
����������
�������

Citation: Cebekhulu, E.; Onumanyi,

A.J.; Isaac, S.J. Performance Analysis

of Machine Learning Algorithms for

Energy Demand–Supply Prediction

in Smart Grids. Sustainability 2022, 14,

2546. https://doi.org/10.3390/

su14052546

Academic Editors: Luis

Hernández-Callejo, Sergio

Nesmachnow and Sara

Gallardo Saavedra

Received: 22 December 2021

Accepted: 27 January 2022

Published: 22 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Performance Analysis of Machine Learning Algorithms for
Energy Demand–Supply Prediction in Smart Grids

Eric Cebekhulu †, Adeiza James Onumanyi *,† and Sherrin John Isaac †

Advanced Internet of Things, Next Generation Enterprises and Institutions,
Council for Scientific and Industrial Research, Pretoria 0001, South Africa; ecebekhulu@csir.co.za (E.C.);
sisaac@csir.co.za (S.J.I.)
* Correspondence: aonumanyi@csir.co.za
† These authors contributed equally to this work.

Abstract: The use of machine learning (ML) algorithms for power demand and supply prediction
is becoming increasingly popular in smart grid systems. Due to the fact that there exist many
simple ML algorithms/models in the literature, the question arises as to whether there is any
significant advantage(s) among these different ML algorithms, particularly as it pertains to power
demand/supply prediction use cases. Toward answering this question, we examined six well-known
ML algorithms for power prediction in smart grid systems, including the artificial neural network,
Gaussian regression (GR), k-nearest neighbor, linear regression, random forest, and support vector
machine (SVM). First, fairness was ensured by undertaking a thorough hyperparameter tuning
exercise of the models under consideration. As a second step, power demand and supply statistics
from the Eskom database were selected for day-ahead forecasting purposes. These datasets were
based on system hourly demand as well as renewable generation sources. Hence, when their
hyperparameters were properly tuned, the results obtained within the boundaries of the datasets
utilized showed that there was little/no significant difference in the quantitative and qualitative
performance of the different ML algorithms. As compared to photovoltaic (PV) power generation,
we observed that these algorithms performed poorly in predicting wind power output. This could be
related to the unpredictable wind-generated power obtained within the time range of the datasets
employed. Furthermore, while the SVM algorithm achieved the slightly quickest empirical processing
time, statistical tests revealed that there was no significant difference in the timing performance of
the various algorithms, except for the GR algorithm. As a result, our preliminary findings suggest
that using a variety of existing ML algorithms for power demand/supply prediction may not always
yield statistically significant comparative prediction results, particularly for sources with regular
patterns, such as solar PV or daily consumption rates, provided that the hyperparameters of such
algorithms are properly fine tuned.

Keywords: Eskom; forecasting; hyperparameter; machine learning; tuning; wind

1. Introduction

Accurate forecasting of the power being generated and consumed in smart grid
systems is crucial to ensuring grid sustainability [1]. Consequently, power demand/supply
forecasting continues to be an area of contemporary research, and for this reason, machine
learning (ML) algorithms have become key instruments for such forecasting obligations [2].

However, it remains unclear as to which ML algorithm performs best for power
demand/supply forecasting in smart grid (SG) systems. Some specific reasons for such un-
certainties are well documented in many review articles [3,4], with a few noted as follows:

• It is noted that the number of simple and complex ML algorithms/models in the
literature has grown exponentially, thus making it almost impossible to compare all
available models [3].

Sustainability 2022, 14, 2546. https://doi.org/10.3390/su14052546 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14052546
https://doi.org/10.3390/su14052546
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-0166-0786
https://orcid.org/0000-0002-0259-9040
https://doi.org/10.3390/su14052546
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14052546?type=check_update&version=2

Sustainability 2022, 14, 2546 2 of 26

• There are many contradictory conclusions regarding the best performing algorithm(s)
mainly due to the lack of proper statistical significance analyses of many output results.
For example, the authors in [5,6] claim that statistical techniques (i.e., regression-based
approaches) perform better than simple ML methods, whereas the findings in [7–9]
suggest that ML methods typically outperform statistical techniques. Thus, such
contradictory reports exist in the literature.

• Some authors can be prejudiced toward publishing only those metrics that demon-
strate how well their approach may have outperformed other methods, while failing
to report other relevant metrics of concern [3]. Such practices can distort the findings
of such studies in favor of the suggested method(s) over existing ones, which should
not be the case.

• Furthermore, many research works neglect to perform proper hyperparameter tuning
exercises of the various algorithms under consideration before conducting comparison
assessments. In other cases, crucial information about the source of the training and
testing data is omitted, as is the proportion of the training and test split, making it
difficult to replicate previously published results [3]. Note that the difference between
a hyperparameter and hyperparameter tuning is that a hyperparameter is a parameter
whose value is used to control the learning process and to determine the values of
the model parameters of a learning algorithm, whereas hyperparameter tuning is the
problem of selecting the optimal set of hyperparameters for a learning algorithm [10].

Consequently, following the above concerns, the current article describes an inde-
pendent investigation of the performance of some well-known ML algorithms in terms of
their use in power supply/demand prediction. This article does not propose a new ML
method; rather, it provides evidence as to whether there is a true difference in using these
different ML algorithms for power prediction use cases. Thus, our findings are intended to
help smart grid designers make better decisions about which ML algorithm to use in their
designs. Furthermore, the goal of this paper is to inform the smart grid research community
that, as long as these algorithms are properly fine tuned, it may be possible to deploy any
of these algorithms for prediction purposes in smart grid systems since within the limits of
the dataset used in our study, there existed little or no statistically significant difference in
their performance. Additionally, our paper emphasizes the importance of adhering to the
best practices proposed in comparing different ML algorithms (see [3]), such as ensuring
that a thorough statistical significance analysis of the output results is conducted, using
multiple metrics of comparison, and providing in-depth details about the training and
testing data used in the study. Thus, summarily, the contributions of the present article can
be stated in the following:

1. We conducted a comparative performance analyses of six well-known ML algorithms,
namely the artificial neural network (ANN), Gaussian regression (GR), k-nearest
neighbor (k-NN), linear regression (LR), random forest (RF), and the support vector
machine (SVM).

2. We examined three different data sources spanning across the system hourly demand,
photovoltaic, and wind generation datasets from the Eskom database. We observed
that the different ML algorithms considered herein performed poorly, particularly
on the wind power generation dataset, which we attributed to the highly stochastic
nature of the wind source.

3. A thorough statistical significance analysis of the different methods revealed that
within the confines of the datasets used in this study, there was little/no significant
difference in the performance of the different ML algorithms. Thus, this early obser-
vation suggests that any of the simple ML algorithms considered here can be used for
demand/supply forecasting, albeit after a thorough hyperparameter tuning exercise
is conducted.

The remainder of the paper is structured as follows: Section 2 presents a summary
of the related work. Section 3 details the methodology to include a summary of the ML
algorithms, datasets, and the metrics of performance considered in our study. Section 4

Sustainability 2022, 14, 2546 3 of 26

presents the results and discussion, with the conclusion drawn in Section 5. A list of
mathematical symbols used in this article is provided in the Abbreviations part.

2. Related Work

This section discusses the related work, particularly those concerned with prediction
analysis in smart grids using various ML algorithms. Different prediction models for
microgrids are also discussed, many of which are focused on power generation and con-
sumption. Many of these models typically implement ML techniques to forecast short-term
and day-ahead electricity demands.

First, it is noted that prediction errors can lead to an imbalance between power supply
and demand; thus, load forecasting is essential for transmission system operators because
of the impact of prediction accuracy on power system operations. Hence, improving
energy demand prediction methods could enable a power grid to become more stable. A
comparison of different ML techniques for short-term demand prediction on microgrids was
conducted in [11] to improve prediction accuracy. The comparison was between ensemble
prediction network (EPN) and long-short term memory (LSTM), neural network, and multi-
layer perceptron. The EPN technique outperformed other forecasting methods when error
was evaluated on a wide range of data. It was shown that prediction accuracy influences the
operational cost of energy too. In [12], the kernel-based extreme learning machine (KELM)
algorithm was compared to the extreme learning machine (ELM) and the Gaussian kernel
for predicting short-term electricity prices on a yearly dataset from the Australian market.
The KELM technique was shown to outperform other kernel methods, but the Gaussian
kernel-based ELM was more efficient for dealing with complexities in electricity pricing data
and accurately predicting the price profile pattern. An automated reinforcement learning-
based multi-period method for forecasting renewable power generation and load was
proposed in another interesting article [13]. It was demonstrated that, when compared to
traditional scheduling methods, the proposed method, along with its forecasting capability,
significantly reduced operating costs while calculating at a faster rate. In a separate
work, a least squares SVM (LS-SVM) coupled with the bacterial colony chemotaxis (BCC)
optimization algorithm was proposed to improve the accuracy and speed of short-term load
forecasting. The method was determined to achieve better accuracy and faster processing
speed, compared with the ANN and LS-SVM based on grid search [14].

Various predicting techniques have been proposed to sustain the amount of energy
generated to meet the demands of consumers, and some methods have been developed to
enhance existing ones. For example, in [15], the ANN was compared with the multi-variable
regression (MVR) and support vector machine (SVM) for improving energy dispatch for a
residential microgrid based on solar power forecasting. The ANN model was most efficient
in this case, with an accurate model for forecasting hourly irradiance and generated power.
Unlike in [16], which perceived K-means as a new algorithm to predict irradiance intervals
for stochastic generation in microgrids, improvements are always made as technology
advances, as seen in [17], which indicates that the use of the regression technique is the way
to go. They demonstrated that it yields improved performance since it has longer reliability
and less processing time for the prediction of power generated in microgrids. Power
forecasting will also be vital to the success of future energy management schemes, such
as in transactive energy models [18]. In addition, IoT devices in smart grids will require
efficient communication protocols for transmitting forecast data to a remote or cloud server.
An efficient interface for such a purpose between CoAP and OSGP was proposed in [19],
which can ensure that data are exchanged effectively between IoT devices used in home and
industrial applications and an SG infrastructure. Other device development and prediction
concepts can be gleaned from [20] in order to develop systems that can be used for smart
grid prediction use-cases.

Furthermore, many methods have been used to forecast energy consumption, from an
hour ahead to a day ahead, depending on various weather conditions. For comparison pur-
poses, Ref. [21] stated that the SVM outperformed other algorithms for hourly prediction of
load power consumption in a building. Power consumption prediction algorithms for the

Sustainability 2022, 14, 2546 4 of 26

day ahead are either ML or AI. In [22], a hybrid AI model (a combination of feed-forward
artificial neural network (FFANN), wavelet transform (WT), and simulated annealing (SA))
was used to predict power demand for a day ahead. The hybrid model was shown to be
more efficient as compared to using just one method, as in [23], which implemented the
neural network technique for similar day-ahead prediction conditions. Ref. [24] focused on
the use of ensemble learning techniques to predict the power consumption of a building
with given weather forecast information. They noted that the gradient boosted trees yielded
the best performance among the different ensemble methods used. Ref. [25] evaluated
different AI algorithms (ARIMA, SARIMA, SVM, XGBoost, RNN, LSTM, and LSTM-RNN)
at a university campus microgrid to predict power consumption. They suggested that
RNN, LSTM, and RNN-LSTM provided the best MSR, MAE, MAPE, and R-squared when
compared to the other techniques used.

Table 1 is essentially a summary of these various related comparative studies. Many
of these studies, like previous observations in the literature, compare only a few ML
algorithms, and frequently only within the same class.

Table 1. Summary of the related studies, with key characteristics from each study compared to
the others.

Ref. Year Methods
Compared

Metrics
of

Comparison

Was Statistical
Significance

Analysis
Performed?

Was
Processing

Time Measured?
Findings

[11] 2021
EPN, LSTM,

ANN RMSE, MAPE No
Yes:

EPN was fastest

EPN outperformed LSTM,
MLP, SVR and ETR in terms
of RMSE over a wide variety
of data

[12] 2021
ELM

Kernel-based technique
MAE, MAPE,

RMSE No No

Kernel based methods
performed better than
ELM; Gaussian kernel per-
formed better than other
kernel methods.

[15] 2020
ANN, MVR,

SVM MAPE, MSE No No
The developed neural net-
work model outperformed
the MVR and SVM

[17] 2020
Regression,

ANN

MSE, RMSE,
R-squared

Chi-squared
No No

Regression approach has
a better performance than
some state-of-the-art method
such as feed forward
neural network.

[21] 2019
LR, ANN,

SMO regression, SVM
MAE, RMSE,

CC No
Yes,

but only
for SVM

SVM performed better
than other algorithms
compared with.

[22] 2019
FFANN, WT,

SA
MAPE, RMSE,

NMAE No No
FFANN performed bet-
ter than BP-, GA-, and
PSO-FFANN schemes

[23] 2020 LSTM RMSE, MAE No No No comparison

[24] 2018
MLR, decision tree, RF,
Gradient boosted trees ARE No No Gradient boosted trees per-

formed better than others.

[25] 2021

ARIMA, SARIMA,
SVM, XGBoost,

RNN, LSTM,
LSTM-RNN

MAE, MAPE,
MSE, R-squared No No

Deep learning approaches
such as RNN, LSTM achieved
better results than time se-
ries and machine learning.
While hybrid of RNN-LSTM
achieved the best accuracy

Present
Article 2022

ANN, GR,
k-NN, LR,
RF, SVM

CC, RAE, RRSE,
MAE, RMSE Yes Yes

There was no statistical
significant difference in
the performance of the
different methods

Sustainability 2022, 14, 2546 5 of 26

Furthermore, it is clear that only a few metrics are used to compare these methods,
which tends to bias the conclusions that can be drawn from the comparison exercise. Most
importantly, none of the recently published studies performed a statistical significance test
on their output results. As a result, their conclusions may be biased, making it difficult
to determine which algorithm truly performs best. Additionally notable is the absence of
timing performance, which limits an ML designer’s ability to make appropriate choices.
Finally, the findings of these studies demonstrate that no single ML algorithm performs best
across all studies. As a result, in the absence of thorough statistical significance tests, many
of these conclusions may not be truly reliable. Thus, in this article, we attempt to conduct
an independent study of these well-known ML algorithms in order to determine whether
there is any significant difference in their performance based on thorough significance tests.
Our findings will help to inform the research community in this area, as well as assist
designers in making sound decisions when developing smart grid systems.

3. Methodology

We discuss in this section the different simple ML algorithms considered in our study,
the datasets used, and the metrics used to analyze the performance of the different algorithms.

3.1. Machine Learning Algorithms

There are many platforms and learning libraries that can be used to implement differ-
ent ML algorithms, many of which circumvent the need to write codes. However, in this
section, we present only a summary of each ML algorithm as a basis for understanding
how they work. According to the meta-analysis of the recent literature provided in Table 1,
the underlying ML algorithms include the regression and artificial neural network-based
approaches. As a result, we considered these foundational techniques in our research
because, in addition to being simple, they use fewer computational and memory resources
than the more recent deep learning approaches. Furthermore, in the aftermath of new
smart grid applications, which are based on the Internet of Things (IoT), it is critical to
consider these simpler methods due to the limited processing and memory capacities of
many IoT-based devices, which justifies the inclusion of the methods discussed below in
our study.

3.1.1. Artificial Neural Network

There are many works that describe the ANN [26–28], and we aim only to present
its basic structure and how it works. The ANN, also called the multilayer perceptron
(MLP), typically comprises an input layer, single or multiple hidden layers, and a single or
multiple output layer(s) (depending on the specific application), with each layer comprising
a different number of nodes as typically represented in Figure 1.

x1

x2

xN

w1

w2

wN

Output layerHidden layerInput layer

Weights

b

(a)

x1

x2

xn

Input layer Output layerHidden layers

(b)

Figure 1. Representations of an ANN: (a) Single-layer (b) Multi-layer.

Sustainability 2022, 14, 2546 6 of 26

The input data, which contain the independent variables, also called features or
attributes, are denoted as x1, x2, · · · , xn, whereas the output (i.e., dependent) variable
is denoted as ỹ. The weights connecting the input and hidden nodes are denoted as
w1, w2, · · · , wn. The ANN aims to minimize the error, which is the difference between the
correct y and the predicted values ỹ via a cost function [26]. The cost function computes
this error, wherein the term “cost” refers simply to the error. The steps taken by the ANN
can be summarized as follows, but in-depth details can be found in [27,29]:

1. The dot product between the inputs and weights is computed. This involves multiply-
ing each input by its corresponding weight and then summing them up along with a
bias term b. This is obtained as

Z =
N

∑
i=1

wixi + b (1)

2. The summation of the dot products is passed through an activation function. The
activation function bounds the input values between 0 and 1, and a popular function,
which we used in our study, is the sigmoid activation function, stated mathematically as

φ(Z) =
1

1 + e−Z (2)

The sigmoid function returns values close to 1 when the input is a large positive value,
returns 0 for large negative values, and returns 0.5 when the input is zero. It is best
suited for predicting the output as a probability, which ranges between 0 and 1, which
makes it the right choice for our forecasting problem. The result of the activation
function is essentially the predicted output for the input features.

3. Backpropagation is conducted by first calculating the cost via the cost function, which
can simply be the mean square error (MSE) given as

MSE =
1
N

N

∑
i
(ỹi − yi)

2 (3)

where yi is the target output value, ỹi is the predicted output value, and N is the num-
ber of observations (also called instances). Then, the cost function is minimized, where
the weights and the bias are fine tuned to ensure that the function returns the smallest
value possible. The smaller the cost, the more accurate the predictions. Minimiza-
tion is conducted via the gradient descent algorithm, which can be mathematically
represented as

W∗x = Wx − a(
∂Error
∂Wx

) (4)

where W∗x is the new weight, Wx is the old weight, a is the learning rate, and ∂Error
∂Wx

is
the derivative of the error with respect to the weight, where ∂Error is the cost function.
The learning rate determines how fast the algorithm learns. The gradient descent
algorithm iterates repeatedly (called the number of epochs) until the cost is minimized.
Consequently, the steps followed can be summarized as follows:

(a) Define the inputs (i.e., features) and output variables.
(b) Define the hyperparameters.
(c) Define the activation function and its derivatives.
(d) Train the model and make predictions.

Following the preceding steps, the ANN’s hyperparameters can be fine-tuned using
the GridsearchCV method, with details of using the GridsearchCV well documented in [30].
The number of neurons, activation function, learning rate, momentum, batch size, and
epochs are among the hyperparameters fine tuned in our study.

Sustainability 2022, 14, 2546 7 of 26

3.1.2. Linear and Gaussian Regression

When making day-ahead energy demand and supply predictions, we are often faced
with a single input variable system, and thus, a simple linear regression model can be used
for prediction purposes. Here, the model comprises an input or predictor variable that
helps to predict the output variable, and this is represented by a simple linear equation.
However, for generalization sake, the idea behind the regression is to estimate from a
sample the parameters of the model generally written as [31]

ŷ = β0 + β1x1 + · · ·+ βN xN + ε (5)

where ŷ is the predicted output, β1, β2, · · · , βN are the parameters (i.e., the model coeffi-
cients), x1, x2, · · · , xN are the input variables (or features), and ε is a random error with
ε ∼ N (0, σ2), where σ2 is the variance value. By determining these parameter values (i.e.,
β), a line of best fit can be obtained and used for prediction purposes. The method of
ordinary least squares can be used for parameter estimation, and this involves minimizing
the squared differences between the target and predicted outcomes (i.e., the residuals) [31].
The sum of squares of the error, termed the residual sum of squares (RSS), is computed
as RSS = ∑N

i (yi − ŷi)
2, which can then be minimized using, for example, the gradient

descent algorithm instead of the ordinary least squares approach. The gradient descent
algorithm commences with sets of initial parameter values and advances iteratively to-
ward a set of parameter values that minimize the function. The iterative minimization is
accomplished via derivatives, which involves taking steps in the negative direction of the
function gradient.

However, in using the linear regression approach, it is essential that we make as-
sumptions regarding the structure of the function to be used, for example, by making a
choice as to which is a better fit: a linear or a quadratic function. Such a choice can be
independently decided upon by certain methods, such as the Gaussian regression (GR)
(also called Gaussian process regression) approach [32]. Essentially, the GR generates a
number of candidate functions that can model the observed data, and it attempts to find
the function that best fits the data. Such a best fit function is then used for predicting future
occurrences. The main difference between the GR and LR is that the GR uses a kernel,
which typically represents the covariance matrix of the data [33]. Thus, the choice of the
kernel function often influences strongly the performance of the GR algorithm. Further
theoretical details regarding the GR algorithm can be found in [34]. The hyperparameters
of the LR and GR fine tuned in this study include the attribute selection method, kernel
and the filter type.

3.1.3. k-Nearest Neighbour

The k-NN algorithm is a learning algorithm that predicts the outcome of a test value
(input data) based on the k nearest neighbors (i.e., other close data points) and the distance
computed between them [35]. By calculating the distance between the k points in the
training data closest to the test value, the test value is considered to belong to the category
with the least distance. The distance measure can be based on the Euclidean, Manhattan, or
Minkowski methods [36].

In using the k-NN algorithm, first the data may need to be standardized/normalized
since the outcome may be fairly different due to some features having large variances. Then,
it is essential to determine an optimal k value, which is often obtained via a hyperparameter
tuning exercise. In this case, a range of k values are tested, and a good value is obtained
that minimizes the error rate of the model.

The k-NN has remained viable in many application areas because of its simplicity and
ease of application, its dependence on only two main metrics, namely the k and the distance
metric, and its ability to easily add new data to the algorithm. The hyperparameters fine
tuned for the k-NN are the k value and the type of neighbor search algorithm.

Sustainability 2022, 14, 2546 8 of 26

3.1.4. Random Forest

The RF is an ensemble of decision trees used for performing both regression and
classification tasks [37]. It is built on the basis of the decision tree algorithm, which is
capable of fitting complex datasets. The concept of the tree is to search for a variable–value
pair within the training set and then to split this to obtain the best two child subsets.
Essentially, when making predictions, each data point begins at the top of the tree (as
shown in Figure 2) and then down through the branches until it reaches a leaf node, where
no further branching can be achieved.

Random
Forest

N-Tree

Class 2

Aggregator

Final
Class

1-Tree

Class 1

2-Tree

Class 2

Data

Figure 2. A representation of the concept of the random forest algorithm.

Being an ensemble approach, the RF aggregates multiple outputs generated via dif-
ferent sets of decision trees toward obtaining better results. The idea is to take an average
over the outcome of each predictor, thus reducing the variance toward arriving at a better
prediction model that presents fewer cases of overfitting the training data [38]. Thus, the RF
becomes a strong learner, whereas the individual decision trees are considered weak learn-
ers. The RF algorithm is trained via the bagging method or bootstrap aggregating approach,
which comprises randomly sampling subsets of the training data [39]. It then fits the model
to these smaller datasets and then aggregates the predictions. This approach allows for
many instances to be used repeatedly during the training phase. Essentially, the RF can be a
slow algorithm since it has to grow many trees during the training stage. Further technical
details regarding the RF algorithm can be accessed in [37]. The fine-tuned hyperparameters
of the RF algorithm include the maximum depth and the number of iterations.

3.1.5. Support Vector Machine

The SVM aims to determine a hyperplane in an N-dimensional space, where N is the
number of features, which distinctly classifies the data points [40]. The SVM is a generalized
version of the maximal margin classifier, with provision for more data types to be better
classified. Essentially, the SVM uses the hyperplane to separate optimally two convex
hulls of points (data instances), by ensuring that the hyperplane is equidistant from the
two convex hulls.

In this situation, the hyperplane is a classification border. It is usually a N − 1 di-
mensional flat affine subspace, which is a line in two dimensions and a plane in three
dimensions [41]. In terms of classification, the goal is to find the plane that optimizes the
distance between two classes of data points. The hyperplane’s size depends on the number

Sustainability 2022, 14, 2546 9 of 26

of features. In the SVM domain, support vectors are data points on or near the hyperplane.
Using these support vectors allows us to optimize the hyperplane’s margin. They are called
support vectors because any change in their position affects the hyperplane.

For non-linearly separated data points, the SVM adopts the concept of kernels to
classify such points. A kernel refers to a function that maps lower dimensional data into
higher dimensional ones. The function takes two vectors of any dimension as input and
outputs a score (a dot product) that quantifies how similar the input vectors are. If the
dot product is small, then the vectors are different, whereas if they are large, the vectors
are similar. The SVM can use a variety of kernel functions, but one popular kernel is
the Gaussian radial basis function (RBF). The RBF Gaussian kernel K(x, y) is calculated
as follows:

K(x, y) = exp−
(
||x2 − y2||2

2σ2

)
(6)

where x and y are N-dimensional independent variables, and σ is assumed to be the
standard deviation of x and y, with || • || being the Euclidean norm. Further formal and
detailed explanation and use of the SVM can be obtained in [42,43], with the following
hyperparameters fine tuned in the present study, namely, the kernel and filter type.

3.2. Dataset

We considered the system hourly demand and renewable power generation data
obtained from the Eskom database in our study (https://www.eskom.co.za/dataportal/,
accessed on 1 October 2021). Eskom is a South African electricity public utility company
established to be the Electricity Supply Commission [44]. It owns and operates a number
of noteworthy power plants that provide roughly 95% of South Africa’s electricity [45].
Eskom provides data on power generated, consumed, and from open cycle gas turbines,
renewables and power outages. Our research focused on demand-side data and renew-
able energy sources, which are reflective of a typical smart grid. Thus, the use cases are
as follows:

1. System hourly demand: This dataset presents the hourly power demand measured
from 5 to 18 October 2021 (https://www.eskom.co.za/dataportal/demand-side/
system-hourly-actual-and-forecasted-demand/, accessed on 1 October 2021). It is
classed into the residual and the Republic of South Africa (RSA) contracted demand.
However, we considered only the residual demand data in our study, which suffices to
compare the different algorithms. The entire dataset comprised 528 data points, with
the residual demand data comprising 336 data points collated from 5 to 10 October
2021, and 192 data points from the residual forecast dataset provided from 11 to
18 October 2021. In this case, a training to testing split ratio of 65% to 35% was used,
respectively.

2. Hourly renewable generation: This dataset presents the hourly renewable generation
per resource type, namely, from photovoltaic (PV) and wind sources (https://www.
eskom.co.za/dataportal/renewables-performance/hourly-renewable-generation/, ac-
cessed on 1 October 2021). These datasets reflect only renewable sources owned by
Eskom or that Eskom has contracts with. The PV and wind datasets comprised
960 data points in total, each measured per hour from 1 September 2021 to 10 October
2021. For both the PV and wind use cases, we used 80% of the dataset for training and
20% for testing. This implies that 770 data points from 1 September 2021 to 2 October
2021 were used to train each model, whereas 190 data points from 3 to 10 October
2021 were used for testing purposes. It should be noted that the term “target” used
henceforth in this article refers to the actual data against which the different models
are compared with during the testing phase.

The above use cases were selected because a typical grid-tied microgrid in a smart grid
system can be expected to supply power to consumers both from the main grid as well as
from local renewable sources. Consequently, when in the grid-tied mode, the system hourly
actual demand dataset suffices as a relevant use case for prediction purposes. On the other

https://www.eskom.co.za/dataportal/
https://www.eskom.co.za/dataportal/demand-side/system-hourly-actual-and-forecasted-demand/
https://www.eskom.co.za/dataportal/demand-side/system-hourly-actual-and-forecasted-demand/
https://www.eskom.co.za/dataportal/renewables-performance/hourly-renewable-generation/
https://www.eskom.co.za/dataportal/renewables-performance/hourly-renewable-generation/

Sustainability 2022, 14, 2546 10 of 26

hand, when in an island mode, the hourly renewable generation dataset becomes relevant
for forecasting sake. Thus, both use cases are useful for designing energy management
systems capable of day-ahead or week-ahead demand and supply forecasting in smart
grids. Such knowledge helps to anticipate the amount of electricity that will be used hourly
so that sufficient generation can be made available to meet such electricity demand.

3.3. Performance Metrics

As noted in Section 1, the possibility for bias arises when only a few metrics are
reported while other notable metrics remain unreported [3]. Since each metric reports
different information regarding an algorithm’s performance, some articles tend to only
report those metrics that reflect their method’s improved performance while shunning
others. However, to avoid such unacceptable practices, we used a variety of notable metrics
to compare the different models with aim to provide a broader perspective regarding the
performance of the different models. To this effect, five well-known evaluation metrics
were considered, and they are discussed as follows.

3.3.1. Correlation Coefficient

The Pearson correlation coefficient (CC) rxy can be computed for any model as follows

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

(7)

where n is the sample size, xi, yi are the individual sample points (i.e., paired instances)
indexed with i for a pair of random variables (X, Y), and

x̄ =
1
n

n

∑
i=1

xi (8)

is the sample mean for X and similarly obtained for Y as follows

ȳ =
1
n

n

∑
i=1

yi (9)

Essentially, the value of rxy ranges from −1 to 1, where a value of 1 means that the
relationship between X and Y can be described by a linear equation. In this case, all data
points fall on a line. The correlation sign (− or +) follows from the regression slope, where
a + sign means that Y increases as X increases and vice versa for a − sign. The case of
rxy = 0 means that no correlation exists between X and Y. Other intermediate values
(i.e., 0 < rxy < 1 and −1 < rxy < 0) describe partial correlations with values closer to 1 or
−1 representing a better model based on the context and purpose of the experiment.

3.3.2. Relative Absolute Error

The relative absolute error (RAE) is the ratio of the total absolute error produced by a
model to the total absolute error of a simple predictor. In this case, the simple predictor is
just the average of the target values. The RAE is thus computed as

RAE =
∑n

i=1 |Pi − Ai|
∑n

i=1 |Ā− Ai|
× 100% (10)

where Pi is the predicted value by a model for an instance i out of a total number of n
instances, Ai is the target value for the instance i, and Ā is the mean of the target values
given by

Ā =
1
n

n

∑
i=1

Ai (11)

Sustainability 2022, 14, 2546 11 of 26

One advantage of the RAE metric compared to the root mean square error (RMSE)
described later is that it treats each error equally by ensuring that only the absolute value is
considered and not the square of the error. Consequently, systems that are invariant to the
effects of outliers can be best evaluated by the RAE instead of the RMSE.

3.3.3. Root Relative Square Error

The root relative square error (RRSE) is the ratio of the square root of the sum of the
squared errors to the sum of the squared errors of a simple predictor. Again, the simple
predictor is the average of the target values. The RRSE is given as

RRSE =

√
∑n

i=1(Pi − Ai)2

∑n
i=1(Ā− Ai)2 × 100% (12)

where all terms remain as previously defined. By computing the square root of the relative
squared error, the RRSE reduces the error to a similar magnitude range as the RAE. How-
ever, unlike the RAE, the RRSE penalizes outliers with large error values, thus allowing
models with plausible outliers to be easily identified.

3.3.4. Mean Absolute Error

The mean absolute error (MAE) is a measure of the error between a pair of random
variables expressing the same event. It is computed as

MAE =
1
n

n

∑
i=1
|Pi − Ai| (13)

Following (13), it can be observed that an errorless model will generate a zero MAE
value, since Pi = Aj, thus indicating that the MAE ranges from 0 to infinity, with 0 being
an ideal model. For this reason, the MAE is a boundless metric and thus, is data specific.
Nevertheless, it remains a valuable metric for comparing models that are based on the
same input data.

3.3.5. Root Mean Square Error

The root mean square error (RMSE) is a measure of accuracy for comparing the forecast
errors of different models based on the same dataset. It is the square root of the average of
the squared errors, mathematically computed as follows

RMSE =

√
∑n

i=1(Pi − Ai)2

n
. (14)

Since computing the RMSE involves squaring the difference between the predicted and
the target values, thus, a few large differences will definitely increase the RMSE compared
to the MAE. Consequently, the RMSE is sensitive to outliers, and hence useful for analyzing
models with outlier tendencies.

4. Results and Discussion

In this section, we present and discuss both quantitative and qualitative results ob-
tained from the evaluation and analysis of the ML models considered in our study. By
quantitative analysis, we present and discuss the evaluation metrics as they relate to the
performance of the different models. By qualitative analysis, we refer to the visual assess-
ment of the different displays of the predicted against the target values of the different
models. To this effect, firstly, we conducted a parameter tuning exercise toward ensuring
that all models are evaluated based on their best parameter values. For this purpose, the
GridSearchCV tool was used with discrete sets of parameter values designated per model.
The system hourly demand dataset was used for the fine-tuning process. Thereafter, the
fine-tuned models were tested and compared based on the hourly renewable generation

Sustainability 2022, 14, 2546 12 of 26

dataset, and the results are discussed. The models were simulated using the Waikato
Environment for Knowledge Analysis platform upon on a computer having an i7-10750H
central processing unit and an NVIDIA GeForce GTX 1650 Ti GPU.

4.1. Hyper-Parameter Optimization
4.1.1. Artificial Neural Network

ANN algorithms are typically characterized by a number of hyperparameters that
should be properly fine tuned to obtain models that perform optimally. These hyperparam-
eters are the number of neurons, activation function, learning rate, momentum, batch size,
and epochs. However, since the hyperparameter tuning procedure can be a cumbersome
and time-consuming process, consequently, we used the sigmoid as the activation function
and we kept the batch size fixed for all methods at 100, whereas the epoch was fixed at 500.
All other hyperparameters were then fine tuned accordingly.

Table 2 presents the different parameter settings and their respective performances
based on the CC, RAE, and RRSE. The number of hidden layers and nodes per layer is
denoted as (x1, x2, · · · , xn), where the number of elements (i.e., index) n represents the
number of hidden layers, while the value of each element denotes the number of nodes per
layer. Essentially, we examined a maximum of two hidden layers with the number of nodes
per hidden layer increased from 6, 9, to 12. We then considered three states for the learning
rate classed as low (0.1), medium (0.3), and high (0.5). For the momentum parameter, we
examined three values at 0.1, 0.2, and 0.4. These values were selected to understand how
the model performs under increasing or decreasing values. The following are our findings.

Table 2. Performance of different ANN parameter settings.

Hidden Layer Learning Rate Momentum CC RAE (%) RRSE (%)

6 0.1 0.4 0.8909 44.6982 45.9884
6 0.3 0.2 0.8897 48.2524 49.068

6,6 0.1 0.1 0.8895 44.1209 45.73
6,6 0.5 0.4 0.8795 47.2956 49.1213
9 0.1 0.4 0.8909 44.7817 46.0154
9 0.3 0.2 0.8884 48.9404 49.2918

9,9 0.1 0.1 0.8894 44.0081 45.7508
9,9 0.5 0.4 0.8844 47.4725 51.764
12 0.1 0.4 0.8909 44.8448 46.0465
12 0.3 0.2 0.888 48.7637 49.0518

12,12 0.1 0.1 0.8894 43.8782 45.764
12,12 0.5 0.4 0.8851 46.897 51.3911

1. The model’s performance typically decreases under an increased learning rate and
momentum values, irrespective of the number of hidden layers used. This implies
that a low learning rate and momentum values are best suitable for an ANN model,
with the values of 0.1 and 0.1 yielding the lowest error rates, respectively. This can be
easily explained noting that low learning rate values imply smaller step sizes and thus
higher resolutions, which leads to improved convergence to better approximations.

2. A model with two hidden layers with 12 nodes per layer yielded the lowest error rates
under a low learning rate and momentum values. Although this configuration cannot
be generalized for all ANN models, it yielded the lowest error rate for the present use
case. Furthermore, we note that increasing the number of nodes above 12 produced
no improvement in model performance.

3. Generally, under the same low learning rate and momentum values, we observed
that the double-layered model performed marginally better than the single layer
configuration. For example, considering in Table 2 the best model of (12,12) hidden
layer configuration, and learning rate and momentum of 0.1 each, we obtained a
2.155% decrease in the error rate when using the double-layered model instead of the
single-layered model of same number of nodes.

Sustainability 2022, 14, 2546 13 of 26

4. Since there is no single fixed global configuration or model for all possible use
cases, it becomes vital to ensure that a model’s hyperparameters are accurately fine
tuned. For example, by fine tuning our model, we achieved a 10.344% error reduc-
tion rate in using a double-layer model with 12 nodes per layer (learning rate = 0.1,
momentum = 0.1) over a single-layer model with 9 nodes (learning rate = 0.3,
momentum = 0.2).

4.1.2. Gaussian Regression

The following hyperparameters of the GR algorithm were fine tuned, namely, the
kernel and the filter type. The kernels considered were the polynomial (poly) kernel, radial
basis function (RBF), and the normalized polynomial kernel. The filter types included
either the normalization or standardization of the training data. Our findings from the
results in Table 3 are noted as follows:

1. A combination of the poly kernel and standardization of the training data led to
the best model, which yielded the lowest RAE and RRSE values of 44.7277% and
45.5645%, respectively.

2. Hyperparameter tuning of the GR algorithm can achieve as much as 51.387% and
50.301% error reduction rate in the RAE and RRSE, respectively, thus emphasizing the
importance of hyperparameter tuning.

3. With RAE and RRSE differences of 3.121% and 3.645%, respectively, there exists
little/no significant advantage in using either the normalization or standardization of
the training data as it pertains to the poly kernel. Consequently, the most important
parameter is simply the choice of the kernel to be used.

4. We presume that the RBF kernel may have performed poorly owing to the large size
of the training dataset, which is a well-known limitation of the RBF. Nevertheless,
it is noted that performance improvement can yet be achieved by standardizing the
training data.

Table 3. Performance of different GR parameter settings.

Kernel Filter Type CC RAE (%) RRSE (%)

Poly kernel Normalized training data 0.8905 46.1688 47.2879
Poly kernel Standardize training data 0.8905 44.7277 45.5645

RBF Normalized training data 0.8905 92.0074 91.6804
RBF Standardize training data 0.8905 52.0316 52.7159

Normalized Poly Kernel Normalized training data 0.8905 46.1688 47.2879
Normalized Poly Kernel Standardize training data 0.8905 46.045 47.1676

4.1.3. k-Nearest Neighbor

The k-NN algorithm is characterized by one major parameter, which is the k parameter.
The neighbor search method is another parameter; however, the linear search approach
based on the Euclidean distance metric was used in our study. The following k values were
selected as k = 1, 3, 5, and 10. The results obtained are presented in Table 4.

Table 4. Performance of different k-NN parameter settings.

K Neighbour Search Algorithm CC RAE (%) RRSE (%)

1 Euclidean (LNNSearch) 0.8905 44.7124 45.5615
3 Euclidean (LNNSearch) 0.8905 44.7124 45.5615
5 Euclidean (LNNSearch) 0.8905 44.7124 45.5615
10 Euclidean (LNNSearch) 0 100 100

We observed that the same error rate (i.e, RAE and RRSE values) was obtained for
parameters k = 1, 3, and 5. At k = 10, a large error rate of 100% was realized, thus implying
that large K values are inappropriate for use under the present use case. With lower k values

Sustainability 2022, 14, 2546 14 of 26

yielding the same results, it is suitable to use k = 1 since it presents the least computational
demand for the model.

4.1.4. Linear Regression

The linear regression (LR) method can be improved based on the choice of the attribute
selection method. We tested the LR algorithm without any attribute selection method,
as well as with the M5 and greedy attribute selection method. The results obtained are
presented in Table 5 with little or no difference between the different selection methods.
Using an attribute selection method achieved only about 0.764% reduction in the error rate
over the use of the no-selection method. Thus, for power demand prediction purposes, it is
sufficient to apply the LR method without any attribute selection method. This is expected
since there exist only the day and time as the main input attributes for forecasting purposes,
thus attribute selection introduces no significant performance advantage.

Table 5. Performance of different LR parameter settings.

Attribute Selection Method CC RAE (%) RRSE (%)

No attribute selection 0.8905 44.7124 45.5615
M5 method 0.89 44.3709 45.657

Greedy methods 0.89 44.3709 45.657

4.1.5. Random Forest

The random forest (RF) algorithm has a few parameters to be fine tuned, namely,
the maximum depth and the number of iterations. In our study, a combination of three
parameters were examined with progressively increasing values and the results obtained
are presented in Table 6. We found that increasing the maximum depth and number of
iterations barely resulted in 0.409% and 0.378% decreases in the RAE and RRSE error rates,
respectively. This insignificant difference in the error rate implies that using low maximum
depth values and number of iterations will be suitable in using the RF algorithm for power
demand prediction purposes. It also may present faster computational time since fewer
iterative steps are considered during the algorithmic process.

Table 6. Performance of different RF parameter settings.

Max. Depth Iterations CC RAE (%) RRSE (%)

0 100 0.8901 44.909 45.7124
10 200 0.8904 44.8519 45.6262
20 500 0.8907 44.7255 45.5394

4.1.6. Support Vector Machine

The support vector machine (SVM) algorithm was optimized by tuning the kernel
and filter type parameters to improve its performance. The results obtained are presented
in Table 7. We found that a combination of the poly kernel and the normalization of the
training data resulted in the least error rates across both RAE and RRSE. In this case,
both the polynomial and normalized polynomial kernel combined with normalization
of the training data achieved the same performance. However, we note that it will be of
greater value computation wise to avoid the normalization expenses of the poly kernel,
thus implying that using the simple poly kernel should suffice for the present case. Similar
to the GR algorithm, the RBF kernel yielded the largest error rates with the same plausible
reasons as stated for the GR algorithm applying as well to the SVM algorithm. Summarily,
an average of 38.15% reduction in the error rate was achieved by using the poly kernel
over the RBF, thus reemphasizing the importance of hyperparameter tuning in the use of
ML algorithms.

Sustainability 2022, 14, 2546 15 of 26

Table 7. Performance of different SVM parameter settings.

Kernel Filter Type CC RAE (%) RRSE (%)

Poly kernel Normalized training data 0.8836 44.2875 47.1576
Poly kernel Standardize training data 0.8835 44.2983 47.1763

RBF Normalized training data 0.8654 71.6087 73.5864
RBF Standardize training data 0.8703 46.9236 50.3859

Normalize Poly Kernel Normalized training data 0.8836 44.2875 47.1576
Normalize Poly Kernel Standardize training data 0.8835 44.3023 47.1848

4.1.7. Comparison of the Different Methods

Following the hyperparameter tuning process, the best performing models of the
different algorithms were compared, and the results obtained are presented in Table 8. To
this effect, the following metrics were compared across the different models, namely CC,
RAE, RRSE, MAE, and RMSE. Our findings indicate that although it may seem that some
algorithms performed better than others, nevertheless, the performance gap suffices only
marginally. For example, there existed only a 1.899% reduction in the error rate in using
the ANN over the GR model in terms of their RAE. A difference of about 3.553% in the
RRSE existed between the SVM and the RF algorithm. Thus, suggesting an insignificant
difference between the different models, sequel to a proper hyperparameter tuning process.

Table 8. Comparison of the different methods based on their best parameter settings.

Methods CC RAE (%) RRSE (%) MAE RMSE

ANN 0.8894 43.8782 45.764 833.8811 1046.1255
GR 0.8905 44.7277 45.5645 850.8696 1040.5409

k-NN 0.8905 44.7124 45.5615 850.5788 1040.4722
LR 0.89 44.3709 45.657 844.0817 1042.6523
RF 0.8907 44.7255 45.5394 850.5656 1039.2409

SVM 0.8836 44.2875 47.1576 842.4953 1076.9213

No model performed best across all the different metrics, thus emphasizing the need
to avoid comparing different ML models using only a single metric. For example, although
the ANN performed best considering the RAE, it generated the smallest RRSE values
compared to the other models. Since these different metrics tell different stories, it is
essential to consider our analysis across each metric as against a single metric. To this effect,
by rendering a higher RRSE value, we note that the ANN model may have been plagued by
more outliers than the other methods. This observation is again supported by examining
the MAE against the RMSE in Table 8, which shows a higher RMSE than other methods,
except the SVM.

In addition, we examined the CC values of the different models, with results of the
correlation matrix presented in Figure 3. By comparing the CC achieved by the different
models against the target demand, we observed that a CC < 0.9 was obtained across all
models. This implies a good positive correlation between the predicted and the target
demand values. In addition, we can observe that a CC ≈ 1 was obtained between the
different models, further emphasizing that the different models all predicted the same
values. In particular, the ANN, GR, KNN and RF models all performed equally with little
to distinguish them.

Sustainability 2022, 14, 2546 16 of 26

1.00

0.89

0.89

0.89

0.89

0.89

0.88

0.89

1.00

1.00

1.00

0.99

1.00

0.98

0.89

1.00

1.00

1.00

1.00

1.00

0.99

0.89

1.00

1.00

1.00

1.00

1.00

0.99

0.89

0.99

1.00

1.00

1.00

1.00

0.98

0.89

1.00

1.00

1.00

1.00

1.00

0.99

0.88

0.98

0.99

0.99

0.98

0.99

1.00

T
a

rg
e

t

A
N

N

G
R

k-
N

N

L
R

R
F

S
V

M

Target

ANN

GR

k-NN

LR

RF
-0.5

0

0.5

1.0

SVM

-1.0

Figure 3. The correlation matrix of the different methods for the system hourly demand dataset.

Finally, in quantitative terms, a Tukey comparative test of the different models was
performed, and the output results are documented in Table 9. The Tukey test is a multiple
comparison procedure that can be used to find means that are significantly different from
each other. The aim in using this test is to quantitatively determine whether there exists
a significant difference between the mean results obtained across the different models or
not. Further details regarding the Tukey test can be accessed in [46]. The symbols used
to interpret the range of the p-values, p, obtained for all the Tukey tests reported in this
article, are provided in Table 10. An examination of Table 9 indicates that there was no
significant (ns) difference between the target and predicted data of the different models (see
column 5 of Table 9). It also confirms that there was no significant difference between all
other methods as well, with p-values all averagely being greater than 0.997. These results
support the correlation findings of Figure 3, further emphasizing that following a proper
hyperparameter tuning exercise of the different algorithms, they all perform, on average,
the same, with little or no significant difference between them.

4.1.8. Visual Assessment of Predicted Values of the Different Methods

Figure 4 presents the target and predicted values generated by the different models. It
is immediately obvious that the graphs are practically overlapped, which further confirms
that the models achieved similar performance levels. Essentially, there was only very little
difference between the predictive values and the target data prior to the 120th h (i.e., day 5),
beyond which a significant error difference was observed. This can be explained noting
that a stable pattern existed within the first 5 days, followed by some drop in the target
demand level between the 6th and 7th day (i.e., from 120 to 168 h), a period which was
not properly tracked by the different methods. This implies that the different ML methods
may perform best under conditions with well-defined patterns, and otherwise under heavy
stochastic conditions.

4.2. Hourly Renewable Generation

In this section, we discuss our findings pertaining to the photovoltaic (PV) and wind
hourly generation datasets. We note that the best-performing models obtained in the
hyperparameter tuning section were used here.

Sustainability 2022, 14, 2546 17 of 26

Table 9. System hourly demand: Tukey test comparison of the performance of the different models.

Comparison Mean Diff. 95.00%
CI of Diff.

Below
Threshold? Summary Adjusted

p Value

Target vs. ANN −48.69 −669.1 to 571.7 No ns >0.9999
Target vs. GR 58.07 −562.3 to 678.5 No ns >0.9999

Target vs. k-NN 58.07 −562.3 to 678.5 No ns >0.9999
Target vs. LR 58.07 −562.3 to 678.5 No ns >0.9999
Target vs. RF 63.45 −556.9 to 683.8 No ns >0.9999

Target vs. SVM −125.1 −745.5 to 495.3 No ns 0.997
ANN vs. GR 106.8 −513.6 to 727.2 No ns 0.9987

ANN vs. k-NN 106.8 −513.6 to 727.2 No ns 0.9987
ANN vs. LR 106.8 −513.6 to 727.2 No ns 0.9987
ANN vs. RF 112.1 −508.2 to 732.5 No ns 0.9983

ANN vs. SVM −76.37 −696.8 to 544.0 No ns 0.9998
GR vs. k-NN −0.00167 −620.4 to 620.4 No ns >0.9999

GR vs. LR 0.00125 −620.4 to 620.4 No ns >0.9999
GR vs. RF 5.383 −615.0 to 625.8 No ns >0.9999

GR vs. SVM −183.1 −803.5 to 437.3 No ns 0.9767
k-NN vs. LR 0.002917 −620.4 to 620.4 No ns >0.9999
k-NN vs. RF 5.385 −615.0 to 625.8 No ns >0.9999

k-NN vs. SVM −183.1 −803.5 to 437.3 No ns 0.9767
LR vs. RF 5.382 −615.0 to 625.8 No ns >0.9999

LR vs. SVM −183.1 −803.5 to 437.3 No ns 0.9767
RF vs. SVM −188.5 −808.9 to 431.9 No ns 0.973

Table 10. The p-value range and their corresponding symbol and interpretation used in the Tukey
tables.

Symbol Range Interpretation

ns p > 0.05 not significant
* p ≤ 0.05 weakly significant
** p ≤ 0.01 significant
*** p ≤ 0.001 very significant
**** p ≤ 0.0001 extremely significant

0 24 48 72 96 120 144 168 192

20000

25000

H
ou

rl
y

D
em

an
d

(M
W

)

Target

ANN

GR

k- NN

LR

RF

SVM

29000

Time (h)

Figure 4. System hourly demand: target demand compared against the predicted demand generated
by the different models using their best hyper-parameter values.

Sustainability 2022, 14, 2546 18 of 26

4.2.1. Photovoltaic Generation

The performance results of the different models based on the PV dataset are presented
in Table 11. In terms of the CC, although the GR model achieved only a slightly higher
margin (<0.001) than the ANN and LR models, we can easily conclude that there was no
significant difference between the different models. This implies that the predicted results
are highly positively correlated with the target demand. Similar high CC values were
also obtained between the different models as shown in the correlation matrix of Figure 5.
Therein, it can be seen that only the k-NN and RF models had slightly lower CC values
to the other models. This may be because both models achieved the lowest CC value as
against the target demand. Nevertheless, for use cases where only the data pattern suffices
as the main interest to the designer, then any ML method can be used.

Table 11. Performance of the different methods for photovoltaic (PV) power generation.

Methods CC RAE (%) RRSE (%) MAE RMSE

ANN 0.9833 21.7619 27.9011 163.8525 231.0859
GR 0.9835 16.292 23.1943 122.6677 192.1026

k-NN 0.9460 16.212 23.1527 122.0658 191.7581
LR 0.9834 16.333 23.1825 122.9761 192.0049
RF 0.9460 16.2378 23.1726 122.2594 191.9225

SVM 0.9824 15.3522 22.3847 115.5917 185.3969

1.00

0.98

0.98

0.95

0.98

0.95

0.98

0.98

1.00

1.00

0.94

1.00

0.94

1.00

0.98

1.00

1.00

0.94

1.00

0.94

1.00

0.95

0.94

0.94

1.00

0.94

1.00

0.94

0.98

1.00

1.00

0.94

1.00

0.94

1.00

0.95

0.94

0.94

1.00

0.94

1.00

0.94

0.98

1.00

1.00

0.94

1.00

0.94

1.00

T
a

rg
e

t

A
N

N

G
R

k-
N

N

L
R

R
F

S
V

M

Target

ANN

GR

k-NN

LR

RF

SVM

-1.0

-0.5

0

0.5

1.0

Figure 5. The correlation matrix of the different methods for the photovoltaic power generation dataset.

By examining the error performance of the different models via the RAE and RRSE in
Table 11, it can be observed that the ANN performed the poorest. Thus, it can be said that a
25.503% decrease in the RAE can be achieved by using the k-NN instead of the ANN for
the PV power prediction use case. Although this seems large, nevertheless, further analysis
following the Tukey comparative test suggests that there was no significant difference
between the predicted means of the different models. This can be seen in Table 12, where it
is concluded that there was no significant difference in the predicted means of the different
models. Thus, this suggests that any model may suffice for PV power forecasting purposes
sequel to a proper hyperparameter tuning exercise.

Sustainability 2022, 14, 2546 19 of 26

Table 12. Photovoltaic power generation: Tukey test comparison of the performance of the
different models.

Comparison Mean Diff. 95.00%
CI of Diff.

Below
Threshold? Summary Adjusted

p Value

Target vs. ANN 144.9 −81.66 to 371.4 No ns 0.4884
Target vs. GR 97.92 −128.6 to 324.4 No ns 0.8628

Target vs. k-NN 97.91 −128.6 to 324.4 No ns 0.8628
Target vs. LR 97.92 −128.6 to 324.4 No ns 0.8628
Target vs. RF 98.13 −128.4 to 324.7 No ns 0.8616

Target vs. SVM 87.07 −139.4 to 313.6 No ns 0.9173
ANN vs. GR −46.94 −273.5 to 179.6 No ns 0.9965

ANN vs. k-NN −46.95 −273.5 to 179.6 No ns 0.9965
ANN vs. LR −46.94 −273.5 to 179.6 No ns 0.9965
ANN vs. RF −46.73 −273.3 to 179.8 No ns 0.9965

ANN vs. SVM −57.79 −284.3 to 168.7 No ns 0.9891
GR vs. k-NN −0.00628 −226.5 to 226.5 No ns >0.9999

GR vs. LR 0.00178 −226.5 to 226.5 No ns >0.9999
GR vs. RF 0.2102 −226.3 to 226.7 No ns >0.9999

GR vs. SVM −10.85 −237.4 to 215.7 No ns >0.9999
k-NN vs. LR 0.008063 −226.5 to 226.5 No ns >0.9999
k-NN vs. RF 0.2165 −226.3 to 226.7 No ns >0.9999

k-NN vs. SVM −10.84 −237.4 to 215.7 No ns >0.9999
LR vs. RF 0.2084 −226.3 to 226.7 No ns >0.9999

LR vs. SVM −10.85 −237.4 to 215.7 No ns >0.9999
RF vs. SVM −11.06 −237.6 to 215.5 No ns >0.9999

Finally, a visual assessment of the predicted against the target PV generation results
is presented in Figure 6. Here, it is observed that a close performance was achieved
between the predicted values of the different models and the target data. The overlapping
graphs in Figure 6 also confirm that the models all performed similarly with little to
distinguish them visually. Since the pattern obtained for PV generation demonstrates
strong regularity with peak generation often obtained during midday (at peak sunshine),
consequently any model can be used for predictive purposes, typically after properly
tuning the model’s hyperparameters.

0 24 48 72 96 120 144 168 192

0

500

1000

1500

2000

P
h

ot
o

vo
lt

ai
c

po
w

er
(M

W
)

Target

ANN

GR

k- NN

LR

RF

SVM

Time (h)

Figure 6. Photovoltaic power generation: Target and predicted demand generated by the different models.

Sustainability 2022, 14, 2546 20 of 26

4.2.2. Wind Generation

The performance of the different models based on the wind power generation dataset
is presented in Table 13. It is immediately clear that the models performed poorly under
this use case, with each model particularly suffering from very high error rates and low
CC values. Albeit low, it is also seen that the CC values are, on average, the same for the
models when compared to the target data. However, high and positive CC values are
obtained when compared between the different models as shown in the correlation matrix
of Figure 7. This confirms that the different models all performed similarly with almost
perfect correlation between their predicted values.

Table 13. Performance of the different methods for wind power generation.

Methods CC RAE (%) RRSE (%) MAE RMSE

ANN 0.558 98.7794 99.8968 279.4048 344.7094
GR 0.5559 80.9548 85.1445 228.9867 293.8042

k-NN 0.5559 80.9542 85.1432 228.9848 293.7998
LR 0.5486 81.229 85.609 229.7621 295.4071
RF 0.5565 80.7043 84.9551 228.2781 293.1508

SVM 0.5884 77.8575 81.5118 220.2257 281.269

The error rates as measured via the RAE and RRSE indicate that the ANN generated
the highest error rate, and thus is reported as the poorest performer. Essentially, the RRSE
values of each model return higher than their corresponding RAE values, which indicates
the presence of outliers across the different models under the wind prediction use case.
On the other hand, the SVM model suffices as the best performer, as it achieved a 21.18%
reduction in the RAE as compared with the ANN model.

1.00

0.56

0.56

0.56

0.55

0.56

0.59

0.56

1.00

1.00

1.00

0.98

1.00

0.97

0.56

1.00

1.00

1.00

0.98

1.00

0.98

0.56

1.00

1.00

1.00

0.98

1.00

0.98

0.55

0.98

0.98

0.98

1.00

0.98

0.96

0.56

1.00

1.00

1.00

0.98

1.00

0.98

0.59

0.97

0.98

0.98

0.96

0.98

1.00

T
a

rg
e

t

A
N

N

G
R

k-
N

N

L
R

R
F

S
V

M

Target

ANN

GR

k-NN

LR

RF

SVM

-1.0

-0.5

0

0.5

1.0

Figure 7. The correlation matrix of the different methods for the wind power generation dataset.

A Tukey test was conducted to examine the differences in the mean values of the
models, and the results obtained are presented in Table 14. We observed that, unlike in
the PV power prediction and the system hourly demand datasets, there was a significant
difference in the mean performance of the different models and the target data. This can be
seen in column 4 of Table 14 with very low associated p-values, where the performance of
the ANN model is also indicated to be significantly different from all other models.

Sustainability 2022, 14, 2546 21 of 26

Table 14. Wind power generation: Tukey test comparison of the performance of the different models.

Comparison Mean Diff. 95.00%
CI of Diff.

Below
Threshold? Summary Adjusted

p Value

Target vs. ANN −213 −274.4 to −151.6 Yes **** <0.0001
Target vs. GR −112.4 −173.8 to −50.96 Yes **** <0.0001

Target vs. k-NN −112.4 −173.8 to −50.96 Yes **** <0.0001
Target vs. LR −112.7 −174.1 to −51.27 Yes **** <0.0001
Target vs. RF −111 −172.4 to −49.56 Yes **** <0.0001

Target vs. SVM −94.63 −156.1 to −33.19 Yes *** 0.0001
ANN vs. GR 100.6 39.16 to 162.0 Yes **** <0.0001

ANN vs. k-NN 100.6 39.16 to 162.0 Yes **** <0.0001
ANN vs. LR 100.3 38.86 to 161.7 Yes **** <0.0001
ANN vs. RF 102 40.56 to 163.4 Yes **** <0.0001

ANN vs. SVM 118.4 56.93 to 179.8 Yes **** <0.0001
GR vs. k-NN −0.00093 −61.44 to 61.43 No ns >0.9999

GR vs. LR −0.3068 −61.74 to 61.13 No ns >0.9999
GR vs. RF 1.396 −60.04 to 62.83 No ns >0.9999

GR vs. SVM 17.77 −43.67 to 79.21 No ns 0.979
k-NN vs. LR −0.3059 −61.74 to 61.13 No ns >0.9999
k-NN vs. RF 1.397 −60.04 to 62.83 No ns >0.9999

k-NN vs. SVM 17.77 −43.67 to 79.21 No ns 0.979
LR vs. RF 1.703 −59.73 to 63.14 No ns >0.9999

LR vs. SVM 18.08 −43.36 to 79.51 No ns 0.9771
RF vs. SVM 16.37 −45.06 to 77.81 No ns 0.9862

Finally, a visual assessment of the predicted values of the different models can be
made, based on the results of Figure 8. We observed that the different models only matched
the rising patterns of the target data while failing to track periods of low wind power
generation. This implies that the inherent irregularities in the wind power generation
pattern typically limited the output performance of the different models. We also observed
that the predicted values of the ANN model deviated largely from the target as well as
from the other models, thus justifying its poor performance as noted in Tables 13 and 14.
Consequently, because of the highly stochastic nature of wind, it may be difficult to apply
ML models for predicting wind power generation, thus warranting the need for improved
methods in this regard.

0 24 48 72 96 120 144 168 192

500

1000

1500

W
in

d
po

w
er

(M
W

)

Target

ANN

GR

k- NN

LR

RF

SVM

1900

Time (h)

Figure 8. Wind generation: Target and predicted demand generated by the different models.

Sustainability 2022, 14, 2546 22 of 26

4.2.3. Runtime Performance of the Different Algorithms

We performed a runtime evaluation of the various algorithms on both the PV and
wind datasets, and the results are shown in Table 15. To begin, it is important to note that
the following conditions were met prior to conducting these experiments:

1. The same datasets (i.e., PV and wind data) were used to evaluate each algorithm.
2. Both the training and testing runtime performance was measured and reported.
3. To ensure that no extra processing time was incurred by the PC, only the simula-

tion software was kept running as the foreground process during each simulation
period. This was accomplished by closing all other foreground processes in the PC’s
task manager.

4. Finally, the timing results shown in Table 15 were obtained by averaging the results of
50 independent runs of each algorithm.

Table 15. Timing performance of the different algorithms under both the PV and wind datasets.

PV Wind

Methods Training Time
(s)

Test Time
(s)

Training Time
(s)

Test Time
(s)

ANN 2.14 0.08 2.24 0.07
GR 0.63 0.26 0.55 0.28

k-NN - 0.1 - 0.09
LR 0.04 0.09 0.02 0.07
RF 0.25 0.15 0.12 0.08

SVM 0.52 0.07 0.14 0.07

Table 15 shows the empirical run-time results of each algorithm. However, it should be
noted that because the k-NN is an unsupervised method, there was no need for a training
process, and thus, no results are provided for it. According to these results, the LR achieved
the shortest training time in both datasets, while the SVM algorithm achieved the quickest
testing time in the PV dataset while having the same testing time as the ANN and LR in the
wind dataset. Often, because testing time is most important to the user during real-time
operation, we note that the SVM performed best; however, statistical significant analysis of
these timing results shows otherwise in Table 16.

Table 16. Statistical significance test (Tukey’s comparison test) of the test time of the different algorithms.

Tukey’s
Multiple

Comparisons
Test

Mean
Diff.

95.00%
CI of Diff.

Below
Threshold? Summary Adjusted

p Value

ANN vs. GR −0.195 −0.2832 to −0.1068 Yes *** 0.001
ANN vs. k-NN −0.02 −0.1082 to 0.06825 No ns 0.9326

ANN vs. LR −0.005 −0.09325 to 0.08325 No ns 0.9999
ANN vs. RF −0.04 −0.1282 to 0.04825 No ns 0.5242

ANN vs. SVM 0.005 −0.08325 to 0.09325 No ns 0.9999
GR vs. k-NN 0.175 0.08675 to 0.2632 Yes ** 0.0017

GR vs. LR 0.19 0.1018 to 0.2782 Yes ** 0.0011
GR vs. RF 0.155 0.06675 to 0.2432 Yes ** 0.0033

GR vs. SVM 0.2 0.1118 to 0.2882 Yes *** 0.0008
k-NN vs. LR 0.015 −0.07325 to 0.1032 No ns 0.9784
k-NN vs. RF −0.02 −0.1082 to 0.06825 No ns 0.9326

k-NN vs. SVM 0.025 −0.06325 to 0.1132 No ns 0.8545
LR vs. RF −0.035 −0.1232 to 0.05325 No ns 0.6371

LR vs. SVM 0.01 −0.07825 to 0.09825 No ns 0.9964
RF vs. SVM 0.045 −0.04325 to 0.1332 No ns 0.4217

Sustainability 2022, 14, 2546 23 of 26

It should be noted that only the test time results of Table 15 for both the PV and
wind datasets were subjected to the Tukey statistical test. Thus, the Tukey test results in
Table 16 reveal that there were no statistically significant (ns) differences in the test time
of the different algorithms, albeit for the GR algorithm, which yielded the longest test
time compared to the other methods. The GR algorithm’s relatively slower performance
may be attributed to the effect of the Gaussian kernel, which is known to add additional
processing requirements to the method. However, because the difference in the testing
time performance was less than 0.195 s across all methods (see column 2 of Table 16),
it is possible to conclude that any of these algorithms can be used for real-time power
demand/supply prediction use cases in smart grid systems.

5. Conclusions

The goal of this study was to determine whether there is a statistically significant
difference in the performance of various well-known simple machine learning (ML) mod-
els when they are applied to the prediction of power demand and supply. In order to
accomplish this, six well-known machine learning methods were tested using data from
the Eskom database, which included hourly system demand and renewable generation
datasets. The ML algorithms considered include the artificial neural network, Gaussian
regression, K-nearest neighbor, linear regression, random forest, and the support vector
machine, among other methods of data analysis. Fairness was achieved by ensuring that
the hyperparameters of each algorithm were fine tuned to the greatest degree possible.
Our findings suggest that, within the confines of the datasets used in this study, there was
little/no statistically significant difference between the different models in terms of both
quantitative and qualitative measures, which is particularly noteworthy, given that they
were all meticulously fine tuned. Additionally mentioned is the importance of reporting as
many metrics as possible, particularly the correlation coefficient and absolute and squared
errors, in order to ensure that fair conclusions are formed when comparing different ma-
chine learning algorithms. Based on the fact that each metric often reports a separate
performance measure and that selective reporting may result in erroneous conclusions,
this requirement is recommended. Furthermore, when it came to estimating the wind
power generation dataset, all of the models performed poorly, which we attributed to the
extremely stochastic nature of wind energy as a source of energy, as previously stated
in the literature. This may imply that improved models for smart grid systems may be
required, particularly in areas where wind power constitutes a significant portion of the
generated electricity. In spite of this, it is possible that any ML model can still be used
for power prediction in smart grid systems, particularly in situations where demand and
generation follow regular patterns, and provided that the model’s hyperparameters are
properly tuned based on the type of input data being used. Finally, we stress that further
robust investigations, particularly those based on the use of larger datasets from a wider
range of sources, should be strongly encouraged in order to either substantiate or refute
the conclusions of the present paper.

Author Contributions: These authors E.C., A.J.O. and S.J.I. contributed equally to this work. Concep-
tualization, A.J.O., E.C. and S.J.I.; methodology, E.C. and A.J.O.; writing—original draft preparation,
A.J.O. and E.C.; writing—review and editing, A.J.O. and S.J.I.; supervision, A.J.O. and S.J.I.; funding
acquisition, S.J.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RE-
SEARCH (CSIR) with project number 05400 054AT KR2EEMG. and The APC was funded by project
number 05400 054AT KR2EEMG.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

Sustainability 2022, 14, 2546 24 of 26

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this article:

ANN Artificial neural network
CC Correlation coefficient
ELM Extreme learning machine
EPN Ensemble prediction network
FFANN Feed-forward artificial neural network
GR Gaussian regression
KELM Kernel-based extreme learning machine
k-NN k-nearest neighbor
LR Linear regression
LSTM Long short-term memory
MAE Mean absolute error
ML Machine learning
MLP Multilayer perceptron
MSE Mean square error
MVR Multi-variable regression
PV Photovoltaic
RAE Relative absolute error
RBF Radial basis function
RF Random forest
RMSE Root mean square error
RRSE Root relative square error
RSA Republic of South Africa
RSS Residual sum of squares
SA Simulated annealing
SVM Support vector machine
WT Wavelet transform
[•] Brackets
(•) Parentheses√
• Square root

dy/dx Derivative
|| • || Euclidean norm
∑ Summation
| • | Absolute value

References
1. Danish, M.S.S.; Senjyu, T.; Funabashia, T.; Ahmadi, M.; Ibrahimi, A.M.; Ohta, R.; Howlader, H.O.R.; Zaheb, H.; Sabory, N.R.;

Sediqi, M.M. A sustainable microgrid: A sustainability and management-oriented approach. Energy Procedia 2019, 159, 160–167.
[CrossRef]

2. Nespoli, A.; Ogliari, E.; Pretto, S.; Gavazzeni, M.; Vigani, S.; Paccanelli, F. Electrical Load Forecast by Means of LSTM: The Impact
of Data Quality. Forecasting 2021, 3, 91–101. [CrossRef]

3. Lago, J.; Marcjasz, G.; Schutter, B.D.; Weron, R. Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms,
best practices and an open-access benchmark. Appl. Energy 2021, 293, 1–21. [CrossRef]

4. Hong, T.; Pinson, P.; Wang, Y.; Weron, R.; Yang, D.; Zareipour, H. Energy Forecasting: A Review and Outlook. IEEE Open Access J.
Power Energy 2020, 7, 376–388. [CrossRef]

5. Uniejewski, B.; Weron, R.; Ziel, F. Variance Stabilizing Transformations for Electricity Spot Price Forecasting. IEEE Trans. Power
Syst. 2018, 33, 2219–2229. [CrossRef]

6. Marcjasz, G.; Uniejewski, B.; Weron, R. On the importance of the long-term seasonal component in day-ahead electricity price
forecasting with NARX neural networks. Int. J. Forecast. 2019, 35, 1520–1532. [CrossRef]

7. Wang, L.; Zhang, Z.; Chen, J. Short-Term Electricity Price Forecasting with Stacked Denoising Autoencoders. IEEE Trans. Power
Syst. 2017, 32, 2673–2681. [CrossRef]

8. Ugurlu, U.; Oksuz, I.; Tas, O. Electricity Price Forecasting Using Recurrent Neural Networks. Energies 2018, 11, 1255. [CrossRef]

http://doi.org/10.1016/j.egypro.2018.12.045
http://dx.doi.org/10.3390/forecast3010006
http://dx.doi.org/10.1016/j.apenergy.2021.116983
http://dx.doi.org/10.1109/OAJPE.2020.3029979
http://dx.doi.org/10.1109/TPWRS.2017.2734563
http://dx.doi.org/10.1016/j.ijforecast.2017.11.009
http://dx.doi.org/10.1109/TPWRS.2016.2628873
http://dx.doi.org/10.3390/en11051255

Sustainability 2022, 14, 2546 25 of 26

9. Chen, Y.; Wang, Y.; Ma, J.; Jin, Q. BRIM: An Accurate Electricity Spot Price Prediction Scheme-Based Bidirectional Recurrent
Neural Network and Integrated Market. Energies 2019, 12, 2241. [CrossRef]

10. Rijn, J.N.; Hutter, F. Hyperparameter Importance Across Datasets. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 2367–2376. [CrossRef]

11. Bhotto, M.Z.A.; Jones, R.; Makonin, S.; Bajic, I.V. Short-Term Demand Prediction Using an Ensemble of Linearly-Constrained
Estimators. IEEE Trans. Power Syst. 2021, 36, 3163–3175. [CrossRef]

12. Muni, S.P.; Sharma, R. Short-term electricity price prediction using kernel-based machine learning techniques. In Proceedings
of the 2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology
(ODICON), Bhubaneswar, India, 8–9 January 2021; pp. 1–5. [CrossRef]

13. Li, Y.; Wang, R.; Yang, Z. Optimal Scheduling of Isolated Microgrids Using Automated Reinforcement Learning-Based Multi-
Period Forecasting. IEEE Trans. Sustain. Energy 2022, 13, 159–169. [CrossRef]

14. Shi, Z.B.; Li, Y.; Yu, T. Short-Term Load Forecasting Based on LS-SVM Optimized by Bacterial Colony Chemotaxis Algo-
rithm. In Proceedings of the 2009 International Conference on Information and Multimedia Technology, Beijing, China,
16–18 December 2009; pp. 306–309. [CrossRef]

15. Sabzehgar, R.; Amirhosseini, D.Z.; Rasouli, M. Solar power forecast for a residential smart microgrid based on numerical weather
predictions using artificial intelligence methods. J. Build. Eng. 2020, 32, 101629. [CrossRef]

16. Scolari, E.; Sossan, F.; Paolone, M. Irradiance prediction intervals for PV stochastic generation in microgrid applications.
Sol. Energy 2016, 139, 116–129. [CrossRef]

17. Mohamed, M.; Chandra, A.; Abd, M.A.; Singh, B. Application of machine learning for prediction of solar microgrid system.
In Proceedings of the 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur,
India, 16–19 December 2020; pp. 1–5. [CrossRef]

18. Onumanyi, A.J.; Isaac, S.J.; Kruger, C.P.; Abu-Mahfouz, A.M. Transactive Energy: State-of-the-Art in Control Strategies,
Architectures, and Simulators. IEEE Access 2021, 9, 131552–131573. [CrossRef]

19. Viel, F.; Silva, L.A.; Leithardt, V.R.Q.; Santana, J.F.D.P.; Teive, R.C.G.; Zeferino, C.A. An Efficient Interface for the Integration of
IoT Devices with Smart Grids. Sensors 2020, 20, 2849. [CrossRef]

20. Helfer, G.A.; Barbosa, J.L.V.; Alves, D.; da Costa, A.B.; Beko, M.; Leithardt, V.R.Q. Multispectral Cameras and Machine Learning
Integrated into Portable Devices as Clay Prediction Technology. J. Sens. Actuator Netw. 2021, 10, 40. [CrossRef]

21. Dalai, I.; Mudali, P.; Pattanayak, A.S.; Pattnaik, B.S. Hourly prediction of load using edge intelligence over IoT. In Proceedings of
the 2019 11th International Conference on Advanced Computing (ICoAC), Chennai, India, 18–20 December 2019; pp. 117–121.
[CrossRef]

22. Ma, Y.J.; Zhai, M.Y. Day-Ahead Prediction of Microgrid Electricity Demand Using a Hybrid Artificial Intelligence Model. Processes
2019, 7, 320. [CrossRef]

23. Dridi, A.; Moungla, H.; Afifi, H.; Badosa, J.; Ossart, F.; Kamal, A.E. Machine Learning Application to Priority Scheduling in Smart
Microgrids. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol,
Cyprus, 15–19 June 2020; pp. 1695–1700. [CrossRef]

24. Tian, W.; Lei, C.; Tian, M. Dynamic prediction of building HVAC energy consumption by ensemble learning approach. In Proceed-
ings of the 2018 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA,
12–14 December 2018; Volume 8, pp. 254–257. [CrossRef]

25. Hajjaji, I.; Alami, H.E.; El-Fenni, M.R.; Dahmouni, H. Evaluation of Artificial Intelligence Algorithms for Predicting Power
Consumption in University Campus Microgrid. In Proceedings of the 2021 International Wireless Communications and Mobile
Computing (IWCMC), Harbin, China, 28 June–2 July 2021; pp. 2121–2126. [CrossRef]

26. Kubat, M. Artificial Neural Networks. In An Introduction to Machine Learning; Springer International Publishing: New York, NY,
USA, 2021; pp. 117–143._6. [CrossRef]

27. Graupe, D. Principles of Artificial Neural Networks, 3rd ed.; Advanced Series in Circuits and Systems; World Scientific Publishers:
Singapore, 2013; Volume 7, pp. 1–382. [CrossRef]

28. Hajian, A.; Styles, P. Artificial Neural Networks. In Application of Soft Computing and Intelligent Methods in Geophysics; Springer
International Publishing: New York, NY, USA, 2018; pp. 3–69._1. [CrossRef]

29. Principe, J. Artificial Neural Networks. In Electrical Engineering Handbook; CRC Press: New York, NY, USA, 1997. [CrossRef]
30. Pirjatullah; Kartini, D.; Nugrahadi, D.T.; Muliadi; Farmadi, A. Hyperparameter Tuning using GridsearchCV on The Comparison

of The Activation Function of The ELM Method to The Classification of Pneumonia in Toddlers. In Proceedings of the 2021 4th
International Conference of Computer and Informatics Engineering (IC2IE), Jakarta, Indonesia, 22–24 October 2021; pp. 390–395.
[CrossRef]

31. Fontenla-Romero, O.; Erdogmus, D.; Principe, J.C.; Alonso-Betanzos, A.; Castillo, E. Linear Least-Squares Based Methods for
Neural Networks Learning. In Artificial Neural Networks and Neural Information Processing—ICANN/ICONIP 2003; Springer:
Istanbul, Turkey, 2003; pp. 84–91._11. [CrossRef]

32. Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting
functions. J. Math. Psychol. 2018, 85, 1–16. [CrossRef]

33. Banerjee, A.; Dunson, D.B.; Tokdar, S.T. Efficient Gaussian process regression for large datasets. Biometrika 2013, 100, 75–89.
[CrossRef]

34. Gramacy, R.B. Gaussian Process Regression. In Surrogates; Chapman and Hall/CRC: London, UK, 2020; pp. 143–221. [CrossRef]

http://dx.doi.org/10.3390/en12122241
http://dx.doi.org/10.1145/3219819.3220058
http://dx.doi.org/10.1109/TPWRS.2021.3050150
http://dx.doi.org/10.1109/ODICON50556.2021.9428972
http://dx.doi.org/10.1109/TSTE.2021.3105529
http://dx.doi.org/10.1109/icimt.2009.57
http://dx.doi.org/10.1016/j.jobe.2020.101629
http://dx.doi.org/10.1016/j.solener.2016.09.030
http://dx.doi.org/10.1109/PEDES49360.2020.9379497
http://dx.doi.org/10.1109/ACCESS.2021.3115154
http://dx.doi.org/10.3390/s20102849
http://dx.doi.org/10.3390/jsan10030040
http://dx.doi.org/10.1109/ICoAC48765.2019.247127
http://dx.doi.org/10.3390/pr7060320
http://dx.doi.org/10.1109/IWCMC48107.2020.9148096
http://dx.doi.org/10.1109/CSCI46756.2018.00055
http://dx.doi.org/10.1109/iwcmc51323.2021.9498891
http://dx.doi.org/10.1007/978-3-030-81935-4_6
http://dx.doi.org/10.1142/8868
http://dx.doi.org/10.1007/978-3-319-66532-0_1
http://dx.doi.org/10.1201/9781420049763.ch20
http://dx.doi.org/10.1109/ic2ie53219.2021.9649207
http://dx.doi.org/10.1007/3-540-44989-2_11
http://dx.doi.org/10.1016/j.jmp.2018.03.001
http://dx.doi.org/10.1093/biomet/ass068
http://dx.doi.org/10.1201/9780367815493-5

Sustainability 2022, 14, 2546 26 of 26

35. Cunningham, P.; Delany, S.J. k-Nearest Neighbour Classifiers - A Tutorial. ACM Comput. Surv. 2021, 54, 1–25. [CrossRef]
36. Ali, N.; Neagu, D.; Trundle, P. Evaluation of k-nearest neighbour classifier performance for heterogeneous data sets. SN Appl. Sci.

2019, 1, 1–5. [CrossRef]
37. Biau, G.; Scornet, E. A random forest guided tour. TEST 2016, 25, 197–227. [CrossRef]
38. Probst, P.; Boulesteix, A.L. To tune or not to tune the number of trees in random forest? J. Mach. Learn. Res. 2017, 18, 1–18.
39. Probst, P.; Wright, M.N.; Boulesteix, A. Hyperparameters and tuning strategies for random forest. WIREs Data Min. Knowl.

Discov. 2019, 9, e1301. [CrossRef]
40. Yang, X.S. Support vector machine and regression.Chapter Support vector machine and regression. In Introduction to Algorithms

for Data Mining and Machine Learning; Yang, X.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 129–138. [CrossRef]
41. Pisner, D.A.; Schnyer, D.M. Support vector machine. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020;

pp. 101–121. [CrossRef]
42. Suthaharan, S. Support Vector Machine. In Machine Learning Models and Algorithms for Big Data Classification; Springer: New York,

NY, USA, 2016; pp. 207–235._9. [CrossRef]
43. Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine

classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [CrossRef]
44. Mondi, L. Eskom: Electricity and technopolitics in South Africa by Syvly Jaglin, Alain Dubresson. Transform. Crit. Perspect. South.

Afr. 2017, 93, 176–185. [CrossRef]
45. Roy-Aikins, J. Challenges in Meeting the Electricity Needs of South Africa. In Proceedings of the ASME 2016 Power Conference,

Charlotte, NC, USA, 26–30 June 2016. [CrossRef]
46. Lee, S.; Lee, D.K. What is the proper way to apply the multiple comparison test? Korean J. Anesthesiol. 2018, 71, 353–360.

[CrossRef] [PubMed]

http://dx.doi.org/10.1145/3459665
http://dx.doi.org/10.1007/s42452-019-1356-9
http://dx.doi.org/10.1007/s11749-016-0481-7
http://dx.doi.org/10.1002/widm.1301
http://dx.doi.org/10.1016/B978-0-12-817216-2.00014-4
http://dx.doi.org/10.1016/b978-0-12-815739-8.00006-7
http://dx.doi.org/10.1007/978-1-4899-7641-3_9
http://dx.doi.org/10.1016/j.neucom.2019.10.118
http://dx.doi.org/10.1353/trn.2017.0008
http://dx.doi.org/10.1115/power2016-59085
http://dx.doi.org/10.4097/kja.d.18.00242
http://www.ncbi.nlm.nih.gov/pubmed/30157585

	Introduction
	Related Work
	Methodology
	Machine Learning Algorithms
	Artificial Neural Network
	Linear and Gaussian Regression
	k-Nearest Neighbour
	Random Forest
	Support Vector Machine

	Dataset
	Performance Metrics
	Correlation Coefficient
	Relative Absolute Error
	Root Relative Square Error
	Mean Absolute Error
	Root Mean Square Error

	Results and Discussion
	Hyper-Parameter Optimization
	Artificial Neural Network
	Gaussian Regression
	k-Nearest Neighbor
	Linear Regression
	Random Forest
	Support Vector Machine
	Comparison of the Different Methods
	Visual Assessment of Predicted Values of the Different Methods

	Hourly Renewable Generation
	Photovoltaic Generation
	Wind Generation
	Runtime Performance of the Different Algorithms

	Conclusions
	References

