and ex-
posure of residents to floods in the selected areas. The initial identification included critical
infrastructure and places to support vulnerable communities during flooding or post-
flooding (e.g., shelters, churches, sport facilities), or urban infrastructure that could support
affected neighbourhoods during a flooding event. We considered an area at high levels
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of vulnerability if it had few assets available (e.g., weak access to hospitals, schools, poor
roads, rubbish in the streets, other sensitivity indicators based on socioeconomic criteria).

We began with the list of 232 indicators of the SDGs, those of the Sendai Framework,
and other indicators available in the literature. These were then selected by the authors
for those associated with flooding and natural hazards. From these, those that were
considered potentially amenable to visual assessment via GSV or EO were further selected.
The indicators were also classified in terms of the five major capitals (or assets) of the
Sustainable Livelihood Approach:

1. Natural (N);
2. Human (H);
3. Social (S);
4. Financial (F);
5. Physical (P).

Hence, indicators labelled as ‘EN’ come under the exposure dimension and were
considered as ‘natural’ capitals. The result of this selection process was a framework of
45 indicators we termed the Visual Indicator Framework for Resilience (VFIOR), as set out
in Table 1. The framework comprises a mix of indicators assessed by scoring and counting,
and lower values (scores and counts) equate to a low resilience or capacity to adapt to
flood hazards. Each of the three dimensions (Exposure, Sensitivity, and Adaptation) had
differing numbers of indicators and it was not necessarily the case that all five capitals
were represented within each dimension. The exposure and adaptation dimensions have
indicators that span all five of the capitals, but in the sensitivity dimension the indicators
only spanned the human, financial, and physical capitals.

Table 1. Indicators used to measure VIFOR framework.

No. Indicators Used to Measure Vulnerability Type of Data Collected Assumption

Exposure (factors that influence exposure to flooding)

1 * EN1: Presence and scale of waterways
(extent/size) Score More waterways and greater extent can

cause greater probability of flooding

2 EH1: Proximity of hospitals to waterways Score

Proximity leads to greater probability of
flood damage

3 EH2: Proximity of clinics to waterways Score

4 EH3: Proximity of pharmacies
to waterways Score

5 EH4: Proximity of schools to waterways Score

6 EH5: Proximity of houses near
to waterways Score

7 EH6: Proximity of business to waterways Score

8 EH7: Proportion of business near to
ground level Score

Being near ground level equals a higher
chance of flood damage. Some level of

elevation above ground.

9 ES1: Proximity of places of worship
to waterways Score Proximity leads to greater probability of

flood damage
10 EF1: Proximity of banks to waterways Score

11 EP1: Proportion of business at direct
street level Score Being at ground level means a higher

chance of flood damage. Direct at the street
or pavement without elevation.

12 EP2: Proportion of housing at direct
street level Score
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Table 1. Cont.

No. Indicators Used to Measure Vulnerability Type of Data Collected Assumption

13 * EP3: Quality of road surface Score
Indicator of flood damage but also is

important in terms of access for emergency
vehicles and people wishing to leave

14 EP4 General state of repair of buildings Score Indicator of flood damage but also poverty

15 EP5: Presence of soil erosion Score Indicator of flood damage

16 EP6: Rubbish in the streets Score
Indicator of poverty, but also more rubbish

leads to a greater chance of drainage
systems being blocked

Sensitivity (sensitivity to flooding events)

17 SH1: Density of housing/construction in
the flooding areas Score Number of houses per street. Density and

intersection with mix land uses.

18 SH2: Sturdiness of dwellings Score Quality of materials of houses
and buildings.

19 SF1: Cleanliness of streets Score Rubbish in the streets

20 SF2: Presence of graffiti Score Number of graffiti in public spaces

21 SF3: Unoccupied/boarded-up buildings Score Empty buildings or facilities without use

22 SF4: Incidence of decaying buildings Score Buildings without use

23 SF5: Value of cars parked on streets Score New and expensive cars to damaged and
old cars.

24 * SP1: Type of road surface Score High quality asphalt to various low-quality
pavement layers.

25 * SP2: Overall road width Score Size of road width and road markings used,
including those across the carriageway.

26 SP3: Quality of pavements/sidewalks
to roadsides Score

Allows cars and people to move during
flooding events. Quality of sidewalks,

which allows effective mobility
of pedestrians.

27 SP4: Presence of water on the streets Score Poor drainage that can lead to flooding.

Adaptation (to flooding)

28 * AN1: Proportion of green areas
and vegetation Proportion (%) Green spaces help with drainage

29 AH1: Number of hospitals (public
and private) Count

Assets to support health care during a
flood event30 AH2: Number of clinics Count

31 AH3: Number of pharmacies Count

32 AH4: Number of schools Count
School premises can provide spaces for

people to gather in the event of a flood and
be supported.

33 AH5: Number of community public
health centre Count Supports health care in the event of a flood

34 AH6: Number of universities (public
and private) Count

Physical premises can provide spaces for
people to gather in the event of a flood and

be supported
35 AS1: Number places of worship Count

36 AS2: Number of sport halls Count

37 AS3: Number of police stations Count Provide support/security during a
flood event38 AS4: Number of fire stations Count
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Table 1. Cont.

No. Indicators Used to Measure Vulnerability Type of Data Collected Assumption

39 AF1: Number of banks (access to local
financial support) Count Access to cash and financial services

40 AF2: Number of cooperative associations Count
Supports with information, shelter and

community-based cooperation to support
socioeconomic recovery

41 * AP1: Presence of flood defences
(strengthened banks etc.) Count Provide defence for rivers do not burst

their banks

42 AP2: Quality of flood defences Score Natural and artificial strengthened banks
to prevent flooding

43 AP3: Quality of street drainage systems? Score Surface water drainage systems to
prevent flooding

44 * AP4: Number or bridges (bridges
for vehicles) Count Provide access and mobility in

flooding areas

45 AP5: Durability of bridges (to flooding) Score

Type of material from small scale wood
bridges to large scale concrete bridges.

Resilience of infrastructure to avoid bridge
collapse during flooding.

Note: Indicators marked with an asterisk (*) are potentially measurable via Earth Observation.

In the Exposure dimension (16 indicators) many of the indicators refer to distance
of the community assets (hospitals, clinics, schools, etc.) from a source of flooding. The
assumption here is that the farther away an asset is from the source of flooding, then the
lower the likelihood is that it would be exposed to damage as a result of flooding. Further
included here are indicators that assess whether an asset is at street level or raised (e.g., on
the second floor or higher of a multitier building). The Sensitivity dimension has a total of
11 indicators, most of which address the exposure of assets to damage once flooding occurs.
The assumptions here are that buildings, roads, and sidewalks that are of poor quality
suggest that they may be or have been readily damaged by flood events and/or that they
may also be sensitive to further degradation. To some extent these are also indicators of
wealth and lack of investment. One of the indicators specifically assessed whether there
is standing water on the street, which would suggest a lack of drainage (this depends
on when the GSV images were taken). For the Adaptation dimension (18 indicators, the
largest number of indicators of the three dimensions), the indicators are mostly counts of
important assets such as the number of hospitals (public and private), schools, pharmacies,
universities (public and private), clinics, places of worship, sports halls, number of police
stations, and number of banks. These are important in terms of health care provision during
and after a flooding event, but also of the ability to improve human capital (education),
social capital (cooperatives), and financial capital (banks). Further included here are counts
of assets such as emergency service stations (police, fire stations) and flood defences (e.g.,
barriers) and drainage systems. Assessing adaptation in terms of physical entities that can
be observed via GSV or EO is admittedly a narrower perspective than envisaged in the ND-
GAIN framework. In ND-GAIN, adaptation (or more precisely, adaptive capacity) is seen
as an ability to manage flood events and includes the presence of early warning systems
and management plans. However, in the VIFOR framework, adaptation was limited to an
assessment of structures such as number of facilities (e.g., AS1 to AS2), or specific flood
defence systems such as the quality of flood defences (AP2) or the quality of street drainage
systems (AP3). There is a relationship here in the sense that the presence of structures
such as medical facilities and police and fire stations are important for helping deliver any
plans that authorities may have in place, although counting such facilities says nothing
about their quality in terms of number of staff available, their training and preparedness,
and availability of required equipment. Therefore, a thorough assessment of adaptation



Sustainability 2022, 14, 2276 11 of 22

would need to go beyond what can be seen and this would necessitate interviews with
stakeholders at all levels, including the local community, although there can be constraints
here as noted above and especially during a pandemic.

All three dimensions of VIFOR overlap to some extent and there are indicators that
could be moved to a different category. For example, under Sensitivity, the indicators that
capture building quality (SH2, SF3, and SF4) could also be classified under Adaptation; one
of the responses that people could make to improve resilience would be to strengthen their
dwellings. Similarly, the quality of the road surface (EP3) in the Exposure dimension could
be placed under Sensitivity. It is included under Exposure as it is assumed that a poor-
quality road indicates greater damage resulting from flooding, but that can also be applied
to the type of road surface (SP1), as paved roads could decay as the result of successive
flood events. For this reason, it was decided to weigh all the indicators equally and not
apply weights to the three dimensions. Thus, in a sense it does not really matter where an
indicator appears in the framework, it is still weighted equally, and the classification is only
for ease of use.

It should be noted that some indicators in the VIFOR framework have the potential
for assessment via EO. These are demarcated in Table 1 with an asterisk. The presence
of waterways (EN1), the proportion of green areas (AN1), flood defences (AP1), and
bridges (AP4) are obvious examples, as indeed are indicators of road width (SP2) and road
quality (EP3) and material of construction (SP1). There are other indicators that may not
be so obviously assessable via EO, such as the number of banks (AF1) and cooperative
associations (AF2). These institutions often occupy spaces within larger buildings and
provide no visual clues readily tractable by EO to their use.

2.4. Data Collection and Analysis

The indicators in Table 1 were populated via a combination of counts and scoring.
For all the indicators, all the streets in the 1 km2 quadrant (lines in Figures 2 and 3) were
‘walked’ virtually in GSV. We focused on 1 km2 due to logistical issues and time constraints
to cover all the streets within the boundaries of the two cities. Hence, we selected two
areas (rich and poor) for each city based on the recommendations of experts along with the
criteria noted above. The number of streets ‘walked’ in each of the areas is shown in Table 2.
Care was taken to ensure that a single asset existing on a junction between streets was not
recorded more than once. However, while the streets differed in terms of length, this was
not accounted for in the assessment and long streets were treated the same as short streets.
Hence, each indicator was not weighted for variation in the length of the street. For those
indicators assessed via scores (mainly Exposure and Sensitivity), the scores ranged from 1
to 5, with the polarity set to 1 representing low resilience and 5 representing high resilience
(to flood events) and the midpoint score of 3 representing a moderate level of resilience
‘performance’ for the indicator. For count-type scores (mainly in the Adaptation dimension)
these are ‘raw’ data and no midpoint assessment of a level of resilience is given except for
the fact that a higher number is indicative of greater resilience and average values of zero
or small fractious per street suggest low resilience.

Table 2. Number of streets assessed for the indicators in Table 1.

City Area Number of Streets

Rio Branco Poor 42
Rich 29

Belem Poor 45
Rich 20

The construction patterns of dwellings are often not designed to withstand flooding,
especially in regions with significant inequalities [38]. In Figure 4, we used GSV to classify
houses and structures in terms of their likelihood of flooding as described in the following
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categories: very high, high, high, medium, low, and very low. We assumed that very high
(score 5) is the most adaptable structure in the sense of the building and its contents being
best able to avoid flood damage (often located in richer areas), and very low (score 1) is the
least adaptable structure to cope with a flooding event (i.e., building and contents damage
is most likely). In the low and very low scores, we identify houses principally situated
at street level, limited paved roads, and high concentration of houses. In high and very
high categories, houses are located in buildings situated above street level that are less
exposed to floods. EP2 refers to the proportion of housing at street level, or likely to flood
during an event. A similar scoring system was used to describe the general state of repair
of buildings (Figure 5) in the following categories: very low, low, medium, high, and very
high. This refers to the quality of the houses, type of materials, and construction. For
example, in Figure 5, scores 4 and 5 represent good quality construction indicating resilient
infrastructure when compared with scores 1 and 2. A further example of the scoring system
is that for SP3 (Figure 6), which refers to the quality of pavements and sidewalks.
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3. Results

The means and standard deviations (SD) for the indicators as assessed using GSV
observation data for the selected streets/city areas are shown in Table 3. Further shown are
the number of streets (N) for which the indicator could be assessed. The latter is important;
for example, the indicators which assess proximity to a source of flooding were not relevant
in some cases where the unit (hospital, clinic, etc.) did not exist within the 1 km2 grid. There
is insufficient space here to describe all the indicators in Table 3, so only a few examples
are highlighted. For the two poor areas there are issues with houses and businesses more
likely to be located near ground level. The presence and scale of waterways in the poor
area of Belem (EN1 average score: 4.11) is higher compared with that of Rio Branco (EN1
average score: 3.61). Indeed, in Belem, many of the businesses and houses are located near
canals that are often related to poor technical maintenance of river channels, and disposal of
rubbish in the canals also contributes to flooding. In Rio Branco, some houses in poor areas
located near the Acre River are built with two floors, while in many of the poorer areas in
Belem located near the canals, houses have only one floor. The poor area in Belem has a
worse drainage system (AP3 average score 1.62) when compared with the poor area of Rio
Branco (AP3 average score: 2.6), which relates to the quality of drainage as an indicator
for Adaptation during flooding events. The density of housing is higher in the Belem poor
area (SH1 average score: 2) when compared with the Rio Branco poor area (SH1 average
score: 2.86). The streets in the poorer area of Rio Branco are cleaner (SF1 average score:
2.76) when compared to Belem (SF1 average score: 2.38), and there is more graffiti in the
poorer area of Belem (SF2 average score: 3.27) when compared to Rio Branco (SF2 average
score: 3.88). The quality of pavements and sidewalks in Belem (SP3 average score: 1.58)
was also lower than found in the poor area of Rio Branco (SP3 average score: 2.33).

Table 3. VIFOR framework scores for the 45 indicators based on GSV observation of streets in the
selected areas of Rio Branco and Belem.

Rio Branco Belem

Poor Area Rich Area Poor Area Rich Area

Indicator N Mean SD N Mean SD N Mean SD N Mean SD

(a) Exposure dimension
EN1 42 3.62 0.85 29 3.41 0.98 45 4.11 0.91 20 4.25 1.33
EH1 0 - - 0 - - 0 - - 6 2.17 1.33
EH2 1 2 - 11 2.45 0.82 3 1 0 10 2.4 0.84
EH3 1 3 - 12 2.08 0.67 0 - - 7 1.14 0.69
EH4 3 3 1 10 2 0.47 3 1.33 0.58 6 2.83 0.75
EH5 41 2.54 1.12 29 2.59 1.12 43 1.33 0.57 19 2.21 0.85
EH6 39 2.69 1.06 29 2.41 1.21 42 1.31 0.6 17 2.12 0.93
EH7 39 2.15 0.74 29 2.34 1.04 43 1.12 0.45 18 2.33 0.77
ES1 13 2 1 9 1.67 1.32 28 1.25 0.52 3 1.67 1.15
EF1 2 3 0 14 2 0.96 0 - - 5 1.4 0.89
EP1 40 2.25 0.78 29 2.1 0.86 44 1.2 0.46 18 2.44 0.92
EP2 42 2.26 0.8 29 2.17 0.76 45 1.36 0.53 19 3.11 1.52
EP3 42 2.74 0.8 29 3.45 0.69 45 1.96 0.67 20 3.85 0.93
EP4 42 2.71 0.46 29 3.55 0.83 45 2 0.64 20 3.85 1.04
EP5 42 3.1 0.98 29 4 0.8 45 4.07 0.89 20 5 0
EP6 42 3.05 0.62 29 3.45 1.21 45 2.96 0.77 20 3.9 0.64

(b) Sensitivity dimension
SH1 42 2.86 0.65 29 3.31 0.66 45 2 0.48 20 3.45 1
SH2 42 2.71 0.64 29 3.38 0.56 45 2.22 0.56 20 3.55 1.19
SF1 42 2.76 0.53 29 3.24 0.87 45 2.38 0.53 20 3.4 1.23
SF2 42 3.88 0.67 29 4.1 1.01 45 3.27 0.86 20 3.7 1.26
SF3 42 3.6 0.63 29 4.14 0.99 45 3.33 0.77 20 4.1 1.07
SF4 42 3.4 0.8 29 3.86 1.13 45 2.38 0.68 20 4.2 0.83
SF5 42 2.76 0.53 29 3.24 0.64 45 2.24 0.68 20 3.6 0.82
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Table 3. Cont.

Rio Branco Belem

Poor Area Rich Area Poor Area Rich Area

Indicator N Mean SD N Mean SD N Mean SD N Mean SD

SP1 42 2.79 0.72 29 3.31 0.89 45 2.11 0.49 20 3.7 1.03
SP2 42 2.6 0.63 29 3.38 0.86 45 1.47 0.55 20 3.4 1.14
SP3 42 2.33 0.82 29 3.34 1.14 45 1.58 0.75 20 3.6 1.27
SP4 42 3.81 0.8 29 4 0.85 45 3.67 1 20 4.25 0.97

(c) Adaptation dimension
AN1 42 2.1 0.66 29 2.28 1.03 45 1.11 0.49 20 2.1 0.97
AH1 42 0 0 29 0 0 45 0 0 20 0.4 0.75
AH2 42 0.02 0.15 29 0.41 0.73 45 0.04 0.21 20 0.65 0.81
AH3 42 0.1 0.48 29 0.41 0.82 45 0 0 20 0.9 2.1
AH4 42 0.07 0.26 29 0.48 0.74 45 0.07 0.25 20 0.5 0.89
AH5 42 0.07 0.26 29 0.07 0.26 45 0 0 19 0.05 0.23
AH6 42 0 0 29 0.03 0.19 45 0 0 20 0.2 0.41
AS1 42 0.43 0.74 29 0.28 0.45 45 1.02 1.23 19 0.21 0.42
AS2 42 0.02 0.15 29 0.24 0.58 45 0.04 0.21 20 0.3 0.57
AS3 42 0 0 29 0.14 0.35 45 0 0 20 0.05 0.22
AS4 42 0 0 29 0 0 45 0 0 20 0 0
AF1 42 0.05 0.22 28 0.79 1.42 45 0 0 20 0.4 0.94
AF2 42 0.02 0.15 28 0.36 0.56 45 0 0 20 0 0
AP1 38 0.03 0.16 29 0.21 0.41 32 0.03 0.18 13 0.38 0.51
AP2 4 0.75 1.5 6 3.33 0.82 10 0.9 0.57 9 4 0.87
AP3 42 2.6 0.77 29 3.07 0.8 45 1.62 0.65 20 3.4 1.05
AP4 21 0.05 0.22 29 0.07 0.26 33 0.33 0.74 11 0.55 0.52
AP5 3 1 1.73 2 5 0 8 1.25 1.16 6 4 0

Note: Means and standard deviation (SD) are based on the streets that were assessed for the indicators. N is the
number of streets where the indicator could be assessed.

For the two richer areas, the one in Belem is less exposed to waterways (EN1 average
score: 4.25) when compared to the richer area in Rio Branco (EN1 average score: 3.41).
The general state of repair of buildings, which includes the quality of the materials and
condition of buildings, is similar for the richer areas of Belem (EP4 average score: 3.85)
and Rio Branco (EP4 average score: 3.55). Richer areas in Belem include large numbers
of high-rise buildings, which may only flood at street level (access points to buildings),
but flooding is unlikely to cause damage more widely to the building. The proximity of
businesses to waterways in the richer area of Belem (EH6 average score: 2.12) is similar to
that for Rio Branco (EH6 average score: 2.41) and suggests that businesses in both areas are
relatively close to local waterways. The quality of pavements/sidewalks to roadsides in
the richer areas of Belem (SP3 average score: 3.6) and Rio Branco (SP3 average score: 3.34),
and the quality of street drainage in the rich of Belem (AP3 average score: 3.4) and in Rio
Branco (AP3 average score 3.07), suggest a medium level of vulnerability and the indicators
certainly suggest better levels of resilience compared to the poorer areas of the two cities.

The distribution of scores for the Exposure and Sensitivity dimensions to resilience,
the two that were assessed entirely via scoring, are shown in Figure 7. The results suggest
that the distribution of scores was towards the higher end of the five-point scale for the
richer areas (Figure 7b,d) compared with the poorer ones (Figure 7a,c). Indeed, the poorer
area of Belem (Figure 7c) had scores that were especially on the low side. Hence, for the
Exposure and Sensitivity dimensions, there is a sense here that poorer areas have a lower
resilience compared with richer areas. To allow for a direct comparison of resilience across
all three dimensions (Exposure, Sensitivity, and Adaptation), the mean score or count per
street was calculated for the 45 indicators and the results are presented in Figure 8 as radar
(or amoeba) diagrams. Higher values for any of the indicators suggest a greater resilience.
The overall pictures of resilience presented in Figure 8 suggest that there is a clear division
between Exposure and Sensitivity between poor and richer areas. However, the poor area



Sustainability 2022, 14, 2276 16 of 22

Rio Branco (Figure 8a) would appear to have a higher level of Exposure when compared
with the poor area in Belem (Figure 8c). Interestingly, the Adaptation dimension is quite
low for all four areas but is especially low for the two poor areas.
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To explore more fully the differences between cities and areas within cities, cluster
analysis was applied to the means in Table 3. The correlation coefficients for the mean
indicator values are shown in Table 4. Most of the means are correlated to levels that are
statistically significant. The results of the cluster analysis are shown in Figure 9. For the
Exposure dimension (Figure 9a), there is no clustering of cities, but the two rich areas
do emerge as a distinct cluster. Thus, richer areas have a similar pattern based on the
Exposure indicators. However, for the Sensitivity dimension (Figure 9b) the main cluster
which emerges is for Rio Branco (poor and rich areas). This suggests a greater degree
of similarity for Sensitivity indicators within this city compared with Belem. For the
Adaptation dimension (Figure 9c), there is a clear clustering into poor and rich areas,
irrespective of city. Rich areas tend to do well with the Adaptation indicators while poor
areas do badly, and what emerges is a clear clustering based on wealth.
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Table 4. Correlation coefficients between the mean indicator values shown in Table 3.

Rio Branco Poor Rio Branco Rich Belem Poor Belem Rich

(a) Exposure
Rio Branco poor 1 0.52 * 0.83 *** 0.43 ns
Rio Branco rich 1 0.81 *** 0.89 ***

Belem poor 1 0.87 ***
Belem rich 1

(b) Sensitivity
Rio Branco poor 1 0.93 *** 0.92 *** 0.74 **
Rio Branco rich 1 0.83 ** 0.79 **

Belem poor 1 0.70 *
Belem rich 1

(c) Adaptation
Rio Branco poor 1 0.72 *** 0.89 *** 0.74 ***
Rio Branco rich 1 0.81 *** 0.96 ***

Belem poor 1 0.82 ***
Belem rich 1

Note: Indicator values are mean values for each indicator across the assessed streets. Not significant at 0.05 = ns;
* p < 0.05; ** p < 0.01; *** p < 0.001.
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4. Discussion

This research sought to develop and apply a novel method (VIFOR) to assess the
vulnerability and resilience to flooding in the urban areas of two cities in Brazilian Amazon
primarily using GSV-derived observations. Based on the suite of 45 indicators spanning the
dimensions of Exposure, Sensitivity, and Adaptation, it was possible to identify differences
in vulnerability and resilience, and these were especially apparent in terms of differences
between poorer and richer areas of the cities. Conceptualising resilience in terms of these
dimensions has the advantages of being able to explore where the main contributors to
resilience (or lack of it) may be coming from, and here the most noticeable differences
were with the Adaptation indicators, though this was also reflected in part in the Exposure
indicators. Thus, richer areas had more ‘assets’ that help with resilience, but some of these
could themselves be vulnerable to flood damage. Poorer areas had fewer ‘assets’ that
would help with Adaptation. Of course, as with any such framework much depends on the
choice of indicators. Here, the focus was upon indicators that could be assessed visually
using GSV, with some potentially also assessable via EO. This indicator set focused on
a very local scale in two particular regions of two municipalities. Other indicators such
as the DRIB-Index focus on the validation of disaster risk reduction models at a higher
spatial scale including several municipalities. VIFOR includes a disaster risk analysis at
local and microscales. However, a comparative analysis with a different geographical
location including other parameters of inequality, natural biome (e.g., outside the Amazon
region), or a microregion within the same city may present a different result using the
same list of indicators. Regarding the validation of VIFOR and the reliability of the
indicators in a different context, the availability of GSV images is obviously essential.
The methodology developed here to assess the indicators from GSV imagery can help in
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providing information when data are not available (e.g., access to institutions, bureaucracy
to acquire data, capability for field work and observations). The VIFOR methodology can
be improved and is potentially a cost-effective method compared with the use of a field
survey in areas where data are not available or for safety reasons (e.g., areas of conflicts,
COVID-19 outbreak, crimes). Reasonably up-to-date GSV imagery is also needed and the
VIFOR indicators have to be amenable to a visual assessment (e.g., quantity and quality
of infrastructure).

Access to high resolution EO data (1 m and below) may help to capture additional
features not available from GSV. Image resolution is likely to be an important factor in EO.
Hence, the assessment of urban greenspace has often been a focus with GSV- and EO-based
systems in urban spaces, but there are no published examples as yet of using these tools to
assess vulnerability to disasters such as flooding. However, EO is also limited to populating
indicators that can be passively ‘seen’ using visual wavelengths or the use of ‘active’ EO
such as the use of radar. Machine learning or automatic measurements to process multiple
GSV in the same location or extensive areas of the city integrated with EO time-series in
real time could improve the quality of the results. The gathering of EO data with multiple
tools may also enhance the VIFOR framework by using new algorithms or methods that
identify key indicators of our proposed 45 indicators. In the Amazon region, one of the
major challenges is to monitor the differences in vegetation and land use characteristics
between each biome [39]. The National Space Research Institute of Brazil (INPE) monitors
deforestation via the Amazon Deforestation Monitoring Project (PRODES), but only with
a minimum unit of 6.25 ha, and it does not include some of the urban areas [39], such
as the 1 km2 area of VIFOR. The improvement of remote sensing products, such as the
50 cm High-Resolution Planet Labs tasking provides rapid daily revisit that help to inform
actions [40]. However, private high-resolution data with added value information are
expensive and are not affordable to every user. Therefore, the GSV-based approach we
demonstrate here provides a simple and ready-to-use tool when funding is not available
to pay for the latest technology available. It requires some time and patience to monitor
and measure the local area street by street, but it provides helpful information for a specific
local context. Similarly, it could help urban planners and policymakers to target further
investments and actions to mitigate the effects of flooding in particular streets and locations
of the city.

Fundamental to prioritizing disaster mitigation efforts is quantifying flood hazard,
exposure, and vulnerability [41]. EO data and remote sensing approaches can directly ob-
serve inundation [41], but there are several other indicators that affect lives and livelihoods.
This study extends previous research [17,18] by including an extensive list of indicators that
take note of dwelling and business locations, conditions, and vulnerabilities, and location-
based general socioeconomic resilience features (e.g., observable pharmacies, community
centres, etc.). VIFOR is a manual scoring process and, as such, has some limitations. For
example, further research may be beneficial in order to adapt and integrate EO data to
cover gaps where street view images are not available, although we expect only a subset of
the 45 GSV indicators for VIFOR here to be measurable in this way. Overall, we believe
that the GSV-based VIFOR approach has several strengths, notably: (i) accessibility and
no cost to access GSV, (ii) possibilities to integrate and expand the research with machine
learning, (iii) expandability to larger areas, and (iv) inclusion of EO data.

In addition to the selected 45 indicators included in the current VIFOR, its complemen-
tation with several other local data sources (e.g., number of health workers, doctors, crime
rates) will help to better understand the trends and resilience of a particular location. Future
work and new applications will be valuable to test and develop the VIFOR framework in
different urban or other settings and could expand this approach further by incorporating
the use of social media (e.g., Twitter, Facebook, Instagram) and high resolution EO data.
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5. Conclusions

This paper presents the novel Visual Indicator Framework for Resilience (VIFOR)
framework based on GSV imagery to assess the vulnerability and resilience of two flood
prone urban areas. The framework is useful in locations where data are not available
or difficult to access from local authorities. The approach provides a valuable source of
information to monitor specific visual indicators, as suggested in our list of 45 indicators.

The existing literature provides several examples of the use of GSV to assess specific
indicators. The VIFOR framework extends this by leveraging easy to use and freely
available GSV images to enable a multi-indicator assessment of vulnerability and resilience
to flooding that is accessible to nonexperts. The framework is likely to be adaptable to
several natural and other hazards according to GSV images and local geographical contexts.
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