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Abstract: Low-carbon sustainable development has become the consensus of manufacturing enter-
prises to fulfill their social responsibilities. Facility layout is an essential part of manufacturing system
planning. Current research has demonstrated the advantages of energy saving on the manufacturing
system level where operational methods (e.g., energy-efficient production scheduling and path plan-
ning) can be utilized and do not require massive investment in the existing legacy system. However,
these efforts are mostly based on the existing fixed facility layout. Meanwhile, although facility layout
problems have been extensively studied so far, the related work seldom involves the optimization of
energy consumption (EC) or other EC-related environmental impact indicators, and does not clearly
reveal if EC can be an independent optimization objective in facility layout. Accordingly, whether the
energy-saving potential of a manufacturing system can be further tapped through rational facility
layout is the gap of the current study. To address this, an investigation into energy-saving oriented
manufacturing workshop facility layout is conducted. Correspondingly, an energy-efficient facility
layout (EFL) model for the multi-objective optimization problem that minimizes total load transport
distance and EC is formulated, and a multi-objective particle swarm optimization-based method is
proposed as the solution. Furthermore, experimental studies verify the effectiveness of the presented
model and its solution, indicating that EC can be regarded as an independent optimization objective
during facility layout, and EFL is a feasible energy-saving approach for a manufacturing system.

Keywords: energy consumption; energy-efficient facility layout; multi-objective optimization;
multi-objective particle swarm optimization

1. Introduction

Climate warming is a global environmental problem, and the main reason is the
increasing concentration of greenhouse gases in the atmosphere. As an active response
to the global climate change crisis, achieving carbon peak and carbon neutralization is a
significant development strategy for China and the world’s major economies. The manu-
facturing industry is the pillar of social and economic development, which is also the major
source of resource consumption and waste generation. In China, carbon dioxide emissions
mainly stem from energy activities, and statistics indicate that the energy consumed by
the manufacturing industry takes up nearly 61.6% of total national energy consumption
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(EC) in 2019 [1]. Hence, the manufacturing industry has a responsibility to reduce green-
house gas emissions, and the concept of low-carbon sustainable development has become
its consensus.

Meanwhile, with the growth of consumers’ individualized demands and the intensi-
fication of market competition, traditional large-scale and single-variety manufacturing
modes are being gradually abandoned and flexible manufacturing modes are being adopted
by mechanical manufacturing enterprises. Correspondingly, facility layout is an important
aspect relevant to flexible manufacturing. In a manufacturing workshop environment,
a facility layout problem (FLP) generally involves the rational arrangement of a given
number of manufacturing equipment/cells within the given space constraints so that some
performance goals of material handling systems can be achieved [2]. However, the ob-
jectives mostly concerned about in the current FLP study are transport distance, material
handling cost (MHC), effectively-utilized area, etc. [3,4], and energy consumption (EC)
or other EC-related environmental impact indicators are seldom touched on. It has been
proved by numerous existing research that energy-efficient scheduling is a crucial approach
to minimize the EC of machining systems with various forms (e.g., flow shop, job shop,
and flexible job shop) [5–7], and energy-efficient path planning is beneficial to reducing
transport EC [8]. As a typical manufacturing system, a machining system (MS) usually
consists of many different elements, such as machine tools, automated material handling
systems, and tool storage [9]. The locations of the machines in an MS are directly related
to the workpiece transport distances and modes among different equipment, affecting the
assignment of jobs and the arrangement of operation sequences in each available machine
in the subsequent production scheduling stage. Therefore, the facility layout is also a
critical link for manufacturing enterprises to realize low-carbon manufacturing, and there
are many answers yet to be sought concerning how to locate manufacturing facilities in an
energy-saving/sustainable way. In view of this, the FLP is investigated from the perspec-
tive of energy saving in this study, and the corresponding model with transport distance
and EC as the optimization objectives, namely the energy-efficient facility layout (EFL)
model, is formulated.

The rest of this paper is organized as follows: a review of FLP and its influence on EC
in Section 2 is followed by the establishment of the EFL model in Section 3. Then, a solution
method based on a multi-objective particle swarm optimization (MOPSO) algorithm is
illustrated in Section 4, and Section 5 is devoted to case studies to verify the effectiveness of
the presented model and the algorithm. Finally, conclusions are drawn and future work is
prospected in Section 6.

2. Literature Review

FLPs are recognized as a crucial class of operations research problems, and numerous
efforts have been devoted to them from various perspectives since the 1960s. Generally,
facility layouts are directly affected by the specifications of MSs, such as product variety
and production volumes. In practice, four common layout forms, namely process layout,
product layout, fixed-position layout, and cellular layout [10], can be classified. From
the viewpoint of layout configuration, FLPs can be divided into single-row, double-row,
multi-row, loop, and multi-floor FLPs [11–13]. Meanwhile, based on the layout flexibility
and changes over time, FLPs can be categorized into static and dynamic FLPs. A dynamic
FLP can be divided into several static FLPs over time, which involves the decisions on
whether the layout needs to be modified to another in each period [14]. So far, extensive
achievements have been reported on the above layout types in the literature.

To better describe and investigate the FLPs under different conditions, various models
have been proposed. The commonly encountered FLP models in the literature include
quadratic assignment problem (QAP) models, quadratic set covering problem (QSCP)
models, mixed-integer programming (MIP) models, and graph theory-based models [4,10].
Specifically, an FLP with a discrete representation and equal-area facilities tends to be
formulated as a QAP model. In a QAP formulation, a plant site is usually divided into
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rectangular blocks with the same area and shape, and each facility is assigned to exactly
one block by disregarding its actual shape and size [15]. However, when the number
of facilities is less than that of blocks, the facilities need to be transferred to a larger
layout space to guarantee the applicability of the QAP model. The QSCP model is also
suitable to formulate discrete layout optimization, which is similar to the QAP model as
the total area occupied by all facilities is divided into plenty of small blocks. However, in
a QSCP model, the possible area and shape of each facility can be expressed in terms of
the occupied blocks [16]. Regarding the MIP model, it consists of the objective functions
expressed by mixed integer and non-integer variables, and constraints including a series of
equations and inequalities. The MIP model is suitable to formulate an FLP on a continuous
surface, leading to widespread utilization in formulating single/double/multi-row FLP,
unequal-area FLP, and multi-floor FLP [4,13]. Correspondingly, in an FLP with a continuous
representation, the exact positions, orientations, and/or pick-up/drop-off points of facilities
can be expressed and acquired by solving the specific model. Furthermore, an FLP can be
modeled as a graph in which the facilities are represented by the nodes, and the adjacency
relationship between two facilities is represented by an arc connecting two corresponding
nodes according to the process routes of related products [17,18]. By analyzing the material
flow and activity relationship between different facilities, the graph-theoretic formulation
can help generate a spatial relationship diagram to determine the adjacency relationship
between facilities, but the final layout may be irregular as the sizes and shapes of facilities
are not considered.

Regarding the facility layout approaches, in the early stage, the facility layout mainly
depended on the subjective experience and intuitive feeling of planners, lacking scientific
and theoretical guidance. With the rapid development of computer and information
technology, facility layout methods have developed from the early manual and qualitative
methods to the current quantitative, automatic, and intelligent ones. Currently, the facility
layout methods reported in the literature can be broadly categorized into two classes: factor
assessment approach and mathematical/algorithmic approach [19]. The former can be
treated as a decision-making process and usually divides the facility layout process into
several fixed and sequential steps. The most representative one is the systematic layout
planning (SLP) method [20]. This method comprehensively considers the qualitative and
quantitative factors in the facility layout analysis. When the number of facilities involved is
small, it can help accurately obtain the adjacency relationship and material flow between
facilities and then generate the conceptual layout scheme. Nevertheless, it cannot provide
the specific location of each facility. So, its application has certain limitations when the FLP
scale is large and the constraints are complex.

In contrast, mathematical/algorithmic approaches are closely related to FLP mod-
els, which can be further categorized into exact and approximate approaches. The for-
mer aims to seek optimal solutions, and the representative approaches include dynamic
programming, semi-definite programming, branch-and-bound, and cutting-plane algo-
rithm [10,16,21,22]. Despite certain advantages in solving small-scale FLPs, the compu-
tational effort required tends to increase sharply with the increase in the FLP scale. For
example, Kettani and Oral [23] pointed out the number of possible facilities should not
be more than 15 to facilitate solving an MIP model with commercial codes. Approximate
approaches tend to provide approximate optimal solutions in an acceptable computation
time, which can be broadly classified into traditional heuristic methods and meta-heuristic
methods. Traditional heuristic methods belong to the local search algorithm and utilize
heuristic information and some experience/rules to search solutions along the most feasible
direction. Generally, they can be divided into four categories [24]: construction methods
(e.g., CORELAP [25]), improvement methods (e.g., CRAFT [26], and MULTIPLE [27]), hy-
brid methods (e.g., FLAC [28], and DISCON [29]), and graph-theoretic methods. Note that
they are still more suitable for solving small-scale FLPs. When the problem scale increases,
the solution search is prone to fall into the local optimum. Besides, different heuristic
rules often need to be designed for different FLPs, resulting in poor generality. With the
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rapid development of computing power in the last decade, meta-heuristic methods have
been more popular to solve FLPs, especially large-scale FLPs. The typical meta-heuristic
methods include genetic algorithm (GA) [3], particle swarm optimization (PSO) [13], simu-
lated annealing (SA) [30], tabu search [31], and ant colony optimization (ACO) [32]. These
methods usually allow the emergence of inferior solutions in the search process, and their
global search abilities can be enhanced by introducing the mechanism of jumping out the
local optimum. Thus, it is likely to obtain global optimization solutions. Moreover, when
applying meta-heuristic methods, the algorithm efficiency relies on the individual encoding
scheme reflecting feasible solutions to a great extent.

In addition, from the perspective of objectives, a layout can be evaluated qualita-
tively and quantitatively. Qualitative objectives usually refer to the safety, noise, color,
or cleanliness of a layout [33]. Meanwhile, the most significant quantitative indicator
is MHC [10], and transport distance, transport time, and material flow are all common
MHC-related indicators. Besides, layout area utilization and total production time are some
other performance indicators [3]. With the increasing concern on sustainability in the man-
ufacturing industry in recent years, some scholars have begun to study sustainable FLPs.
Tayal et al. [34] formulated a sustainable stochastic dynamic FLP and presented a solution
method with the hierarchical framework of a meta-heuristic, multiple attribute decision-
making techniques, and consensus ranking method. Macroscopically, the sustainability of
manufacturing processes involves economic, environmental, and social issues [35]. Accord-
ingly, apart from the economic sustainability represented by manufacturing cost/MHC,
attributes such as waste disposal, recycling, noise, maintenance, the safety of human–
machine interaction, and EC should also be addressed in sustainable facility layout. In
terms of EFL-related studies, Iqbal and Al-Ghamdi [36] took the machining and transport
EC as a whole to optimize and presented an energy-saving method by rationally assigning
manufacturing processes to various machines and grouping machines in various cells.
Specifically, the transport EC was simplified as a function dependent on the part’s weight.
Moreover, Wang et al. [37] proposed a facility layout model to minimize the total cost in a
large-scale industrial plant with multi-floor structures, and the energy consumed by pumps
for overcoming friction and gravity losses in the piping was treated as part of the total
cost. Similarly, Lamba et al. [38] formulated a dynamic cellular FLP as a mixed-integer
non-linear model, and the sustainability was incorporated by optimizing EC, material
handling, and rearrangement cost. Overall, current FLP studies involving EC or other EC-
related indicators are rather limited. The related efforts usually treated the EC of material
handling equipment as part of transport cost and further considered that reducing the
cost was largely equivalent to saving energy. That is, whether EC can be an independent
optimization objective in facility layout was not fully answered. Besides, the evaluation of
transport EC was also greatly simplified due to the lack of reliable models and methods.
A manufacturing system usually consists of multiple energy-consuming equipment, and
material handling is an indispensable link in the whole production process. So, transport
EC is an essential part of the total production EC. Correspondingly, the workshop facility
layout directly affects the transport mode, equipment selection, and route planning, thereby
the transport EC and the energy-saving potential of scheduling schemes. Given this, it is of
great significance to further study EFL.

3. Problem Description and Energy-Efficient Facility Layout Modeling

To bridge the gap summarized by the above literature review, we conducted a facility
layout study considering EC optimization in a manufacturing workshop environment,
and an EFL model is formulated in this section. With the increasingly fierce market com-
petition and more diversified consumer demand, multi-variety, small-batch, and flexible
production mode, which can quickly respond to market changes and update products, has
become a trend for manufacturing enterprises to improve productivity and competitiveness.
Therefore, this production mode was our research background. From the perspective of
layout types, the cellular layout, with the advantages of the high efficiency of product
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layout (i.e., flow line) and the flexibility of process layout, was our research focus. Besides,
automated guided vehicles (AGVs) have been widely applied in a flexible manufacturing
environment, so the material flow between different facilities in a manufacturing cell was
assumed to be executed by AGVs. Moreover, when an AGV is assigned material handling
tasks, empty transport is often inevitable. Ideally, the empty transport EC should also
be taken into account when evaluating the total transport EC. However, owing to the
limited AGV resources in a manufacturing workshop, the empty transport EC of each AGV
mainly depends on the execution order of the transport tasks assigned to it, and the specific
planned path [8], which are the focus of the transport task scheduling and path planning
research, respectively. Therefore, we only considered load transport EC in this study. Then,
the overall problem is to determine the optimal facility layout scheme such that the load
transport distance and EC can both be minimized.

3.1. Model Hypotheses

Based on the existing FLP modeling research, the following assumptions are made to
formulate the EFL model:

1. The workshop for facility layout has a rectangular/square shape, and its length and
width are known in advance.

2. The shape of each facility is abstracted as the smallest rectangle/square enveloping
the real physical equipment operation area, and its length and width are known and
fixed. Moreover, each facility has a safety clearance space.

3. Each facility owns a pick-up point and a drop-off point, which are located at the
facility boundary and maybe in the same position or different positions, and the
positions of such two points relative to the facility centroid are fixed, respectively.

4. All facilities are arranged in the same plane, and the rectilinear distance from the
pick-up point of one facility to the drop-off point of another facility is utilized to
evaluate the transport distance between them.

5. All facilities can be arranged freely but must be located in the given workshop layout
area. Besides, facilities are not allowed to overlap with each other.

6. Each facility has free orientation but can only be placed horizontally (the longer side
at the bottom) or vertically (the shorter side at the bottom).

7. The shop floor is flat, and the types of AGVs executing all material handling tasks
are the same. All AGVs are available when assigned transport tasks. Once an AGV
starts the load transport, the material handling process will not be interrupted, and
the AGV moves at a constant speed. Moreover, the possible route conflicts among
AGVs are ignored.

8. The mass, output volume, transport batch size, and process route of each product are
known in advance, and the product mass change due to machining is not considered.

3.2. Mathematical Formulation

Based on the research hypotheses, EFL is a static FLP on a two-dimensional continuous
plane. To accurately represent the location and orientation of each facility, a reference coor-
dinate system, which takes the bottom-left corner as the coordinate origin and the bottom
and left boundaries of the rectangular layout area as the x-axis and y-axis, respectively, is
established firstly. The diagram of EFL in the workshop layout area is shown in Figure 1.
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Figure 1. Diagram of energy-efficient facility layout.

The EFL is for the production of n products and involves m facilities in all. Since each
facility is abstracted as a regular rectangle, its center can be viewed as the centroid. Let the
longer side of a rectangular layout area be the length direction and the shorter side be the
width direction, the length and width of a workshop layout area are denoted as L and W,
respectively. Then, the definitions of the length and width of each facility follows the length
and width directions of the layout area, respectively. As shown in Figure 1, the center,
pick-up point, and drop-off point of facility i (i = 1, 2, . . . , m) are expressed as (xi, yi),
(xout

i , yout
i ), and (xin

i , yin
i ), separately. To guarantee the safety of production and transport

processes, ∆i is denoted as the safety clearance distance of facility i, and no other facilities
are allowed to be placed in its safety clearance area. Furthermore, the length and width of a
facility may be exchanged with the change in its orientation. Correspondingly, θi is denoted
to express the orientation of facility i, and its initial value is 0. The length and width of
facility i in the original orientation (i.e., θi = 0) are denoted as l0i and w0i, respectively, and
l0i ≥ w0i. The length and width of facility i in the actual layout are denoted as li and wi,
respectively. Obviously, li is equal to l0i or w0i, which depends on the specific orientation
represented by θi. Based on the research assumption, θi can be set as one element of
{0, π/2, π, 3π/2} in the actual layout. Meanwhile, for each facility, since the relative
positional relationship between its pick-up (drop-off) point and its center is determined
in advance, the pick-up (drop-off) point coordinates depend on the center coordinates
and orientation. Specifically, when the center coordinates are determined, the influence of
orientation on the coordinates of the pick-up and drop-off points is shown in Figure 2.
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It can be observed that the original length and width of facility i exchange only when
θi is equal to π/2 or 3π/2. Therefore, ri is defined to indicate whether the original length
and width of facility i exchange, and the relationship between ri and θi can be expressed as:

ri = |cos θi|, ∀i (1)

Accordingly, the value of ri belongs to {0, 1}. li and wi can be obtained as:{
li = ril0i + (1− ri)w0i
wi = riw0i + (1− ri)l0i

, ∀i (2)

For each facility i in its original orientation, if a plane rectangular coordinate system,
with its center as the coordinate origin, the length direction as the x-axis direction, and the
width direction as the y-axis direction, is established, the pick-up and drop-off point coordi-
nates can be denoted as (x̂out

i , ŷout
i ) and (x̂in

i , ŷin
i ) in this coordinate system, respectively.

According to the modeling assumption, (x̂out
i , ŷout

i ) and (x̂in
i , ŷin

i ) are both determined in
advance. Then, through coordinate system transformation, (xout

i , yout
i ) and (xin

i , yin
i ) can

be acquired as: {
xin

i = xi + x̂in
i cos θi − ŷin

i sin θi

yin
i = yi + ŷin

i cos θi + x̂in
i sin θi

, ∀i (3)

{
xout

i = xi + x̂out
i cos θi − ŷout

i sin θi

yout
i = yi + ŷout

i cos θi + x̂out
i sin θi

, ∀i (4)

In addition, the total output of product z (z = 1, 2, . . . , n) is defined as Oz, and the
average transport batch size in the production process is Bz, pieces/time. So, the number
of transport batches needed for product z (Nz) can be obtained as:

Nz = ceil(Oz/Bz), ∀z (5)

where ceil is a single variable function used to obtain the smallest integer that is not smaller
than the input variable. Obviously, for product z, the number of products in its last batch
is not more than Bz. Besides, Xijz is an integer indicating the total transfer times from
facility i to facility j (j = 1, 2, . . . , m) in the process route of product z. Owing to the given
process routes of relevant products in advance, the value of Xijz can be determined, and
Xijz ≥ 0. Moreover, the mass of product z and the empty AGV are denoted as mz and m0,
respectively. The AGV transport speed is uniformly defined as va.
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3.2.1. Transport Distance Analysis

The load transport distance from facility i to facility j (dij, m) relies on the specific
facility layout and can be presented as:

dij =
∣∣∣xout

i − xin
j

∣∣∣+ ∣∣∣yout
i − yin

j

∣∣∣, ∀i, j (6)

The frequency of material flow from facility i to facility j ( fij) can be calculated as:

fij =
m

∑
i=1

m

∑
j=1

n

∑
z=1

(
XijzNz

)
(7)

Then, the total load transport distance (Dtotal, m) can be formulated as:

Dtotal =
m

∑
i=1

m

∑
j=1

(
fijdij

)
(8)

3.2.2. Transport Energy Consumption Analysis

Generally, four kinds of resistance, namely friction, air, slope, and acceleration re-
sistance, need to be overcome to drive an AGV [39]. According to the assumptions of
workshop ground and AGV transport speed, slope and acceleration resistance can be ig-
nored. Besides, considering the indoor transport environment and the relatively slow AGV
speed, air resistance can also be neglected. Then, from the perspective of motion [8], the
AGV transport EC in the load transport process is composed of the standby and uniform
motion EC. As long as an AGV is powered on, the standby motion always exists regardless
of whether the AGV executes a transport task. Correspondingly, the standby motion power
(Psm, W) is usually treated as a constant, which can be measured when the AGV is in
standby mode or acquired by referring to the manual. The common energy sources driving
an AGV to move at various speeds are motors, and the uniform motion EC can be viewed
as the additional EC for igniting an AGV to move at a constant speed on top of the standby
motion EC. Therefore, the total load transport EC (Etotal, J) can be expressed as:

Etotal = Esm + Eum (9)

where Esm and Eum represent the total EC ignited by standby and uniform motions, respec-
tively, J. Owing to the fixed standby motion power, Esm relies on the load transport time.
Based on Equations (6) and (7), the total load transport time from facility i to facility j (Tij, s)
can be calculated as:

Tij =
fijdij

va
, ∀i, j (10)

Accordingly, Esm can be acquired as:

Esm =
m

∑
i=1

m

∑
j=1

(
PsmTij

)
(11)

In the uniform motion process, the mechanical power output from the AGV’s traveling
driving motors is utilized to work against the rolling resistance, which can be calculated
as the product of driving force and displacement. The driving force is equal to the rolling
resistance, and Eum can be expressed as:

Eum =
m

∑
i=1

m

∑
j=1

n

∑
z=1

[
1
η

Cr(mzOz + Nzm0)gdijXijz

]
(12)

where η is the overall power factor of driving motors; Cr is the rolling resistance coefficient;
and g is the gravity acceleration, 9.81 m/s2.
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Then, the optimization objectives of EFL are formulated as:{
Minimize[Dtotal]

Minimize[Etotal]
(13)

Subject to:
1
2

li + ∆i ≤ xi ≤ L− 1
2

li − ∆i, ∀i (14)

1
2

wi + ∆i ≤ yi ≤W − 1
2

wi − ∆i, ∀i (15)

∣∣xi − xj
∣∣ ≥ 1

2
(
li + lj) + max{∆i, ∆j}, ∀i, j (16)

∣∣yi − yj
∣∣ ≥ 1

2
(
wi + wj) + max{∆i, ∆j}, ∀i, j (17)

θi ∈ {0, π/2, π, 3π/2} (18)

Combined with Equations (1) and (2), constraints (14) and (15) ensure that all facilities
must be in the assigned layout area. Constraints (16) and (17) confirm that facilities do
not overlap in the layout, and a reasonable safety distance should be maintained between
any two facilities. Constraint (18) indicates the orientation constraint of a facility to further
determine its pick-up and drop-off point coordinates.

4. Model Solution

As shown in the above mathematical formulation, the EFL is also a multi-objective
optimization problem (MOP), and xi, yi, and θi are key decision variables affecting the
optimization objectives. For an MOP, especially when the objectives conflict, there is often
no optimal solution that makes all objective functions reach the maximum/minimum value
at the same time, and we usually seek its non-inferior solutions (known as non-dominated
or Pareto solutions) within the limited computing time. According to the literature review
of the FLP solutions, meta-heuristic methods such as ACO, GA, PSO, and SA are suitable for
solving large-scale FLPs and own advantages such as high search efficiency, self-adaptation,
and self-learning. Because of this, PSO is adopted to solve the EFL model.

4.1. Particle Design

In PSO, the position of each particle represents a feasible problem solution, and all
particles move through the search space to find the optimal solution. Since the algorithm
design is driven by problem characteristics and the algorithm efficiency relies on the particle
encoding scheme, it is the first step to encode a solution of the EFL model into a particle
when applying PSO. The value of θi is discrete, while xi and yi change in continuous space.
Therefore, based on the indirect encoding method to solve unequal-area FLPs [40], the
values of xi, yi, and θi can be determined indirectly by xi, yi, and θi, which all belong to
[0, 1] and change continuously in this interval. The specific conversion relationship can be
expressed as: 

xi = xmin
i + xi

(
xmax

i − xmin
i ),∀i

yi = ymin
i + yi

(
ymax

i − ymin
i ),∀i

θi =


0

π/2

π

3π/2

0 ≤ θi < 0.25

0.25 ≤ θi < 0.5

0.5 ≤ θi < 0.75

0.75 ≤ θi ≤ 1

,∀i

(19)
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where xmin
i , xmax

i ,ymin
i , and ymax

i can be determined by constraints (14) and (15), as shown below:
xmin

i = 1
2 li + ∆i, ∀i

xmax
i = L− 1

2 li − ∆i, ∀i

ymin
i = 1

2 wi + ∆i, ∀i

ymax
i = W − 1

2 wi − ∆i, ∀i

(20)

Specifically, li and wi rely on the facility orientation and can be calculated by
Equations (1) and (2).

Then, each particle can be coded in three layers, and the encoding length of each layer
is 2m. Correspondingly, the search space consists of three m-dimensional spaces, and the
particle position in each m-dimensional space determines the x coordinate, y coordinate,
and orientation of each facility, respectively. The three-layer encoding of each particle can be
respectively expressed as the form (x1, x2, . . . , xm, vx1, vx2, . . . , vxm), (y1, y2, . . . , ym, vy1,
vy2, . . . , vym), and (θ1, θ2, . . . , θm, vθ1, vθ2, . . . , vθm), where vxi, vyi, and vθi denote the
particle velocity in the ith dimension in the corresponding m-dimensional space, respec-
tively. According to the particle position range of each dimension in each m-dimensional
search space, the values of vxi, vyi, and vθi are all between –1 and 1. Moreover, for any
given particle, when extracting xi and yi according to Equations (1), (2), (19), and (20), their
position accuracy is all set to the millimeter. So is the accuracy of the pick-up and drop-off
point coordinates.

4.2. Steps of the MOPSO

The classical PSO [41] is mainly for single-objective optimization problems (SOPs),
and its various improvements for solving MOPs can all be referred to as MOPSO. In PSO,
the new position of each particle is determined by the particle velocity, the best position
found by the particle, and the position of the group best. For an SOP, it is easy to judge if
a particle is the best one in the swarm, and its local best position needs to be updated by
comparing the objective values. However, owing to the conflicting optimization objectives
in an MOP, the differences between MOPSO and single-objective PSO mainly lie in how to
judge if an individual is better than others. Correspondingly, if an MOP is not transformed
into an SOP by the common methods such as weighted summation and goal programming,
the concept of Pareto domination is usually applied to compare two solutions, which is also
adopted in the MOPSO applied in this study. Specifically, based on the objective values
of each particle, a particle is defined as dominating the other if its objective values are not
worse than the other’s, and it is better than the other at least in one objective.

Moreover, for an FLP in a continuous space, the univariate search with controlled
convergence has been reported as an effective strategy in minimizing the size of the block
enveloping all facilities and eliminating overlap between facilities simultaneously [42].
Inspired by this, a local search mechanism is designed to execute the local search based
on the Pareto solution in the MOPSO. Based on our previous work [43], the flowchart of
the MOPSO adopted in this study is shown in Figure 3, and the following illustrates its
key processes.

4.2.1. Swarm Initialization

Swarm initialization is to create particles that conform to the designed encoding
scheme. Each particle is encoded in three layers, and the initialization method of each layer
is the same. Take the layer to determine the x coordinate of each facility as an example,
select m random numbers belonging to [0, 1] and assign them to x1, x2, . . . , xm in turn.
Then, select m random numbers belonging to [−1, 1] and assign them to vx1, vx2, . . . , vxm
in turn.
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4.2.2. Fitness Evaluation

The idea of Pareto domination is employed to evaluate the particles in the swarm. For
any two particles, it is necessary to obtain their respective objective values before judging
the Pareto dominance between them. However, the facility layout extracted from a particle
by Formula (19) may be illegal, i.e., constrains (16) and (17) are not satisfied, and facility
overlap occurs in the layout scheme. As an evolutionary algorithm, PSO is proposed
for unconstrained continuous optimization problems. Considering the penalty-function
method is a common method to transform a constrained optimization problem into an
unconstrained optimization problem, it is adopted here to handle constraints (16) and (17).
Correspondingly, the two original optimization objectives Dtotal and Etotal are transformed
into D∗total and E∗total, respectively, which are utilized in the Pareto dominance judgment
and crowding distance calculation and expressed as:

D∗total = Dtotal + λHD (21)

E∗total = Etotal + λHE (22)
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where HD and HE represent two positive large numbers; λ is the average violation of a
facility layout, which can be presented as:

λ =
1

m2

m

∑
i=1

m

∑
j=1

λij (23)

where λij is a coefficient reflecting the violation between facility i and facility j, which
comprehensively reflects the violations of such two facilities along the x-axis and y-axis,
denoted as λx

ij and λ
y
ij, respectively. Correspondingly, λij, λx

ij, and λ
y
ij can be formulated

as follows:
λij = min{λx

ij, λ
y
ij}, ∀i, j (24)

λx
ij = max{0, 1 −

∣∣xi − xj
∣∣

1
2
(
li + lj) + max{∆i, ∆j

}}, ∀i, j (25)

λ
y
ij = max{0, 1 −

∣∣yi − yj
∣∣

1
2
(
wi + wj) + max{∆i, ∆j

}}, ∀i, j (26)

Note that the li and lj in Formula (25), and the wi and wj in Formula (26) are determined
by Formulas (1) and (2), which rely on the facility orientation information extracted by the
particle encoding scheme. Moreover, according to Formulas (24)–(26), if a facility layout
scheme is feasible, λ is equal to 0, and D∗total and E∗total have practical meaning, respectively.

4.2.3. Crowding Distance Sorting

The concept of crowding distance is often applied in multi-objective optimization
algorithms evaluating solutions by comparing the Pareto dominance relationship, e.g.,
non-dominated sorting genetic algorithm-II (NSGA-II) [44], which reflects the density
of other solutions around one solution in solution search space. Through the Pareto-
dominance judgment among particles, the particles in the swarm can be divided into
different groups according to the number of particles dominated by each particle. Note
that the crowding distance calculation can only be executed for particles belonging to
the same group. The non-dominated particles are distributed in the Pareto front, and
their crowding distances are the focus of the MOPSO. Specifically, all non-dominated
particles are sorted by each objective value calculated by Formula (21) or (22); the crowding
distance of two boundary particles is set to infinity, respectively, then the crowding distance
of each intermediate particle is the sum of the distance difference between its adjacent
particles on each objective. Furthermore, after the crowding distance sorting in descending
order, the top 10% of non-dominated particles are picked up to form the elite solution
set. Correspondingly, in the subsequent particle velocity and position update processes, a
particle randomly selected from the elite solution set is viewed as the group best, which is
beneficial to guiding the swarm particles to move towards the Pareto front and maintaining
the diversity of solutions.

4.2.4. Velocity and Position Update

According to the particle encoding scheme, the velocity of particle k in a swarm with
N particles needs to be updated from three aspects, as shown below.

vxk
i (p + 1) = ωvxk

i (p) + CLε1

[
xk, best

i (p)− xk
i (p)

]
+ CGζ1

[
xgbest

i (p)− xk
i (p)

]
vyk

i (p + 1) = ωvyk
i (p) + CLε2

[
yk, best

i (p)− yk
i (p)

]
+ CGζ2

[
ygbest

i (p)− yk
i (p)

]
vθ

k
i (p + 1) = ωvθ

k
i (p) + CLε3

[
θ

k, best
i (p)− θ

k
i (p)

]
+ CGζ3

[
θ

gbest
i (p)− θ

k
i (p)

] ,

k = 1, 2, . . . , N, i = 1, 2, . . . , m, p = 1, 2, . . . , Imax

(27)
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where p is the iteration index; ω is the inertia weight coefficient belonging to [0, 1];
CL and CG are cognitive and social acceleration coefficients, respectively; in the three
m-dimensional search spaces determining the x coordinate, y coordinate, and orientation of

each facility, respectively, vxk
i (p), vyk

i (p), and vθ
k
i (p) are the velocity of particle k, and xk

i (p),

yk
i (p), and θ

k
i (p) are the position of particle k in the ith dimension of each search space in

the pth iteration; xk, best
i (p), yk, best

i (p), and θ
k, best
i (p) are the best position of particle k in

the ith dimension of each search space until the pth iteration, and xgbest
i (p), ygbest

i (p), and

θ
gbest
i (p) are the best position of the swarm best particle in the ith dimension of each search

space until the pth iteration; ε1, ε2, ε3, ζ1, ζ2, and ζ3 are uniform variables between 0 and 1;
Imax is the maximum iterations.

As shown in Formula (27), the particle velocity update is composed of three parts.
The first part represents that a particle tends to maintain its previous velocity, which is to
ensure the global convergence performance of the algorithm; the middle part reflects a
particle’s memory of its historical experience and the tendency to approach its best position
in history; the last part reflects the group’s historical experience of collaborative cooperation
and knowledge sharing among particles, and the particle tends to approach the historical
best position of the group. Correspondingly, the second and third parts make the algorithm
own local convergence ability. Therefore, the values of ω, CL, and CG maintain the balance
between the global and local search ability together. Specifically, a larger inertia weight is
conducive to jumping out of the local optimum and facilitating the global search, while a
smaller one is beneficial to local search and promoting algorithm convergence. To avoid
premature convergence of the algorithm and the oscillation near the global optimal solution
at the later stage of operation, the linearly varying weight [45] is utilized in this study.
Accordingly, the ω in Formula (27) changes with the algorithm iteration, which can be
redefined as ω(p), i.e., the inertia weight in the pth iteration, and presented as:

ω(p) = ωmax − p× ωmax −ωmin

Imax
, p = 1, 2, . . . , Imax (28)

where ωmax and ωmin represent the maximum and minimum values of inertia weight,
respectively. Moreover, after the velocity update, the new velocity of each particle in each
dimension of each search space beyond the pre-set bound is reassigned to its nearest bound,
i.e., −1 or 1.

Then, the position of each particle is updated as follows:
xk

i (p + 1) = xk
i (p) + vxk

i (p + 1)

yk
i (p + 1) = yk

i (p) + vyk
i (p + 1)

θ
k
i (p + 1) = θ

k
i (p) + vθ

k
i (p + 1)

, k = 1, 2, . . . , N, i = 1, 2, . . . , m, p = 1, 2, . . . , Imax (29)

Similarly, after each iteration, the new position of each particle in each dimension
of each search space exceeding the pre-set bound is set to its nearest bound, i.e., 0 or 1.
Accordingly, a new facility layout may be generated by Formula (19), and the corresponding
objective values can be acquired by Formulas (21) and (22). Furthermore, whether the
local best position of each particle and the global best position need to be updated can be
determined through the Pareto-dominance judgment.

4.2.5. Local Search

In each iteration, local search is only executed for the group best particle, i.e., the
non-dominated particle, which aims to eliminate the possible facility overlap in the con-
temporary optimal solution as much as possible and provide a better position near the
contemporary optimal particle to guide the swarm particles’ movement. For a randomly
selected non-dominated particle in the contemporary swarm, the local search method is
performed according to the following steps:
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Step 1: Extract the particle position information and sort all facility numbers randomly.
Step 2: Change the particle position relevant to facility i in the qth position, q = 1, 2, . . . , m,

through nine actions. Initially, q is assigned to 1.

• Action 1: Change the value of θi to 0.1, 0.35, 0.6, and 0.85, respectively, and calculate
the values of D∗total and E∗total corresponding to four particles transformed from the
original one. Then, judge the Pareto dominance among them, select a non-dominated
particle randomly, and record it.

• Action 2: Change the value of yi by summing a random number between 0 and 0.5
and the original yi. Then, execute action 1, and record the best particle obtained.

• Action 3: Change the value of yi by subtracting a random number between 0 and 0.5
from the original yi. Then, execute action 1, and record the best particle obtained.

• Action 4: Change the value of xi by summing a random number between 0 and 0.5
and the original xi. Then, execute action 1, and record the best particle obtained.

• Action 5: Change the value of xi by subtracting a random number between 0 and 0.5
from the original xi. Then, execute action 1, and record the best particle obtained.

• Action 6: Change the value of xi by summing a random number between 0 and 0.5
and the original xi, and the value of yi by summing a random number between 0 and
0.5 and the original yi. Then, execute action 1, and record the best particle obtained.

• Action 7: Change the value of xi by subtracting a random number between 0 and 0.5
from the original xi and the value of yi by summing a random number between 0 and
0.5 and the original yi. Then, execute action 1, and record the best particle obtained.

• Action 8: Change the value of xi by summing a random number between 0 and 0.5
and the original xi and the value of yi by subtracting a random number between 0 and
0.5 from the original yi. Then, execute action 1, and record the best particle obtained.

• Action 9: Change the value of xi by subtracting a random number between 0 and 0.5
from the original xi and the value of yi by subtracting a random number between 0 and
0.5 from the original yi. Then, execute action 1, and record the best particle obtained.

Note that after the position update relevant to xi and/or yi in actions 2~9, it is necessary
to judge whether the updated xi and/or yi exceeds its position bound. If so, xi and/or yi is
set to its nearest bound, i.e., 0 or 1.

Step 3: Judge the Pareto dominance among the nine particles obtained in Step 2, and
select a non-dominated particle randomly.

Step 4: Judge the Pareto dominance between the original particle and the particle
acquired in Step 3. If the former is dominated by the latter, its current position is replaced
by the latter’s position. Besides, if the local best of the original particle is also dominated
by the particle obtained in Step 3, its position is replaced by the position of the particle
obtained in Step 3.

Step 5: q = q + 1. If q is not greater than m, go to Step 2; otherwise, go to the next step.
Step 6: Update the non-dominated particles of the contemporary population.
As noted above, the generation of new particles around the current global best particle

mainly depends on the nine actions. Specifically, the first action only involves the change in
facility orientation. The other actions may change not only the center coordinates but also
the orientation of each facility. When changing the position encoding information related
to facility i, the possible facility position adjustments corresponding to such nine actions
are described in Table 1.
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Table 1. Possible facility position adjustments corresponding to nine actions.

Action No. Affected Decision Variable Possible Facility Position Adjustment

1 θi rotate to exchange length and width

2 yi and θi
move upward, and rotate to exchange

length and width

3 yi and θi
move downward, and rotate to exchange

length and width

4 xi and θi
move right, and rotate to exchange length

and width

5 xi and θi
move left, and rotate to exchange length

and width

6 xi, yi, and θi
move toward top-right, and rotate to

exchange length and width

7 xi, yi, and θi
move toward top-left, and rotate to

exchange length and width

8 xi, yi, and θi
move toward bottom-right, and rotate to

exchange length and width

9 xi, yi, and θi
move toward bottom-left, and rotate to

exchange length and width

5. Experiments

To evaluate the relationship between the two optimization objectives in the EFL model
and verify the effectiveness of the proposed model solution method, two experiments were
executed, respectively.

5.1. Experiment 1

This experiment stemmed from the actual needs of a military manufacturing enterprise
in Xi’an, China. The products produced by this enterprise mainly include missiles, guided
projectiles, aviation parts, and auto parts. For the sake of confidentiality, the enterprise’s
name, specific equipment, and the products involved are hidden in this paper. Due to
the special requirements of high quality and high precision of military products, CNC
machine tools have become essential tools for military enterprises to produce key parts
and develop new products. Correspondingly, with the implementation of the efficiency
improvement plan for CNC machine tools and the construction of a digital factory, this
enterprise accumulated rich experience in automation and informatization application and
owned strong product research and development and manufacturing capacity. In general,
this enterprise’s production mode conformed to multi-variety and small/variable-batch.
Meanwhile, to adapt to the manufacturing of products with relatively stable annual demand
and certain process similarities, the enterprise tried to set up some flexible manufacturing
cells (FMCs). Moreover, the manufacturing plants of the enterprise were mainly located in
the city. With the increasingly strict environmental protection requirements in the urban
area, the enterprise planned to move the plants to the suburbs to guarantee the production
capacity and put forward the requirement of the re-layout of existing workshop facilities.

Under this background, we selected an FMC to verify the energy-saving effect of the
proposed EFL model. According to the actual measurement and the data provided by the
enterprise, the information of the facilities (i.e., various machine tools) belonging to this
FMC in their original orientations (i.e., θi = 0) is shown in Table 2, and the information of
typical products manufactured by this FMC is presented in Table 3. Regarding the AGV
serving this FMC, it had four wheels directly driven by four servo motors, and its traveling
speed was often set to 1 m/s when transporting materials. The AGV’s technical manual
indicates that the AGV’s net weight is 60 kg, the maximum handling load is 80 kg, and the
driving motor efficiency is 0.9.
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Table 2. The information of facilities in their original orientations.

No.
Original
Length
(l0i, m)

Original
Width

(w0i, m)

Safety Clearance
Distance (∆i, m)

Drop-Off Point
Coordinates

(x̂in
i , ŷin

i )

Pick-Up Point
Coordinates

(
^
x

out

i ,
^
y

out

i )
Machining Capacity

1 3.4 2.5 2 (−1.020, −1.250) (1.700, 0.250) thread machining
2 3.2 2.5 2 (−1.600, 0.750) (1.600, 0.250) hole drilling
3 2.8 2 1.5 (0.840, −1.000) (1.400, 0.200) plane milling
4 3.2 2.5 1.5 (−0.320, −1.250) (0.960, 1.250) slotting; contour milling
5 4.5 3 2.5 (−2.250, 0.900) (−2.250, −0.900) external/internal turning
6 3.5 2.5 2 (1.050, −1.250) (−1.050, 1.250) hole boring
7 2.5 2 1.5 (0.750, 1.000) (−1.250, −0.200) plane grinding
8 2 1.5 1 (−1.000, −0.150) (1.000, −0.150) chamfering; deburring

Table 3. The information of products.

No. Annual Output
(Oz, Piece)

Mass of Single
Piece (mz, kg)

Average Transport
Batch Size (Bz,
Pieces/Time)

Number of
Transport

Batches (Nz)
Machining Process Route

1 720 4.6 15 48 Facility 5→Facility 4→Facility
5→Facility 2→Facility 1→Facility 8

2 450 2.5 15 30 Facility 3→Facility 4→Facility
2→Facility 7→Facility 8

3 300 3.1 15 20
Facility 5→Facility 1→Facility

3→Facility 2→Facility 4→Facility
7→Facility 8

4 700 3.7 15 47 Facility 3→Facility 2→Facility
6→Facility 7→Facility 4→Facility 8

5 400 2.6 15 27
Facility 5→Facility 3→Facility

4→Facility 2→Facility 3→Facility
7→Facility 8

6 900 2 20 45 Facility 3→Facility 7→Facility
2→Facility 6→Facility 1→Facility 8

The AGV contains multiple energy-consuming components. To help analyze the
AGV’s EC characteristics, an experimental setup mainly consisting of a DC power sensor
module, two Bluetooth communication modules, and a laptop with the EC data acquisition
software based on LabVIEW was built. Its architecture and installation on the AGV are
shown in Figure 4, and the sampling frequency of power data was set to 40 Hz. The
measured Psm was 25 W, and the relevant energy sources mainly include an STM32 micro-
computer, magnetic navigation sensors, motor drivers, fans, and signal lamps. Regarding
the AGV uniform motion power (Pum, W), it should be stable under the given transport
load and speed according to physical kinematics analysis. That is, when the AGV moves
at a uniform speed, the motor power output on top of its standby power is utilized to
overcome the rolling resistance, so Pum can be expressed as:

Pum =
1
η

Crmtotalgva (30)

where mtotal represents the total mass of the AGV and goods, kg. Correspondingly, Cr
is an important parameter that needs to be determined in advance for evaluating Eum.
Although its value or range is usually acquired by referring to the mechanical design
manual in engineering practice, it cannot be accurately obtained through the manual under
this experimental condition. In the manufacturing workshop of this enterprise, the ground
was usually sprayed with high wear-resistant polyurethane floor paint. Given the AGV,
Cr can be regarded as a constant. Consequently, if the AGV travels at the same speed
with different loads, Pum should be proportional to the load. Fortunately, the collected
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AGV power data verified this rule. For instance, when the AGV’s moving speed was
1.1 m/s and mtotal was 72.5 kg, 85 kg, 97.5 kg, and 110 kg, respectively, the measured Pum
was 39.5 W, 43.7 W, 50.7 W, and 56.9 W, separately. Through the statistical analysis of the
measured experimental data, the value of Cr was 0.03. This also indirectly proved that
it is somewhat reasonable to treat the power factor of the driving motor as a constant
in the AGV’s technical manual when the AGV travels at the specified allowable speed.
Furthermore, Formula (12) can be directly utilized to evaluate the Eum corresponding to
each layout scheme in the MOPSO running process.
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Figure 4. Experimental setup for the AGV EC data acquisition.

Then, the frequency of material flow, and the mass flow between different facilities
could be obtained from Table 3, as shown in Tables 4 and 5, respectively. Note that the
AGV’s weight was also taken into account in the mass flow analysis. The layout area
covered by these facilities in the new workshop should not exceed 25 m × 20 m. Besides,
the basic parameter setting of the MOPSO, which was implemented in Matlab language
on a PC with Intel(R) Core(TM) i5-6500 CPU @ 3.20 GHz, 16 GB RAM, and Windows 7
OS, is depicted in Table 6. The dimensions of HD and HE varied as they were used to
evaluate different objectives, but their values were uniformly set to 1020 when calculating
the objective values of each particle. After running the MOPSO ten times, it was observed
that a unique optimal solution was output each time, and the average search time of ten
replications was 83.265 s. The FMC adopted a double-row layout before the workshop
was relocated, and the placement and orientation of each facility mainly depended on
the experience of process designers and operators. The specific comparison of the layout
extracted from the best solution acquired by running the MOPSO ten times, and the original
layout is illustrated in Figure 5.
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Table 4. Frequency of material flow between facilities.

Facility 1 2 3 4 5 6 7 8

1 0 0 20 0 0 0 0 93
2 48 0 27 20 0 92 30 0
3 0 67 0 57 0 0 72 0
4 0 57 0 0 48 0 20 47
5 20 48 27 48 0 0 0 0
6 45 0 0 0 0 0 47 0
7 0 45 0 47 0 0 0 77
8 0 0 0 0 0 0 0 0

Table 5. Mass flow between facilities.

Facility 1 2 3 4 5 6 7 8

1 0 0 2130 kg 0 0 0 0 10,692 kg
2 6192 kg 0 2660 kg 2130 kg 0 9910 kg 2925 kg 0
3 0 7540 kg 0 5585 kg 0 0 7160 kg 0
4 0 5585 kg 0 0 6192 kg 0 2130 kg 5410 kg
5 2130 kg 6192 kg 2660 kg 6192 kg 0 0 0 0
6 4500 kg 0 0 0 0 0 5410 kg 0
7 0 4500 kg 0 5410 kg 0 0 0 7715 kg
8 0 0 0 0 0 0 0 0

Table 6. Parameter setting of the MOPSO.

Parameter Value

Swarm size (N) 50
Maximum iteration (Imax) 500

Cognitive acceleration coefficient (CL) 2
Social acceleration coefficient (CG) 2

Inertia weight coefficient (ω) Maximum value (ωmax) 0.9
Minimum value (ωmin) 0.4

As shown in Figure 5, the rectangle that envelops all facilities including the safety
clearance space can be regarded as a whole in the layout planning area. Accordingly, it can
be moved along the x-axis or y-axis and rotated like each facility as needed. Though the
rectangular area enveloping all facilities was increased by 6.42% after the layout optimiza-
tion, the optimization objectives concerned in the EFL model, i.e., Dtotal and Etotal, were
reduced by 38.32% and 39.20%, respectively. Therefore, the energy-saving effect achieved
by optimizing the facility layout was significant, and the total load transport distance was
also optimized.

In addition, the facilities in the optimized layout were relatively compact, and facility
2 was approximately in the center of the layout due to the highest frequency of the mate-
rial flow between facility 2 and other facilities. Considering the requirements of facility
management and workshop transport network planning, it is difficult to directly apply
the optimized layout in practice. Figure 6 depicts a feasible adjustment scheme based
on the optimized layout. The positions of some facilities moved along the x-axis so that
they were arranged in columns, which can also be interpreted as rows when the envelop
rectangle was rotated. Furthermore, it can be found that the rectangular area enveloping all
facilities, and the values of Dtotal and Etotal, were all increased after adjusting the optimized
layout. However, the altered layout was still better than the original (Dtotal decreased by
27.59% and Etotal fell by 29.09%), which means the proposed EFL model can also assist
in providing one or more initial layouts for subsequent adjustments in combination with
actual situations.
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Further, from the viewpoint of motion, the decomposition of the Etotal corresponding
to the three layout schemes in Figures 5 and 6 is depicted in Figure 7. Comparing the
optimized layout with the original layout, it can be observed that Esm and Eum are both
reduced, and the decline of Eum is greater than that of Esm. After adjusting the optimized
layout, the distribution of equipment becomes a little loose, leading to the increase of
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Esm and Eum of the optimized layout. However, Esm has a higher percentage of growth
than Eum. Hence, when optimizing Etotal, it is inappropriate to focus only on a certain
component, and all EC components shall be considered globally.
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5.2. Experiment 2

The MOPSO applied in this study was the improvement of our previous work, and
its performance had been compared with the common benchmark algorithm NSGA-II in
solving some representative MOPs such as AGV path planning and process parameter
optimization [8,43]. Theoretically, it is necessary to compare the proposed MOPSO with
some other typical meta-heuristic methods to solve the same FLP. However, there were few
suitable cases after the literature review, as EC or EC-related factors were rarely involved.
Note that when applying an intelligent algorithm to solve an optimization problem, the
design of an individual coding scheme reflecting the feasible problem solution directly
affects the algorithm efficiency. Correspondingly, the particle encoding scheme proposed in
this study should be suitable for solving FLPs, especially unequal-area static FLPs. Hence,
Experiment 2 focused on verifying the effectiveness of the particle encoding scheme and
evaluating the influence of the local search method on the solution quality. Generally, the
main difference between MOPSO and single-objective PSO (SOPSO) lies in the individual
fitness evaluation executed to determine the local best position and the group best position.
Fortunately, there are massive cases considering the objective of transport distance in the
existing research. So, two FLP cases focusing on the optimization of transport distance
in [46], including 11 facilities within 15 m × 15 m layout area and 20 facilities within
14 m × 14 m layout area, respectively, were selected, as the scale of them was larger than
our actual case. However, in such two cases, the transport distance between any two
facilities was the Manhattan distance between their centers. The pick-up and drop-off
points ignored, the transport distance was only related to the center position of each facility,
as expressed below:

dij =
∣∣xi − xj

∣∣+ ∣∣yi − yj
∣∣, ∀i, j (31)

Moreover, the original length and width of a facility can still be exchanged, which
occurred when the value of θi extracted by Formula (19) was equal to π/2 or 3π/2, i.e., ri
equals 1 at this moment.

Then, the SOPSO adopting the particle encoding scheme and the local search method
proposed in this study was compared with other methods, which were the modified
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PSO [40], FLOAT [42], and TOPOPT [46]. Especially, to evaluate the performance of two
PSO-based algorithms relatively objectively, the parameter setting of them were the same,
except the inertia weight coefficient, as shown in Table 7. Meanwhile, the positioning
accuracy was set to four decimal places. After running the SOPSO ten times for each FLP
case, the best solutions are depicted in Figure 8, and the comparison of results obtained by
various methods is summarized in Table 8. In terms of the best solution, the output result
of the SOPSO is better than that of the TOPOPT method, and close to that of the FLOAT
method, but worse than that of the modified PSO. Therefore, the particle encoding scheme
applied in the MOPSO is effective.

Table 7. Parameter setting of the SOPSO for two FLP cases.

Parameter
Value

Case 1 with 11 Facilities Case 2 with 20 Facilities

Swarm size (N) 20 50
Maximum iteration (Imax ) 300 400

Cognitive acceleration
coefficient(CL) 0.5 0.5

Social acceleration coefficient (CG) 1.2 1.2Sustainability 2022, 14, 2788 23 of 29 
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Table 8. Comparison of results obtained by various methods.

The SOPSO
The Modified

PSO [40] FLOAT [42] TOPOPT [46]
Case Example

Method

FLP with 11
facilities

Best solution [m] 1331.9386 1286.1069 - -
Worst solution [m] 1463.5799 1371.3264 - -

Mean value of the optimal
solution [m] 1413.7281 1335.63845 - -

Run time for the best
solution [s] 18.674562 888.315646 - -

Run time for the worst
solution [s] 18.897003 919.736577 - -

Average running time [s] 18.873241 - - -

FLP with 20
facilities

Best solution [m] 1288.3512 1206.6489 1264.94 1320.72
Worst solution [m] 1473.6893 1315.2316 - -

Mean value of the optimal
solution [m] 1348.6483 1264.21306 1333.81 1395.64

Run time for the best
solution [s] 69.381237 2352.12272 - -

Run time for the worst
solution [s] 70.316711 2250.8654 - -

Average running time [s] 69.898404 - - -

5.3. Discussion

In Experiment 1, as each execution of the algorithm only output a unique optimal
solution, the influence relationship between two optimization objectives cannot be directly
judged through the Pareto front. Therefore, more data are needed to support the evaluation
of their relationship. Correspondingly, plenty of feasible solutions generated in the process
of population evolution can be utilized. Specifically, two feasible solutions belonging
to the same Pareto rank were found in the algorithm iteration, and the facility layout
schemes extracted by decoding the corresponding particles are illustrated in Figure 9.
Obviously, the decrease of Dtotal was accompanied by the growth of Etotal. Moreover,
from the mathematical expressions of the two optimization objectives, they are both linear
functions of the transport distance between facilities. Therefore, if such two objectives are
linearly-correlated, it can be deduced that all non-zero elements in the same position of the
material flow frequency matrix and mass flow matrix, as shown in Tables 4 and 5, must
follow the same proportional relationship. Only in this case, shortening the load transport
distance is equivalent to saving EC. However, this situation is a special case. At least in
our experiment, it is not tenable. In actual workshop production, it is still difficult to meet
this condition strictly due to the differences in product type, batch, and process planning.
Therefore, the transport distance and EC can be regarded as two independent optimization
objectives in EFL in most cases.

In addition, the existing studies have proved that the effectively utilized area can
be an independent optimization goal in traditional FLPs. According to the change in the
rectangular area enveloping all facilities with Dtotal or Etotal in Experiment 1, the effectively
utilized area can also be treated as an optimization objective in EFL.

Regarding Experiment 2, the average running time of the SOPSO is shorter than that of
the modified PSO [40], which is mainly due to the improvement of computer performance.
In terms of the output solution quality, although the overall performance of the SOPSO is
inferior to that of the modified PSO, it is better than the TOPOPT method, which means the
particle encoding scheme is effective, and the proposed MOPSO for solving the EFL model
can be acceptable. Furthermore, by analyzing the algorithm process, it can be found that
the modified PSO adopts different local search strategies in various iteration stages. The
pick-up and drop-off points of each facility ignored, the local search method applied in the
MOPSO is similar to the “Local search method 1” in the modified PSO in terms of facility
movement actions. Since the local search ability of PSO is generally weak [47], it could
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be concluded that the lack of flexibility and diversity of local search methods affects the
quality of final output solutions. Moreover, by solving the existing cases, it is verified that
the particle encoding scheme proposed in this paper is suitable for solving FLPs, especially
unequal-area static FLPs.
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6. Conclusions

As the manufacturing industry gradually pays attention to sustainability, extensive
efforts have been devoted to the energy-efficient manufacturing system. Facility layout is
an essential part of manufacturing system planning. To fully excavate the energy-saving
potential of a manufacturing system, it is necessary to own energy consciousness in its
planning and design stage. Under this background, we investigated energy-efficient facility
layout in a manufacturing workshop environment and an EFL model addressing logistics
efficiency (i.e., total load transport distance), and total load transport EC was established.
Especially, the operation characteristics and layout requirements of the equipment in the
actual manufacturing environment are considered as much as possible in the modeling
process, i.e., each facility has a pick-up point, a drop-off point, and a safety clearance space.
Furthermore, by referring to the common solutions to FLPs, an MOPSO-based approach
was put forward to solve the EFL model. Moreover, two experiments, one from the actual
engineering requirements and the other from the existing FLP research, were conducted to
verify the effectiveness of the proposed model and its solution method. The main research
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results of this study can be summarized as follows: (1) energy-efficient facility layout is
a feasible approach to improve the energy-saving potential of a manufacturing system;
(2) EC can be viewed as an independent optimization objective in facility layout; (3) the
proposed particle encoding scheme is effective, and the MOPSO utilized in this study can
make a trade-off between two optimization objectives objectively and provide a reference
for similar research on facility layout methods.

In addition, some defects need attention to guide the follow-up research. Currently,
there are few studies on EC modeling for AGVs in a manufacturing workshop environment,
which makes it arduous to predict transport EC reliably. In this study, based on our previous
work and some simplifications, the load transport EC was predicted from the perspective
of motion but only the standby and uniform motions were considered. The AGV motion
state is complex, and there are still acceleration, deceleration, and other motions. So, it is
necessary to further study the EC characteristics of AGV motions and consider the empty
transport EC to predict the AGV EC in the real transport process more reliably. Meanwhile,
the current AGV EC data acquisition setup has some limitations in application. Under the
Bluetooth communication mode, the effective communication distance was within 10 m,
and data transmission was easily disturbed by machine tools and metal products widely
existing in the workshop. Consequently, the AGV EC data acquisition setup needs further
improvement, and the EC of different AGV energy-consuming components in the transport
process also needs further analysis. Besides, the rectilinear distance from the pick-up point
of one facility to the drop-off point of another facility is utilized as the transport distance
between them, but material handling is usually forbidden to pass through the facility core
operation area in practice. For example, the actual transport distance from facility 8 to
facility 4 in the optimized layout shown in Figure 5 is inevitably greater than the transport
distance calculated by Equation (6). Furthermore, it might be formidable to apply the
output EFL scheme in practice directly. How to adjust it quickly to meet the actual needs
and guarantee the energy-saving effect as much as possible is also a challenge. With the
development of new-generation information technologies such as the Internet of things,
big data, and cloud computing, it is gradually becoming possible to realize the integration
and cooperation of the digital world and the physical world. Correspondingly, digital
twin technology can provide powerful support for evaluating the practical application
effect of a facility layout scheme [48]. Therefore, based on our current work, more efforts
will be made in: (1) AGV EC characteristics and modeling; (2) improvement of the EFL
model, e.g., considering the AGV empty transport EC, obstacle avoidance demand, and the
facility orientation constraints for worker communication and human–machine interaction;
(3) digital twin-enabled EFL; (4) improvement of the MOPSO.
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Nomenclature

Bz Average transport batch size of product z

CG Social acceleration coefficient

CL Cognitive acceleration coefficient

Cr Rolling resistance coefficient

dij Transport distance from facility i to facility j (m)

Dtotal Total load transport distance (m)

D∗total Total load transport distance with penalty (m)

Esm AGV standby motion energy consumption (J)

Etotal Total load transport energy consumption (J)

E∗total Total load transport energy consumption with penalty (m)

Eum AGV uniform motion energy consumption (J)

fij Frequency of material flow from facility i to facility j

g Gravity acceleration, 9.81m/s2

i, j Facility index

Imax Maximum iterations

k Particle index

L Length of a workshop layout area (m)

l0i The original length of facility i (m)

li The actual length of facility i (m)

m Number of facilities

m0 Empty AGV mass (kg)

mtotal Total mass of the AGV and cargo (kg)

mz Mass of product z (kg)

n Number of product types

N Swarm size

Nz Number of transport batches for product z

Oz The total output of product z

p Algorithm iteration index

Psm AGV standby motion power (W)

Pum AGV uniform motion power (W)

q Particle encoding position index

ri Variable to indicate whether the original length and width of facility i exchange

Tij Total load transport time from facility i to facility j (s)

va AGV transport speed [m/s]

vxi Particle velocity in the spatial dimension to which xi belongs

vyi Particle velocity in the spatial dimension to which yi belongs

vθi Particle velocity in the spatial dimension to which θi belongs

vxk
i (p) The velocity of particle k in the spatial dimension to which xk

i (p) belongs

vyk
i (p) The velocity of particle k in the spatial dimension to which yk

i (p) belongs

vθ
k
i (p) The velocity of particle k in the spatial dimension to which θ

k
i (p) belongs

W Width of a workshop layout area (m)

w0i The original width of facility i (m(

wi The actual width of facility i (m)

Xijz Total transfer times from facility i to facility j in the process route of product z
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xi Particle position in the dimension reflecting the x-axis coordinate of facility
i center

xgbest
i (p) Position of the swarm best particle in the spatial dimension reflecting the x-axis

coordinate of facility i center until the pth iteration of the MOPSO

xk
i (p) Position of particle k reflecting the x-axis coordinate of facility i center in the

pth iteration of the MOPSO

xk, best
i (p) The best position of particle k in the spatial dimension reflecting the x-axis

coordinate of facility i center until the pth iteration of the MOPSO

(xi, yi) Center coordinates of facility i

xmin
i ,xmax

i The x-axis coordinate bounds of facility i center (m)

(xin
i , yin

i ) Drop-off point coordinates of facility i

(xout
i , yout

i ) Pick-up point coordinates of facility i

(x̂in
i , ŷin

i ) Coordinates of the drop-off point of facility i relative to its center

(x̂out
i , ŷout

i ) Coordinates of the pick-up point of facility i relative to its center

ymin
i ,ymax

i The y-axis coordinate bounds of facility i center (m)

yi Particle position in the dimension reflecting the y-axis coordinate of facility
i center

ygbest
i (p) Position of the swarm best particle in the spatial dimension reflecting the

y-axis coordinate of facility i center until the pth iteration of the MOPSO

yk
i (p) Position of particle k reflecting the y-axis coordinate of facility i center in the

pth iteration of the MOPSO

yk, best
i (p) The best position of particle k in the spatial dimension reflecting the y-axis

coordinate of facility i center until the pth iteration of the MOPSO

z Product index

∆i Safety clearance distance of facility i

ε1, ε2, ε3,ζ1,ζ2,ζ3 Random uniformly distributed numbers in [0, 1]

η Overall power factor of AGV driving motors

θi Orientation of facility i

θi Particle position in the dimension reflecting the orientation of facility i

θ
gbest
i (p) Position of the swarm best particle in the spatial dimension reflecting the

orientation of facility i until the pth iteration of the MOPSO

θ
k
i (p) Position of particle k reflecting the orientation of facility i in the pth iteration

θ
k, best
i (p) The best position of particle k in the spatial dimension reflecting the

orientation of facility i until the pth iteration of the MOPSO

λ Average violation factor of a facility layout

λij Violation coefficient between facility i and facility j

λx
ij Violation coefficient between facility i and facility j in the x-axis direction

λ
y
ij Violation coefficient between facility i and facility j in the y-axis direction

ω Inertia weight

ωmin,ωmax Inertia weight bounds

ω(p) Inertia weight in the pth iteration of the MOPSO
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