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Abstract: Sustainable manufacturing has renewed attention among researchers to address various
sustainability challenges in manufacturing industries. Sustainability assessments of manufacturing
organizations help minimize the negative environmental impact and enhance reputation among
public and regulatory agencies. To assess the sustainability of the manufacturing process; it is
indispensable to investigate the structured set of triple bottom line (3BL) indicators. Moreover, there
is no comprehensive and structured set of 3BL indicators that can effectively assess the sustainability
of any organization’s manufacturing process. This research aims to identify and prioritize experts’
consensus structured set of 3BL indicators. The 3BL indicators were identified through an open-ended
questionnaire. The prioritization was performed through the Best-Worst Scaling (BWS) approach.
Further, Multi-Criteria Decision Analysis (MCDA) method was utilized to draw the consensus
ranking of sustainability indicators in manufacturing. The findings indicated that the release of
greenhouse/harmful gas is the best indicator in the perspective of environmental criteria followed
by the rate of contribution to society and operational cost are the most important critical indicator
in the case of social and economic sustainability criteria. The outcome of the present study will
facilitate researchers and practitioners in developing suitable readiness and operational plans for the
sustainability assessment of the manufacturing process.

Keywords: sustainable manufacturing; sustainability indicators; triple bottom line indicator selection;
Delphi study; best-worst scaling; multi-criteria decision analysis

1. Introduction

Rapidly growing manufacturing companies around the globe have contributed to
improved quality of life and adversely affected the environment [1,2]. Manufacturing
organizations release a considerable amount of air pollutants that affect the environment
and well-being of life forms [3,4]. Organizations have received incremental pressure from
governments and other non-government organizations to take action and minimize the
environmental damage and enhance safety [5,6]. Sustaining a process can reduce the
negative environmental effect of an organization [7,8]. Considering these perspectives,
several organizations focus on redesigning manufacturing processes and products to
make them highly sustainable [5]. However, changing current operations based on the
redesigning processes is expected to have various obstacles from a technical standpoint.
Redesigning the manufacturing process alone does not guarantee sustainability from the
perspective of the triple bottom line (3BL). However, sustainable manufacturing processes
and products can significantly reduce emissions and harmful gas, limiting the negative
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impacts on the environment, waste generation and conserving natural resources and
energies [9]. Therefore, it is crucial to evaluate the sustainability of the manufacturing
process and develop amenable strategies for sustainable development.

An evaluation of the 6Rs approach (reduce, reuse, recycle, recovery, redesign, remanu-
facture) is recommended to accommodate the sustainability of a manufacturing process.
However, the sustainability of technologies and products can be evaluated through ad-
ditional methods such as the social life cycle assessment (SLCA) and techno-economic
assessment (TEA) [10,11]. Further, corporate sustainability at the company level can be
assessed through various global standards, including social accountability 8000 (SA 8000),
ISO 4000 series and global reporting initiative (GRI) sustainability guidelines [12–14]. There
is no specific method available in the literature to assess the sustainability of a manufactur-
ing process. No consensus list of sustainability indicators is available that should be used
for assessment purposes [14,15]. Thus, there is an opportunity to develop a consensus list
of sustainability indicators that consider the 3BL approach of sustainability dimensions
(i.e., environmental, social and economic). However, the identification and selection of a
consensus list of sustainability indicators require a systematic approach and method [16].
While the identification of sustainability indicators itself/alone does not guide managers
to choose the right indicators based on their importance. Thus, the prioritization of those
indicators based on their importance is needed. Therefore, there is also a need to search for
an appropriate method that systematically evaluates and prioritizes the consensus list of
sustainability indicators in 3BL perspectives. An in-depth analysis of the 3BL dimensions
of sustainability indicators and existing gaps within the sustainability evaluation of a man-
ufacturing process was performed [14,17]. Past literature reveals that a comprehensive and
complete set of sustainability indicators in 3BL perspectives for evaluating a process does
not exist. The available set of sustainability indicators was determined to be incomplete,
lack a holistic view, lack interlinking with each other and need more focus and detailed
evaluation [14]. There is also an absence of environmental and social sustainability indica-
tors and assessments using an appropriate number of economic sustainability indicators.
Moreover, no studies prioritized the sustainability indicators that assess the manufacturing
process in organizations.

This study aims to examine a structured set of sustainability indicators and evaluate
their consensus ranking to assess various manufacturing processes in Asian organizations.
This research is the first to develop a comprehensive and structured set of 3BL sustainabil-
ity indicators for the sustainability assessment of a manufacturing process. A consensus
prioritization of sustainability indicators can lay the foundation for the harmonization of
sustainability assessment of the manufacturing process within a manufacturing environ-
ment. This study contributes to the development of an integrated mixed-method using
qualitative and quantitative tools, which can deal with the list of sustainability indicators in
a structured way. In this context, the list of 3BL sustainability indicators has been identified
by piloting an open-ended questionnaire among a group of experts and prioritizing them
by utilizing the Best-Worst Scaling (BWS) approach. Furthermore, Multi-Criteria Decision
Analysis (MCDA) method has been applied to draw the consensus ranking of those sustain-
ability indicators. The findings of this study will facilitate the researchers and practitioners
in developing suitable readiness and operational plans for the sustainability assessment
of the manufacturing process through a detailed understanding of the structured 3BL
sets of indicators. This study will also help decision-makers and policymakers to better
understand the set of 3BL indicators and their prioritization to assess sustainability in the
manufacturing environment.

The rest of the article’s structure is as follows: the literature review about the triple
bottom line, sustainable manufacturing and sustainability indicators in the manufacturing
perspective is discussed next. Section 3 deals with the research methodology applied to
prioritize sustainability indicators. The results are presented in Section 4. The detailed
discussion followed by managerial implications, challenges, limitations and direction for
future research is provided in Section 5. Finally, the conclusion is presented in Section 6.
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2. Literature Review

This section contains a summary of the literature available on Triple bottom line,
Sustainable manufacturing, Review of sustainability indicators. To find out sustainability
indicators in the context of manufacturing, the articles from year to year have been consid-
ered for analysis in this study. These research articles have been explored using reputed
electronic databases like; Web of Science, Scopus and EBSCO so that all relevant articles
must be included in the study. To identify the articles for the present study, keywords
including sustainability, sustainable manufacturing, TBL and sustainability indicators were
included. Articles other than those in the English language, gray research literature such as
unreputed conferences were excluded from the study.

2.1. Triple Bottom Line

The triple bottom line (3BL) is an accounting framework that has three different
viewpoints such as financial, social and environmental [18–20]. Several industries have
implemented the 3BL framework to assess their sustainability performance in the broader
perspective to create higher business value [21–23]. This framework (3BL) is different
from the traditional framework as it integrates social and environmental measures that
are difficult to assign appropriate means of measurement [24,25]. These 3BL dimensions
are also known as 3Ps (i.e., Profit, People and Planet) [15,25]. The phrase 3Ps to describe
the 3BL and the sustainability goal was coined by John Elkington in 1994 [26]. Profit, the
economic bottom line: The profit or financial bottom line deals with the economic value
created by the organization after deducting the cost of all inputs, including the cost of the
capital tied up. The people, social equity, or human capital bottom line pertains to fair
and beneficial business practices toward labor and the community and region in which a
corporation conducts its business.

The planet, environmental bottom line, or natural capital bottom line refers to sustain-
able environmental practices. A TBL company endeavors to benefit the natural order as
much as possible or at the least does not harm and minimize the environmental impact.

2.2. Sustainable Manufacturing

Sustainable manufacturing (SM) can be defined as the production of items with low or
negligible environmental emissions, good resources conservation ability and low cost [27].
It mainly acclaims an industrial establishment that reduces negative environmental impact,
energy consumption, waste and improves sustainability dynamics [28]. “SM is the integra-
tion of systems and processes capable to produce high-quality products and services by
utilizing less and more sustainable resources such as energy and material, being safer for
societies, employees, consumers, stakeholders and being able to mitigate social and envi-
ronmental impacts throughout its whole life cycle” [29]. Reducing negative environmental
impact without compromising cost-effective quality production has now become a key
duty of manufacturing firms. SM has been applauded since its evolution for the substantial
benefits at societal, financial and environmental level indicators with the main objective
to achieve a zero-carbon society [30]. SM has several benefits such as cost reduction by
improving resource efficiency and regulatory compliance, new market access, better brand
reputation, minimum labor turnover and long-term business approach through developing
financial and capital access [31–33].

The authors of [31] define the scope of SM in the following four different areas with
its concerning discipline:

• Manufacturing technologies (i.e., how the products are manufactured in the industries)
with a focus on equipment and process (i.e., use of machine tool, equipment, facilities);
the associated discipline includes operations management, production engineering,
factory planning.

• Product life cycle (i.e., what product or services to be produced) with a focus on design;
the associated discipline is engineering design.
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• Networks (i.e., value creation) focus on manufacturing industries networks; the associ-
ated discipline includes knowledge management and business economics.

• Global impacts (transition mechanism towards SM) focus on work related to impacts
on the world, including environment, economy and society.

Based on the above discussion, the concept and strategy of SM can be easily understood
by practitioners, researchers and decision-makers. However, the turn from the traditional
manufacturing process to SM is not an easy and smooth journey without the assimilation
of triple-bottom-line (3BL) sustainability indicators [24,25]. Therefore, a comprehensive
and structured set of sustainability indicators must be identified. The 3BL indicators help
to assess the sustainability level of the process that entails whether the current process is
sustainable or not [15].

2.3. Review of Sustainability Indicators

This section discusses the sustainability indicators that are used to assess the man-
ufacturing process. The list of sustainability indicators was identified in previous stud-
ies [14,15,17,34–38]. Many authors have discussed the sustainability indicators to assess
the manufacturing process, such as [39] suggested sustainability indicators such as 3R’s
(reduce, recycle and reuse), Hazard material consumption and biodiversity factors. Ref. [40]
identified several costs such as equipment, service, inventory, stock and transportation to
evaluate economic sustainability. Similarly, Ref. [19] utilized indicators such as product life
cycle analysis, waste treatment, waste segregation, employee salary, labor availability and
skilled labor for evaluating the environmental and operational performance in Brazilian
automotive companies. Ref. [35] developed a modeling and simulation-based life cycle
evaluation for sustainable manufacturing using several indicators such as the 3 R’s system,
Energy consumption, Turnover, Absenteeism, Service cost, Material cost and Return on
investment. Further, Ref. [36] Assessed environmental emissions through sustainability in-
dicators that include: Material consumption, Water consumption, Air emission and energy
consumption for sawmilling activity in Malaysia. Ref. [37] improved wine production’s
environmental performances by analyzing a life cycle assessment using the 3 R’s system,
Material consumption, Water consumption, Air emission and energy consumption sustain-
ability indicators. Ref. [41] identified the different economic indicators such as cycle time,
changeover time, uptime, Lead time, value-added time and cost for economic sustainability
assessment. Ref. [14] grouped indicators in triple bottom line perspectives and assessed the
manufacturing process’s sustainability. Ref. [17] reviewed the literature on sustainability
indicators and discussed the set of sustainability indicators. Ref. [15] considered different
indicators such as Operational cost, Effective cost, water/oil consumption, energy con-
sumption, training opportunity to employees, Accident rate and Waste segregation for the
sustainability assessment of Indian automotive components manufacturing organization.
The summary of sustainability indicators in triple bottom line perspectives identified in the
literature review is presented in Table 1.
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Table 1. Sustainability indicators from the literature.

Dimensions Sustainability Indicators Author Year

Environmental

3 Rs (Reduce, Reuse, Recycle) culture
[39] 2009
[35] 2014
[37] 2016

Product life cycle analysis [19] 2013
[14] 2017

RES consumption [19] 2013
[36] 2015

Hazard material consumption [39] 2009
[38] 2017

Water consumption
[34] 2013
[36] 2015
[37] 2016

Energy consumption
[35] 2014
[38] 2017
[15] 2020

Waste treatment
[19] 2013
[38] 2017
[17] 2019

Biodiversity [39] 2009
[4] 2013

Fossil fuel consumption
[34] 2013
[37] 2016
[17] 2019

Waste segregation
[19] 2013
[36] 2015
[15] 2020

Air emission
[36] 2015
[38] 2017

CFC emission
[38] 2017
[17] 2019

Biological oxygen demand [4] 2013
[17] 2019

GHG emission
[4] 2013
[38] 2017
[17] 2019

Social

Accident rate
[14] 2017
[15] 2020

Employee salary [19] 2013
[14] 2017

Turnover
[35] 2014
[14] 2017

Employee satisfaction [14] 2017
[15] 2020

Absenteeism
[35] 2014
[14] 2017

Labor availability [19] 2013
[15] 2020

Skilled labor
[19] 2013
[15] 2020

Ergonomics [35] 2014
[14] 2017

Community development [14] 2017
[15] 2020

Employee training hours [19] 2013

Noise level
[19] 2013
[14] 2017
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Table 1. Cont.

Dimensions Sustainability Indicators Author Year

Economic

Equipment cost [40] 2009
[34] 2013

Service cost
[40] 2009
[35] 2014

Material cost
[7] 2012
[35] 2014

Return on investment
[34] 2013
[35] 2014

Operation cost
[14] 2017
[17] 2019
[15] 2020

Inventory and stock cost [40] 2009
[14] 2017

Cycle time

[21] 2008
[7] 2012
[42] 2020
[15] 2020

Overall equipment effectiveness
[21] 2008
[7] 2012
[42] 2020

Transportation efficiency [40] 2009
[19] 2013

Value added time
[21] 2008
[19] 2013
[42] 2020

2.4. Review of Analysis Approaches Used for the Selection and Prioritization of Sustainability
Indicators in Manufacturing Environment

This section discusses the various analysis approaches used by the researchers for the
selection and prioritization of sustainability indicators in the manufacturing environment.
Many researchers have applied the multi-criteria decision-making approaches for the se-
lection and prioritization of sustainability indicators, such as Ref. [43] have evaluated key
performance indicators (KPIs) for the adoption of sustainability practices in footwear Sup-
ply Chains. The authors applied the best-worst method to prioritize the key performance
indicators. Ref. [44] have identified and ranked the environmental sustainability indicators
using Pareto analysis cum best-worst method in the manufacturing sector. Ref. [45] have
analyzed the green innovation practices for the assessment of sustainability performance in
a Chinese manufacturing industry. The authors applied fuzzy AHP and TOPSIS approaches
to prioritize green innovation practices. Ref. [46] have evaluated the right welding process
for the welding of two metal plates. The authors evaluated the welding process based on a
multi-dimensional sustainability assessment model. This study used integrated COPRAS,
TOPSIS and GRA methods to select the welding process. Ref. [47] have assessed the sus-
tainability of manufacturing operations based on key performance indicators. A TOPSIS
method is applied for the consideration of a number of KPIs related to economic, social
and environmental sustainability. Ref. [48] have developed a decision support method
for the sustainability and productivity assessment of machining process and operation
plans. The authors used simulation and optimization techniques to select the optimized
alternatives. Further, sensitivity analysis was performed to determine the sustainability
parameters. Ref. [49] have developed a general model for the sustainability assessment
of manufacturing processes. The general model was developed based on sustainability
indicators. The selection of relevant indicators, their quantification and ranking of alterna-
tives were performed through different MCDM methods including AHP, GRA, COPRAS
and ELECTRE. Ref. [50] have proposed the process to evaluate the life cycle sustainability.
The authors used an indicator-based approach to evaluate the sustainability of petroleum
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refinery industry projects. The alternative of the project was prioritized through the fuzzy
AHP method. Ref. [51] have presented seven sustainability indicators to assess the potential
oven investment. The study used fuzzy set theory and monte Carlo simulation to evaluate
the sustainability of improvement projects. Ref. [52] evaluated the sustainability perfor-
mance of a manufacturing company. The authors used the TOPSIS method to evaluate the
performance of the concerned manufacturing company.

Many researchers have discussed the sustainability indicators, few of them have been
categorized into different categories such as economic, social and environmental. Further,
few researchers have evaluated the sustainability indicators and prioritized them using
different MCDM methods. The findings of the literature review revealed that no researchers
have provided a structured and complete set of sustainability indicators that can help to
assess the manufacturing process. The key reason is inappropriate identification and
selection strategy applied by them to examine sustainability indicators. A consensus set of
sustainability indicators helps assess the sustainability of a manufacturing process whereas
the incomplete set cannot evaluate the manufacturing process properly. Furthermore,
poor selection strategy cannot find the consensus list of sustainability indicators and thus,
cannot provide the right guidelines to prioritize them. To overcome this problem, this study
identified a list of empirically tested sustainability indicators through an open-ended survey
from a group of experts. Thereafter, a mixed methodology, integrated with qualitative and
quantitative approaches are utilized through a Delphi study and multi-criteria decision
analysis (MCDA) to evaluate the sustainability indicators.

3. Research Methodology

The research objective requires a structured methodological approach that consists
of (1) gathering and defining information related to sustainability indicators for the man-
ufacturing process and (2) prioritizing the indicators to assess manufacturing process
sustainability. In this study, we have utilized the Delphi technique with an integrated
MCDA approach to identify and prioritize the sustainability indicators. Delphi technique
is the most suitable qualitative approach to collect data from a group of experts working in
the relevant domain rather than other data collection strategies for the survey. However, the
application of mixed-method (i.e., integration of qualitative and quantitative approaches)
provides better insights and synthesize findings than utilization of a single approach in
the case of survey. For quantitative decision-making, MCDA techniques are more popular
as they give efficient outcomes [8,29,53,54]. Previous research studies revealed that the
integration of Delphi and MCDA approaches can resolve issues related to decision-making
in complex and uncertain situations [55,56]. The Delphi technique is used to gather rele-
vant data from a group survey based on experts’ experiences. This technique pools the
experts’ talents to provide structured feedback [53,57]. The feedback received from group
experts helps researchers develop a questionnaire for the next round [54,58]. According
to [59,60], the Delphi technique is also helpful for sustainability indicator selection and
prioritization for complex scenarios. The indicator selection through the Delphi approach
utilizes a qualitative survey. The survey methodology contributes greater efficiency to the
quantitative method such as MCDA [61,62]. MCDA is a methodology used for making
decisions when multiple criteria/variables or objectives need to be considered together to
select or rank among the alternatives being evaluated [16,63]. The integration of the Delphi
approach and MCDA has widely been used in sustainability-related research [16,64–66].

The present study utilized the Delphi technique to conduct a two-round survey to
select and prioritize sustainability indicators of the manufacturing process. The first-round
survey consisted of an open-type questionnaire about leading sustainability indicators
involved in evaluating a manufacturing process; whereas the second round consisted of a
closed-type survey that aimed to prioritize the selected indicators. The structured ques-
tionnaires were developed using the Qualtrics Software 2018 [67] version and distributed
among related area experts via electronic mail. A set of questionnaires used in this study
can be provided by the corresponding authors on request. The panel of experts was care-
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fully chosen based on their qualifications and experience in the research field. The selected
panel experts were clustered into three groups, including experts from manufacturing
industries, certification bodies and academia/research centers. Based on the literature
survey, a panel of a minimum of 10 anonymous experts can provide effective feedback for
a Delphi study [58]. In this study, we utilized a group of 261 experts (121 from manufactur-
ing industries, 87 from certification bodies and 53 from academicians/researchers) from
various Asian countries. The methodological process is discussed in the next section and
the research steps are illustrated in Figure 1.
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3.1. Delphi Study First Round

The first round of study consists of open questions related to identifying sustainability
indicators. The questionnaire asked group experts to brainstorm the list of leading indica-
tors for evaluating the sustainability of the manufacturing process. The response rate was
75% in the first round with 196 complete responses (83 from manufacturing industries, 64
from certification bodies and 49 from academician/researchers). The experts represented
15 different countries from Asia, which indicates a broad representation.

Further, 72.33% hold a doctoral degree, indicating sufficient knowledge in the research
field. The responses received were analyzed by open coding through NVivo 15 software [68].
Open coding reduces the difficulties in responses duplicity and handles qualitative data
for analysis purposes. The final responses received from the group of experts were then
merged with the results of the detailed literature reviews performed by [14,17]. To select the
prominent indicators, a simple questionnaire was formed and asked to provide the panel
experts input on the Likert scale of 1 to 5, where 1 represents “not important at all” and 5
represents “most important”. The authors analyzed the score of each indicator in each group
for final selection. The average score of finalized indicators was more than 4.6 and the list of
finalized indicators is presented in Table 2. To ensure the consistency of the questionnaire,
the reliability test was performed through SPSS 20 software package. The Cronbach’s
alpha yield was determined to be 0.831, indicating a relatively high consistency of the
questionnaire. These responses provided a set of comprehensive sustainability indicators
that were used as input data for the next round of the study. A detailed description of each
of the 3BL indicators was provided to group experts in the second-round study. During the
first round of the study, the experts were asked to give a preference of evaluation tool (i.e.,
which evaluation tool they prefer to assess the sustainability of the manufacturing process).
The options included a single index, multiple indices or both.

3.2. Delphi Study Second Round

In this round, the prioritization of the selected sustainability indicators was performed.
The MCDA technique was chosen to prioritize the indicators. “The main objective of the
MCDA technique is to study the decision problems in which several points of view must be
taken into consideration” [69–71]. The decision-making problem for this research involves
more than 10 indicators in each of the 3BL dimensions. Data collection and analysis through
MCDA approaches are complex when many attributes/criteria (i.e., here indicators) are
involved during the process [16,72,73]. MCDA approaches such as Analytical Hierar-
chy Process (AHP), Analytical Network Process (ANP), Weighted Sum Method (WSM),
Weighted Aggregated Sum Product Assessment (WASPAS), Simple Multi-Attribute Rating
Technique (SMART), Multi-Objective Optimization Ratio Analysis (MOORA), Weighted
Product Method (WPM), Simple Additive Weighting (SAW), etc. are the weight evaluation
approaches widely used for the ranking or prioritizing criteria or attributes [69,72,74].
Previous research on MCDA techniques suggests the maximum utilization of AHP, fuzzy
AHP, ANP, TOPSIS for the weight calculation of attributes [50,52,64,69,74]. Though these
techniques are being utilized in the majority of research, the inconsistencies in the results
cannot be neglected due to its large and complex pairwise comparisons (i.e., due to the large
no. of attributes), which lead to ambiguous outcomes [75]. The BWS is a survey method
used for assessing individual priorities and has been noted for cognitive and administrative
simplicity [76]. Further, this method is considered superior to rating scales because it avoids
common biases and provides consistent ranking with numerous attributes [77]. Thus, the
best-worst scaling (BWS) is a suitable MCDA technique to collect and analyze the data
with numerous indicators in the decision-making problem [78,79]. Therefore, in the present
research, we used the BWS technique, first introduced by the authors of [80] for the second
round of the Delphi study. The BWS method helps to obtain granular details from experts
and eliminates rating using an integer-based scale [80]. Rather, the BWS provides ratings
in two sentences indicating “best” and “worst” based on attributed nature [72,73,81] and
preference score of the selected list of 3BL indicators from the experts.
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Table 2. List of sustainability indicators used for manufacturing process assessment.

Environmental
Sustainability Indicators

Social Sustainability
Indicators

Economic Sustainability
Indicators

Process coolant/oil
consumption

Accident rate Operational cost

Electricity consumption Time-weighted average to
record noise exposure

Labor cost

Raw material consumption Absenteeism ratio Management cost
Energy consumption per unit Gender ratio Facilities and depreciation

cost
Greenhouse/harmful gas
release

Employee turnover ratio Effective cost

Toxic discharge to water Training opportunity for
employees

Stock cost

Reuse/recycle raw material
ratio

Employee satisfaction rate Takt cost

Waste segregation percentage Post-parental leave retention Inventory holding cost
Net green area impact Contribution to society rate Cycle time
Net CO2 emission impact Local business support index Changeover time
Net solid waste generation National production rate Uptime
Net water footprint Gender salary ratio Level of work in process

inventory
Scrap rate Volunteer sustainability

initiatives ratio
Overall equipment
effectiveness

Staff incen-
tives/commission/benefits

Machine availability

Staff salary level Machine performance
The acceptance rate of product
Value-added time ratio
Value-added cost ratio
Value-added time
Value-added cost
Total productive maintenance
ratio
Return on investment on
innovation
Transportation efficiency ratio

A balanced incomplete block design (BIBD) was built for the BWS exercise to collect
relevant data. The block design was made using Sawtooth software [82]. Further, three
different questionnaire versions with three different block designs were created using
the 3BL perspectives (i.e., environmental, social and economic). Each questionnaire de-
sign consisted of 20 questions, and three attributes were presented per question. Simple
choice-based questions were created in the questionnaire. For the development of the
questionnaire, the design algorithm was similar to those of choice-based conjoint (CBC) and
the questions were created based on multiple variables in triple-bottom-line perspectives.
The questionnaire sets were distributed randomly through e-mail to the same groups of
196 experts who participated in the first round of the Delphi survey.

A total of 171 experts completed the questionnaire, resulting in an 87% response rate.
The survey response data (i.e., preference score) were used to prioritize the sustainability
indicators by respondents. Each respondent’s preference score was estimated through
the Hierarchical Bayes (HB) method. HB is a “data borrowing” approach and is defined
as a method to “stabilize part-worth estimates for each individual through borrowing
information from other respondents within the same data set” [83]. To prioritize the
sustainability indicators based on preference score, two ranking methodologies namely
HB average ranking and HB frequency ranking were used for the ranking process of
indicators to evaluate the sustainability of the manufacturing process. The preference
score is used as an input to rank the sustainability indicators. A higher preference score
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from a respondent for a particular indicator helps to prioritize the sustainability indicator.
The ranking process of indicators using this methodology was performed in the Sawtooth
software. The ranked data were used as input to calculate the final consensus ranking
through the Aggregate Uni-Criterion Ranking into One Ranking (AURORA) method, which
is an MCDA technique. According to [84], the “AURORA method merges and compares
the experts ranking, respecting the ordinal character”.

HB AURORA ranking was utilized to compare and improve the effectiveness of
the prioritization results. HB AURORA ranking was performed by developing a struc-
tured branch and bound algorithm (BBA) using the C++ programming language. The
pseudo-code is shown in Appendix A. AURORA requires a pairwise comparison between
respondents and alternatives ranking per respondent [16]. The ranking per respondent
is calculated first with the help of the HB preference score. The higher score provided by
the respondent to a certain indicator gives a higher position to that indicator. Kendall’s
approach is known as the correlation coefficient, τ, and helps measure consensus ranking
between respondents and alternative ranking per respondent [85]. The value of τ can be
calculated through Equation (1).

τ =
2 ∗ (C − D)

n2 − n
and C + D =

n2 − n
2

(1)

where, C = concordant pairs, D = discordant pairs and n = number of alternatives
The calculated value of τ can be obtained between the ranges of −1 to 1, which is

considered perfect disagreement to a perfect agreement [85]. According to [85], the median
of τ can be calculated after every iteration and maximized until potential consensus ranking.

4. Results

The sustainability indicators selected during the first round of the Delphi study are
represented in Table 2. These sustainability indicators were used as inputs for the second
round Delphi study analysis.

During the first round of the study, the experts were asked to provide a preference
of evaluation tool (i.e., which evaluation tool they prefer to assess the sustainability of the
manufacturing process). The options included a single index, multiple indexes, or both.
After analyzing the responses, the results indicated that 182 respondents preferred multiple
indexes, while three respondents preferred a single index, and 11 respondents preferred
a combination of both. Based on most responses, the experts concluded that multiple
indexes were highly effective in evaluating the sustainability of any manufacturing process.
The conversation among the experts indicated that assessing the manufacturing process
sustainability using a single index was too complex. Instead, utilizing multiple indicators
helps investigate the trade-offs between different sustainability impacts.

In the second round of study, the BWS exercise responses were analyzed through
HB. The analysis of responses revealed that all experts reaching fit statistics should have a
root likelihood greater than 0.167 [82]. The outcomes of the BWS HB analysis for the 3BL
approach, the counting analysis and the final census rank are presented in Tables 3–5 for
the environmental, social and economic indicators. The counting analysis indicates the
proportion of an indicator is picked as best and/or worst [16]. The present study results
showed that the few sustainability indicators were never picked as best indicators by experts
such as net water footprint, volunteer sustainability initiatives ratio and transportation
efficiency ratio. Based on the analysis, 80% of the experts selected the net water footprint as
the least important indicator.
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Table 3. BWS HB analysis, counting analysis and final census rank outcomes for environmental
indicators.

Sustainability Indicator
BWS HB Analysis Counting Analysis

Final Census
RankAverage

Rank
Frequency

Rank
Preference

Score
Proportion of

Best Count
Proportion of
Worst Count

Greenhouse/harmful gas
release

1 1 16.424 0.617 0.009 1

Net solid waste generation 2 3 15.398 0.438 0.058 3
Net green area impact 3 2 12.289 0.468 0.079 4
Net CO2 emission impact 4 4 11.010 0.336 0.037 5
Toxic discharge to water 5 5 9.204 0.343 0.201 2
Process coolant/oil
consumption

6 6 8.320 0.235 0.089 8

Electricity consumption 7 8 7.098 0.226 0.184 9
Energy consumption per unit 8 7 6.620 0.177 0.153 10
Raw material consumption 9 10 5.021 0.061 0.128 7
Waste segregation percentage 10 9 4.921 0.014 0.188 6
Reuse/recycle raw material
ratio

11 11 2.369 0.049 0.490 11

Scrap rate 12 12 1.203 0.031 0.461 12
Net water foot print 13 13 0.171 0.000 0.800 13

Table 4. BWS HB analysis, counting analysis and final census rank outcomes for social indicators.

Sustainability Indicator

HB Analysis Counting Analysis
Final Census

RankAverage
Rank

Frequency
Rank

Preference
Score

Proportion of
Best Count

Proportion of
Worst Count

Contribution to society rate 1 1 14.102 0.457 0.048 1
Local business support index 2 2 11.034 0.407 0.092 2
Gender ratio 3 3 10.035 0.461 0.118 5
Time weighted average to
record noise exposure

4 5 10.199 0.469 0.170 4

National production rate 5 4 8.380 0.307 0.141 3
Staff incen-
tives/commission/benefits

6 6 8.065 0.239 0.099 8

Employee satisfaction rate 7 7 7.142 0.298 0.102 10
Accident rate 8 8 6.302 0.191 0.153 6
Training opportunity to
employees

9 11 5.302 0.190 0.128 9

Employee turnover ratio 10 10 5.120 0.190 0.204 11
Absenteeism ratio 11 9 4.502 0.173 0.319 12
Gender salary ratio 12 12 3.730 0.120 0.172 13
Staff salary level 13 13 3.195 0.091 0.121 7
Post parental leave retention 14 14 1.990 0.051 0.263 14
Volunteer sustainability
initiatives ratio

15 15 0.901 0.033 0.250 15
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Table 5. BWS HB analysis, counting analysis and final census rank outcomes for economic indicators.

Sustainability Indicator
HB Analysis Counting Analysis

Final Census
RankAverage

Rank
Frequency

Rank
Preference

Score
Proportion of

Best Count
Proportion of
Worst Count

Overall equipment effectiveness 1 1 17.508 0.569 0.034 3
Operational cost 2 2 17.038 0.436 0.055 1
Acceptance rate of product 3 3 16.567 0.328 0.049 2
Level of work in process
inventory

4 4 5.171 0.283 0.129 4

Inventory holding cost 5 6 5.025 0.278 0.130 7
Value added time 6 7 4.109 0.294 0.099 8
Value added cost 7 5 4.033 0.253 0.088 9
Machine performance 8 8 3.207 0.320 0.077 5
Machine availability 9 9 3.110 0.397 0.052 6
Labor cost 10 11 3.040 0.206 0.204 10
Management cost 11 10 2.437 0.179 0.319 11
Facilities and depreciation cost 12 12 2.326 0.132 0.172 12
Effective cost 13 14 2.213 0.102 0.121 15
Stock cost 14 13 2.101 0.231 0.263 13
Takt cost 15 15 2.093 0.108 0.250 14
Value added time ratio 16 16 2.001 0.126 0.156 19
Value added cost ratio 17 17 1.413 0.107 0.133 18
Total productive maintenance
ratio

18 20 1.220 0.096 0.210 17

Return on investment on
innovation

19 18 1.141 0.084 0.419 16

Changeover time 20 19 1.132 0.069 0.331 20
Cycle time 21 21 1.102 0.042 0.457 21
Uptime 22 22 1.007 0.022 0.553 22
Transportation efficiency ratio 23 23 1.005 0.000 0.349 23

The maximum importance was given to greenhouse/harmful gas release with a 16.42
preference score, followed by net solid waste generation with 15.40 and net green area
impact with a 12.29 score in the environmental indicators of sustainability. The lowest pref-
erence score was for net water footprint, with a score of 0.17. Moreover, the overall results
indicated that the preference score of the environmental indicators gradually decreases
compared to the other two sustainability indicators. In the case of economic indicators, the
results show stable preference scores between 2.44 and 2.00 for the sustainability indicators
of management cost, facilities and depreciation cost, effective cost, stock cost, takt cost
and value-added time ratio. The highest scores among all 3BL indicators were given to
economic indicators such as overall equipment effectiveness (OEE), operational cost and
product acceptance rate with preference scores of 17.51, 17.04 and 16.57, respectively. The
maximum importance scores for the social indicators were contribution to society rate, local
business support index, gender ratio and time-weighted average to record noise exposure.
Based on the expert input, these four social sustainability indicators account for 45.37% of
the total importance scores.

The first sustainability indicators prioritizing method (i.e., HB analysis average rank
approach) was applied. The rank is provided based on the average utility of each indicator.
For example, greenhouse/harmful gas release, contribution to society rate and OEE ranked
first. Whereas net water footprint, volunteer sustainability initiatives ratio and transporta-
tion efficiency ratio ranked last for the environmental, social and economic sustainability
dimensions, respectively. The average utility scores provided by the group of experts were
used to create the average ranking. The rank is assigned based on the frequency of an
indicator placed at a particular prioritizing order. The individual rank was assigned by
utilizing the individual preference score of the HB analysis. To further elaborate on the
frequency ranking, an example is provided in Figure 2 representing a comparison of the
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three environmental sustainability indicators frequencies at a particular rank position. This
type of frequency analysis offers the best way to draw the final consensus of ranking and
avoid averaging. According to [16], one drawback has been observed with this approach: it
is difficult to assign a rank to indicators when the maximum number of attributes involved
in the analysis have the same frequencies. As such, Figure 3 shows an example of how
difficult it is to assign a rank when the maximum number of attributes is involved. A
suitable model was designed based on the HB AURORA approach to overcome these
difficulties and increase the validity of the final ranking of the sustainability indicators. The
HB AURORA ranking approach was chosen to develop a reliable consensus ranking as a
third-ranking approach.
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Figure 3. Cumulative frequency of environmental sustainability indicators and rank position (with
large attributes).

To perform the third-ranking approach (i.e., HB AURORA), an algorithm was devel-
oped using the C++ programming language to determine the ranking of sustainability
indicators. The methodology performed by [84] was used to write the Branch-and-Bound
algorithm. From this perspective, the median Kendall’s value, τ, was calculated for each di-
mension of the sustainability indicators. The median of Kendall’s value was maximized to
determine the best ranking fit [85]. After running the algorithm, multiple optimal solutions
were observed for each sustainability dimension. The algorithm found 29 optimal solutions
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for the environmental dimension indicators, 324 for the social dimension indicators and
2 for the economic dimension indicators. Figure 4 shows an example of the 29 possible
optimal solutions compared to the environmental dimension. The analysis observed the
same value of τ for every optimal solution with 0.5829 for the environmental dimension,
followed by 0.5135 for the social dimension and 0.6421 for the economic dimension of
sustainability. The calculated value for the environmental dimension revealed that at
least 58% of the respondents have a rank correlation coefficient of 0.5829 or more for the
optimal solution.
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Figure 4. Possible optimal solution for environmental dimension based on HB AURORA.

When the complexity increases with a decision problem, the AURORA approach
generates maximum optimal solutions with a lower value of Kendall’s τ, which results in a
lack of consensus in the results [16]. Kendall’s value, τ, was calculated using Equation (1).
The overall ranking result reveals that the social dimension has less consensus among the
three sustainability dimensions due to the low median Kendall’s value (τ = 0.5135) with a
maximum number of optimal solutions (i.e., 324). Moreover, the results indicate that the
social indicators are given less attention by manufacturing industries in the Asian continent;
therefore, social sustainability indicators should be quantified through proper formulation.
The formulation of these indicators to assess social sustainability levels should be clear and
easy to understand.

5. Discussion

The results obtained from the three different ranking approaches are discussed with
the supporting relevant literature and experts’ feedback. All ranking methods determined
that greenhouse/harmful gas release was the most relevant sustainability indicator when
looking into environmental dimension indicators. The results also indicated that several
respondents suggested greenhouse/harmful gas release is a widely accepted sustainability
indicator for manufacturing process assessment. Past studies supported these findings by
considering this indicator (i.e., greenhouse/harmful gas release) as the most important
indicator to assess environmental sustainability [36,37]. The continual increase of releasing
greenhouse gases has resulted in a hole in the ozone layer, which negatively affects human
life and other species [86,87]. Concerning the environmental sustainability indicators, the
second-highest ranking was toxic discharge to water. According to a global report in 2016,
more than 70% of industrial wastes (e.g., toxic chemicals, garbage, sewage, industrial
sludge) are dumped directly into the water resulting in decreased oxygen levels, birth of
non-native species and bacteria that directly affect human health [88]. Most of the previous
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studies [17,19,38] suggested that “toxic discharge to water” is an important indicator for
assessing environmental sustainability. The third-ranked factor was the net solid waste
generation. This indicator influences both social and economic perspectives. For example,
the generated industrial nonhazardous or solid wastes are managed by proper recycling,
reuse, storage, treatment, or disposal, which influences economic activity. On the other
hand, the management of such wastes directly affects human health and the environment
by releasing chemicals and odor [89,90]. The frequent appearance and priority of solid
waste generation in past literature proved that is an important indicator for environmental
sustainability assessment [91–93].

The contribution to society rate was ranked first among all indicators of social sustain-
ability, which considers employment opportunities provided by the organization. Based on
the expert consensus, it primarily indicates the level of social contribution by the industry
where they work [94–96]. This outcome is also supported by the previous literature which
stated that the “contribution to society” indicator is a leading indicator for assessing social
sustainability performance [14,15] The Local business support index was ranked second
for the social dimension, indicating the opportunity level provided to local suppliers. This
indicator is also considered an important indicator by authors [97]. The national produc-
tion rate was ranked third. The national production rate directly assesses the industry’s
contribution to the community by calculating the domestic rate used in the manufacturing
process. An increase in this factor represents economic and social development in the
community where the industry is located [14,98].

For the economic sustainability domain, the top three sustainability indicators changed
their ranking position when compared to applied ranking methods. The indicators OEE,
operational cost and an acceptance rate of the product were ranked first, second and third,
using HB average and HB frequency methods. However, when applying the HB AURORA
methodology for consensus ranking, operational cost was ranked first, followed by accep-
tance rate of product and OEE in second and third, respectively. In the manufacturing
process, operating cost is considered an important aspect to reduce the overall cost and,
subsequently, reduce the selling price of the product to satisfy customers. Based on the
Lean manufacturing concept, the overall cost of a product can be easily reduced by remov-
ing non-value-added activities [14,21]. Several research studies [17,19,38] suggested that
“operational cost” is one of the most important indicators to assess economic sustainability.
The acceptance rate of the product is highly related to economic and social perspectives.
Suppose the acceptance rate of the product is high. In that case, the organization receives
a higher profit, which may further lead to increased benefits for employees in terms of
incentives or salary [53,99]. A high product acceptance rate also decreases waste from the
manufacturing process, which reduces the environmental impact.

Further, OEE was ranked third using the HB AURORA ranking for the economic
sustainability domain. OEE is directly related to manufacturing operations. It identifies the
truly productive time from the total time provided for manufacturing the product [100].
The frequent appearance and priority of the overall effectiveness assessment indicator
in past literature have proved that is an important indicator for economic sustainability
assessment [7,21,42,101].

In addition to the high-priority sustainability indicators, it is essential to explore the
lowest indicators. The results reveal that the reuse/recycle raw material ratio, scrap rate and
net water footprint had the lowest rankings for the environmental sustainability domain.
Further, gender salary ratio, post parental leave retention and volunteer sustainability
initiatives ratio were the lowest-ranked social sustainability indicators. Finally, cycle
time, uptime and transportation efficiency ratio were the lowest-ranked indicators for the
economic domain.

The group experts used the argumentation method to understand the lower-ranked
3BL sustainability indicators. The experts clarified that the sustainability indicator evalua-
tion is very case-specific. The general consensus ranking of the sustainability indicators
does not mean the lower-ranked indicators are irrelevant for assessing the sustainability
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of a manufacturing process. For example, the transportation efficiency ratio is the lowest-
ranked (Table 5). This indicator can act as a key sustainability indicator in certain cases
where most of the manufacturing processes are performed by outside vendors.

5.1. Theoretical Implications

Sustainability assessment is a major concern; manufacturing organizations need to
assess their current process sustainability and develop solutions to improve further if
required. The literature suggests that none of the previous studies have provided a com-
prehensive and complete set of sustainability indicators in 3BL perspectives to evaluate
a manufacturing process. The present study examined a structured set of sustainability
indicators and evaluated their consensus ranking to assess the manufacturing process of the
organization. These indicators help assess the current sustainability of the manufacturing
process in 3BL perspectives. So, organizations can develop possible solutions for achieving
higher sustainability.

The literature suggests this study is unique because there was no evidence of apply-
ing the Delphi technique with MCDA approaches to identify the consensus ranking of
sustainability indicators for manufacturing sectors. Since the qualitative survey technique
contributes to the maximum efficiency of quantitative approaches, it makes the results
more consistent by reducing the possibility of vagueness in the findings. This study has
identified and developed a consensus general structured set of 3BL sustainability indicators
for assessing the manufacturing sustainability of Asian manufacturing industries that were
not present in the previous studies. The literature also suggested that in the majority
of the sustainability indicators studies, researchers have not provided a comprehensive
set of 3BL indicators. Ref. [14] considered a pool of 17 sustainability indicators in 3BL
perspectives to assess the sustainability of the manufacturing process of three different
manufacturing organizations located in Brazil. To analyze the process sustainability, only
six indicators were considered and assessment was performed from the perspective of
Indian manufacturing organizations [15]. Ref. [35] considered only 11 indicators in triple
bottom line perspectives for the life cycle evaluation of the sustainable manufacturing pro-
cess. In the Malaysian sawmill sector, environmental sustainability was assessed through
the evaluation of energy consumption [36]. Ref. [37] considered only five indicators to
improve the environmental performances of wine production. Ref. [21] considered only
six economic indicators to assess the economic sustainability of processes in one Indian
automotive component manufacturing organization. The identification and prioritization
of an experts’ consensus structured set of 51 triple bottom line (3BL) indicators can be con-
sidered a significant contribution to assessing any manufacturing process’s sustainability.
The literature suggested that none of the previous studies have identified such a large set
of empirical indicators and prioritized the BWS approach, which facilitates sustainability
assessment effectively in 3BL perspectives.

5.2. Managerial Implications

This study aims to identify and prioritize the experts’ consensus structured set of triple
bottom line (3BL) indicators for assessing the sustainability of any manufacturing process.
The difficulties in selecting appropriate indicators for the sustainability assessment of a
manufacturing process were overcome by prioritizing the empirically tested sustainability
indicators. Further, the biasedness in a predefined questionnaire survey was overcome
by utilizing an open-ended questionnaire approach. Open coding is used to reduce the
difficulties in response duplicity in qualitative data for further analysis and best-worst
scaling (BWS) is a suitable MCDA technique to collect and analyze the data when there are
numerous indicators. Furthermore, integration of HB average, HB frequency and HB AU-
RORA ranking method help to compare and improve the effectiveness of the prioritization
results. The proposed approach can be applied in any manufacturing organization to help
practitioners, decision-makers and managers to identify the indicators for real industrial
scenarios and prioritize the indicators based on the problem of the applied industry. The
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result of the present study helps researchers, practitioners, decision-makers, and industrial
managers to identify and prioritize the triple bottom line (3BL) indicators for sustainability
assessment in a manufacturing environment.

5.3. Challenges, Limitations and Directions for Further Research

The present work utilized the BWS method to collect the data from a Delphi study,
which generally eliminates scaling bias and discrimination [102]. In addition, a detailed,
brief description of each sustainability indicator was provided in the questionnaire, which
shows a strong contrast in a complex situation. To avoid misinterpretation of any indicator
description, a comprehensive definition of each indicator was provided to each respon-
dent at the start of the survey. The questionnaire included a comment box to encourage
respondents to report ambiguity. The validity of the research could be further improved
by gathering information on the applicability of these indicators in an Asian case study.
Furthermore, the result of the three ranking methods shows significant similarities, indicat-
ing the robustness of the result. The ranking results reveal that the top and bottom-ranked
sustainability indicators are almost the same as only some minor changes appeared when
applying other ranking methods. The present study used the BBA in the HB AURORA
method, which does not allow for ties. This limitation ensures a precise ranking for decision-
makers. However, permitting ties could increase the consensus in the ranking and cluster
sustainability indicators [84]. A future study could fill this gap by extending the current
BBA and exploring the effects of permitting ties into the model.

Besides methodological concerns, follow-up research is essential to verify the sus-
tainability indicators are applicable for manufacturing process assessment. At present,
there is a lack of a standardized method and a consensus set of sustainability indicators
to assess the sustainability of a manufacturing process [14,17]. To perform the sustain-
ability assessment, it is necessary to develop measurement methods to fill the existing
literature gap. Subsequently, the 3BL sustainability indicators identified through the Delphi
technique are broadly defined and might need proper formulation for statistical testing
and verification. The execution of a systematic case study can further explore the need to
formulate indicators.

Finally, the present study developed a consensus general structured set of 3BL sustain-
ability indicators for assessing the manufacturing sustainability of Asian manufacturing
industries. Prioritization of these consensus indicators can be helpful for practitioners,
decision-makers and researchers, mainly when resources are limited. To adopt this con-
sensus general set of 3BL sustainability indicators to a specific organization, an iterative
stakeholder-based process is recommended to practitioners. In this context, decision-
makers should identify the general guidelines provided by the case industry and propose
modifications to conform to all of the critical sustainability indicators for the final anal-
ysis. After completion of the first-round calculation of indicators, stakeholders of the
organization should once again check the validity of the primary outcomes. The devel-
oped consensus general structured set of 3BL sustainability indicators in the present study
provides a foundation for practitioners to focus on the sustainability assessment of a
manufacturing process.

6. Conclusions

Sustainable manufacturing has gained interest and has the potential to tackle some of
the sustainability challenges that manufacturing organizations must endure. Sustainability
needs to be assessed and monitored to minimize the negative environmental impact and
enhance reputation among public and regulatory agencies. The objective of the present
study is to investigate the consensus list of sustainability indicators needed for sustainabil-
ity assessment of the manufacturing process and prioritized them based on their preference.
The present study considered a two-stage Delphi-based study approach for prioritizing
the consensus result of 3BL sustainability indicators. The approach was particularly de-
veloped to evaluate the sustainability of any manufacturing process. The experts from
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various sectors such as manufacturing industries, certification bodies and academia were
selected to perform the Delphi study. The final ranking of these indicators represents how
experts extended their experience to adopt the sustainability concept within manufacturing
processes and prioritize sustainability indicators to new researchers, practitioners and
decision-makers to assess the sustainability within the Asian continent. Three different
methods were utilized to rank sustainability indicators such as HB average, HB frequency
and HB AURORA. The outcomes of these three methodologies were compared for the
consensus ranking and HB AURORA was found to provide the best results to reach experts
consensus. The consensus of experts was measured by calculating median Kendall’s value,
τ; which obtained positive values for all 3BL sustainability domains. The present study ob-
served a strong consensus with the economic domain of sustainability with a 0.6421 median
Kendall’s value, followed by the weakest consensus observed in the social sustainability
domain with a value of 0.5135.

The study’s outcome indicates greenhouse/harmful gas release, contribution to society
rate and operational cost were the most critical indicators for environmental, social and
economic sustainability aspects. Existing literature lacked a structured consensus set of 3BL
sustainability indicators for sustainability assessment of a manufacturing process. With the
use of the prioritized consensus set of indicators, practitioners can assess the sustainability
of their manufacturing processes to drive further sustainability improvements. In addi-
tion, ranking the indicators through the MCDA approach helped assign weights/select
indicators for when resources are limited or unavailable (i.e., money, time and data). How-
ever, minimizing the number of sustainability indicators may increase risk and weaken
the analysis.

The present study also provided stepwise guidelines for evaluating and prioritizing
3BL sustainability indicators in the manufacturing context; however, the prioritization
of these indicators might differ with the case approach. Therefore, future studies should
embed these indicators set in different cases to formulate the indicator’s statistical tests and
verify the resulting sustainability assessment. Future research can also test and validate the
results by applying new MCDM methods.
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Appendix A

Start
Initialize
Start

Set to investigate: = Set of all solutions
Best bound for median τ found until now: = −1
Bound for median τ: = 1

Set of optimal solutions: = Φ
End
Repeat

Set to investigate: = Branch with highest bound for median τ and most
alternatives ranked

i: = number of alternatives ranked in chosen branch
If i < n then

i: = i + 1
Expand the branch by adding i subbranches
Foreach subbranch do

Calculate corresponding bound
If bound for median τ < best bound for

median τ found until now then
Remove this branch

End if
End foreach

Else if bound for median τ > best bound for median τ found until now then
Best bound for median τ found until now: = bound for

median τ

Set of optimal solutions: = {branch}
Else if bound for median τ = best bound for median τ found until now then

Set of optimal solutions: = Set of optimal solutions U
{branch}

End if

Until Set to investigate = Φ
End
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