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Abstract: The crop spatial pattern (CSP) is the spatial expression of the planting structure, maturity
and planting pattern of crops in a region or production unit. It reflects the situation of human
agricultural production using agricultural production resources, and is very important for human
survival and development. Based on 5356 publications collected from the Web of Science Core
CollectionTM (WoS), this paper’s aim is to illustrate a comprehensive run-through and visualization
of the subject of CSP. A time series evolution diagram of hot topics and the evolution of research
hotspots are discussed in detail. Then, remote sensing monitoring methods of the crop planting
area, multiple cropping, crop planting patterns and the mechanisms of crop spatial patterns are
summarized, respectively. In the discussion, we focus on three important issues, namely, the remote
sensing cloud platform, the changes in characteristics of the crop spatial pattern and the simulation
of the crop spatial pattern. The main objective of the paper is to assist research workers interested in
the area of CSP in determining potential research gaps and hotspots.

Keywords: crop spatial pattern; multiple cropping; crop planting area; crop planting patterns

1. Introduction

Agricultural land use is an activity in which human beings develop, manage and use
land resources for their own survival and development needs [1]. It reflects the situation of
human agricultural production using agricultural production resources within the spatial
scope [2,3]. It is an important part of the land system, as well as an important piece of
information to understand the types, structure and distribution characteristics of crops; it is
also the basis of crop structure adjustment and optimization [4,5]. The crop spatial pattern
(CSP) is the spatial expression of the planting structure, maturity and planting pattern of
crops in a region or production unit, which mainly includes three aspects: the composition
and layout of crops, that is, what to plant and where to plant [6,7]; multiple cropping or
leisure of crops, that is, how many crops a year; and the planting mode of crops, that is, how
to plant, which includes continuous cropping, rotation, intercropping and interplanting [8].
Obtaining the spatial pattern characteristics of crops and information concerning their
spatiotemporal dynamic changes is the basic foundation for studying the contribution of
the agroecosystem to the terrestrial carbon cycle, evaluating the impact of global change on
regional agricultural production and even achieve carbon neutrality [9–11]. Therefore, it is
of great theoretical and practical significance to study the spatial pattern of, and temporal
and spatial dynamic changes in, crops; related directions have become the focus of scholars
in the field of geography and ecology [12,13].
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From the existing or ongoing research on crop spatial patterns, the methods of ob-
taining crop spatial pattern information mainly include summary statistics and remote
sensing monitoring [14,15]. Early and traditional statistical methods obtain dynamic change
information about crops in a certain administrative region through the ground collection
method, and then summarize the statistics layer by layer to obtain the characteristics of
the changes [16,17]. Its advantage is that it can obtain detailed information describing the
quantity and rate of crop distribution change. However, due to the excessive dependence
on statistical data, the research results often show a lag in time [18]. Moreover, this method
consumes manpower, material and financial resources when it is used in large-scale change
monitoring [6,19]. With the continuous development of space technology, remote sensing
technology is widely used in Earth observation activities due to its advantages of timeli-
ness, wide range and low cost; it provides a new scientific and technological means for the
large-scale monitoring of crop spatial patterns [20,21]. The application of remote sensing
technology in crop spatial pattern monitoring began at the beginning of the 20th century,
and mainly focused on crop planting area monitoring. As early as the 1960s, the remote
sensing Agricultural Application Laboratory of Purdue University in the United States
first began to use remote sensing data to monitor crop planting areas, and successfully
realized the monitoring of a single corn crop, which proved that satellite remote sensing
data can be used for crop monitoring. Since the 1970s, the United States and the European
Union have successively implemented the Lacie program, Agristars program and Mars
program to identify crops using Landsat images and estimate the area, yield and total
yield of crops [22,23]. Since then, other countries, such as China, France, Germany, the
former Soviet Union, Canada, Japan, India, Argentina, Brazil, Australia and Thailand, have
also carried out remote sensing monitoring research on the spatial patterns of wheat, rice,
corn, soybean and other staple crops; its research content has expanded from monitoring
a single crop planting area to the monitoring of multiple-cropping modes and planting
modes [24–26]. The research of crop spatial patterns mainly focuses on the following
aspects, including crop spatial distribution mapping [1,11,27], crop planting structure ex-
traction [1,28,29], the multiple cropping of cultivated land [30–32] and cultivated land-use
intensity [2,3,5,10,13]. The above research shows that remote sensing technology has made
great progress in theory and technological methods, or in practice.

Remote sensing technology can provide scientific and accurate information for crop
planting, resulting in huge economic and social benefits, which makes many scholars favor
this technology and produce many classic documents. However, given the huge amount
of literature, it is time-consuming to analyze the evolution path and development trend
by abstracting and summarizing the problems, which has meant that few scholars have
identified the development trend, hotspots and frontier in this important area of research.
Therefore, with the help of bibliometric analysis, quantitative analysis of the literature is
helpful for quickly extracting the frontier hotspots and identifying future research gaps.
Accordingly, the aim of this paper is to solve three basic research questions in the CSP
field: (1) What is the current research status of CSP? (2) What are the key authors, journals,
institutions and country/region in the CSP field? (3) What are the potential research
opportunities for scholars to traverse in the CSP field? In order to answer the above three
questions, this paper systematically analyzes the knowledge layout and disposition of
CSP by using the bibliometric method, which provides a comprehensive overview and
visualization for scholars who are interested in CSP.

2. Materials and Methods
2.1. Methods and Tools

Bibliometrics is a subject that studies the distribution structure, quantitative rela-
tionship, change law and quantitative management of research information, and then
discusses some structures, characteristics and laws of science and technology by using
mathematical and statistical methods [33]. The literature contains a large amount of po-
tential knowledge; bibliometrics can provide readers with a new way to understand the
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world of knowledge [34]. As shown in Figure 1, the basic analysis methods include the lit-
erature publishing trend and subject categories, as well as burst analysis [35] and keyword
co-occurrence network analysis [36,37].
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Figure 1. Workflow and methods.

HistCiteTM is a software developed by Garfield, Paris and Stock [38], which can be
used to extract field information (e.g., number of publications, authors and institution).
The Total Local Citation Score (TLCS) was used to represent the total frequency of citations
in the current literature list, which can also be understood as the frequency in the research
field to which it belongs [39]. The Total Global Citation Score (TGCS) represents the total
frequency of citations in the WoS database, and “Records” represents the number of papers
published [39]. CiteSpace is a Java-based computer program developed by Chen [39], which
is popularly applied in bibliometric analysis to identify and present emerging developments
regarding trends and dynamics in a certain field. This paper used the bibliometric method
to analyze the knowledge layout and provides a comprehensive overview for scholars,
which can help them to understand the status of research and grasp potential research gaps.

2.2. Literature Search Strategy

A key component in bibliometric research is the literature data source. In this paper,
after implementing the literature search strategy in Table 1, the original literature data
were obtained from the Web of Science Core CollectionTM (WoS). After removing the book
chapter (11), correction (11) and letter (2), 5356 publications were selected from the Web of
Science Core CollectionTM on 5 June 2021.
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Table 1. Literature search strategy.

Criteria Details

TS

TS = (“crop spatial pattern”) or TS = (“multiple cropping system”
or “multiple cropping index”) or TS = (“crop acreage” or “crop
planting area” or “crop area”) or TS = (“cropping pattern” or
“crop rotation pattern” or “single cropping” or “sequential

cropping” or “intercropping”)

Languages ‘All language’

Document types ‘All document types’

Period ‘2005–2020’

Database ‘Web of Science Core CollectionTM’

3. Basic Information of Field Research
3.1. Publication Trend

The increase in the number of citations and publications in the CSP field from 2005
to 2020 is distinctly visible from Figure 2. The number of publications per year showed a
growth trend (y = 2.3309x2 − 4.1132x+ 150.28; R2 = 0.9903). When the R2 value was equal
to or close to 1, the reliability was relatively high. From 2005 to 2010, the number of citations
of articles was in a state of fluctuating rise; from 2010 to 2015, it was in a high platform
period; and then decreased rapidly after 2015. Since 2016, TGCS has been declining year by
year, because the newly published papers have not been cited by many researchers.
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3.2. Subject Category

Through the co-occurrence analysis of subject categorization in CiteSpace, disciplines
associated with a specific knowledge field can be found effectively and the five classes ex-
ceeding others are Agriculture, Agronomy, Agriculture (multidisciplinary), Environmental
Sciences & Ecology, and Environmental Sciences. As can be seen from Figure 3, the diameter
of the circle represents the proportion of classifications. The larger the circle, the higher
the proportion. The lines between circles represent the relationship between categories.
The thicker the lines, the closer the relationship. These results indicate that the research
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domain is an interdisciplinary research field, mainly conducted from the perspective of
Agriculture and Agronomy. However, it can also be combined with some other research
topics with great development potential, such as Geology, Remote Sensing and Soil Science,
for research.
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3.3. Time Series Change Analysis of Hot Topics

Figure 4 is the time series evolution diagram of hot topics. From 2005 to 2020, taking
each year as a period, the top 73 high-frequency keywords were merged to obtain the time
series changes of 20 hot topics and the proportion of this topic in the same period. The
percentage in the picture indicates the percentage of keywords with the highest probability
of occurrence in the same period. As can be seen from Figure 4, (1) the topics that have
received continuous attention are “cotton, rice, soybean, corn, maize, wheat, cover crop”,
“intercropping, intercropping system and intercrop”, “yield, grain yield and crop yield”,
“system, cropping system, agroforestry system and farming system”, etc.; (2) the themes of
“agriculture, conservation agriculture, sustainable agriculture, climate-smart agriculture”,
“landscape, land use, land use change, land cover” and “food security, sustainability,
economics” are becoming increasingly mature, and the degree of attention is decreasing
steadily; (3) for “irrigation, deficit irrigation, irrigation management” and factors related
to agricultural production, such as “soil, soil fertility and soil organic carbon”, “nitrogen,
phosphorus, fertilizer”, “crop rotation, rotation” and “climate change, drought, evaporation,
drought stress, water, and temperature”, etc., the researchers’ attention to them is relatively
stable; (4) researchers focus on the use of remote sensing technology to monitor the spatial
pattern of crops—for example, the research on “ remote sensing, leaf area index, vegetation
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index, NDVI” has increased rapidly since 2013; (5) some keywords, including “farmer,
smallholder farmer, smallholder” and “Model, dynamics, Simulation, pattern, Impact”,
have attracted attention in recent years, which shows that farmers’ planting preferences and
large-scale regional simulation have become hot spots in the study of crop spatial pattern.
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3.4. Evolution Analysis of Research Hotspots Based on Explosive Index

By analyzing keywords with CiteSpace’s burstiness detection, 185 keywords with
explosive degree were obtained. After removing the keywords with a total frequency of
less than 5, the results shown in Figure 5 were obtained. The keywords were sorted in the
horizontal direction according to the initial year of the outbreak. The left ordinate is the
word frequency of the keywords, corresponding to the height of the histogram. The height
of the pointed bars in the chart corresponds to the right ordinate, indicating the length of
the outbreak cycle. The diameter of the circle where the key words are located indicates the
height of its burst index, which is used to identify research topics that grow significantly or
decline rapidly in a short period of time [40].
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Therefore, the evolution of research hotspots can be divided into three stages. In the
first stage (2005–2010), there were many keywords with a high frequency, long outbreak
period and high outbreak degree, which indicated that they were focused on by researchers
during this period. After 2005, the keywords that appeared and quickly became research
hotspots include “maize”, “soybean”, “economics” and “agroforestry system”, which
indicates that those keywords attracted scholars’ attention in this period. The frequency of
the earlier “maize” was the highest, but the explosive index was not high, which showed
that many scholars were focusing on it. In the second stage (2010–2015), some short-term
but high-explosivity keywords appeared, including “ecology”, “respiration”, “land cover”,
“land use efficiency” and “rice”. In addition, scholars at this stage paid special attention
to the theoretical research content of land use, the relationship between cultivated land
protection and urban expansion and restoration. In the third stage (from 2015 to now),
the explosive words appearing in this stage include “stability”, “plant diversity” and
“vulnerability”, which are discussed from the perspective of global change and multiple
situations. In addition, some key factors, especially “population dynamics” and “soil
property”, will become hot topics in the near future, because they are facing many new
challenges in the fields of social, ecological and economic development.

4. Remote Sensing Monitoring System of Crop Spatial Pattern

Tang and others believe that the spatial pattern of crops can be studied from four
aspects: crop planting areas, multiple-cropping mode, crop planting patterns and the mech-
anism of crop spatial pattern change [4,6]. Therefore, the following four questions need
to be answered: (1) What is the principle and implementation method of remote sensing
monitoring of crop planting areas? (2) What is the principle and implementation method
of remote sensing monitoring of the multiple-cropping mode? (3) What is the principle and
implementation method of remote sensing monitoring of crop planting patterns? (4) What
is the mechanism of crop spatial pattern change? According to the keyword word frequency
analysis results obtained from the keyword co-occurrence analysis, the keywords were
sorted according to their meaning, as shown in Figure 6. Four aspects are discussed in
detail in this article.
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4.1. Remote Sensing Monitoring Method of Crop Planting Area

Information such as crop planting area and yield is an important basis for the for-
mulation of food policies and economic plans, which has always been highly valued by
social and government departments [41]. The remote sensing monitoring of crop planting
areas is mainly based on the differences in the spectral characteristics of different crops
recorded by remote sensors, and the recognition of different crop planting areas is carried
out through the surface information recorded by remote sensing images. In general, as
shown in Figure 7, the remote sensing monitoring methods of crop planting areas can be
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divided into three categories: those based on spectral characteristics, those based on crop
phenological characteristics and those based on multi-source data [6,42].
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4.1.1. Crop Remote Sensing Recognition Method Based on Spectral Features

1. Visual interpretation. The early remote sensing monitoring of crop planting area is
mainly based on visual interpretation, that is, relying on the spectral law, geological
law and the experience of experts who have a deep understanding of the situation of
the study area and the spectral characteristics of crops, inferring crop types from a
series of characteristics of remote sensing images, including brightness, tone, position,
time, texture and structure [6,42]. The advantage of this method is to make full use
of experts’ prior knowledge and comprehensive understanding of image features, as
well as the advantages of the human brain, so as to avoid the possible errors caused by
only using spectral analysis, and the recognition accuracy is high [43–45]. However,
the disadvantages of this method are strong subjectivity, low efficiency, high cost and
high requirements for time and personnel, so it is not suitable for large-scale crop
remote sensing recognition [46–48].

2. Image-based statistical classification. This method includes supervised and unsu-
pervised classification. It mainly calculates the statistical characteristics between
pixels, including the mean value, variance, standard deviation and dispersion, to
establish the discriminant function between crop categories, so as to realize crop
type recognition [8]. Supervised classification based on statistical features is the first
remote sensing classification method for crop recognition, and the remote sensing
classification method has been extended to the whole world [49]. As crops also be-
long to vegetation and have similar spectral characteristics to other vegetation, it is
often necessary to select the time phase with obvious differences between crops and
other vegetation spectral characteristics [50,51]. However, in large-scale monitoring,
especially in areas with complex planting conditions, the classification accuracy is
still difficult to control, and classification methods using other effective identification
marks are still immature [52]. Therefore, a combination of automatic classification
and visual interpretation is also commonly used [41].

3. Intelligent classification algorithm. The traditional supervised and unsupervised
classification is limited by human or surface environmental factors, which makes
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it difficult to achieve the research purposes and requirements with classification ac-
curacy [53]. Due to the limitation of the resolution of satellite remote sensing data,
satellite image elements have the characteristics of comprehensive spectral informa-
tion, which causes the computer classification to face many unclear situations [54].
There are many phenomena of the “same object with different spectrum” and “foreign
object with same spectrum”. According to the point independence principle of spectral
characteristics of ground objects, the proportion of misclassification is very high [55].
In recent years, an intelligent classification algorithm with a high degree of automation
has become one of the new hot spots. At present, the common intelligent classification
methods of crop area extraction mainly include the neural network [56,57], support
vector machine [58], decision tree [59] and random forest [60,61].

4. Object-oriented classification method. The object-oriented classification method has
outstanding advantages in the application of high-resolution remote sensing im-
ages [62]. It not only makes full use of the spectral characteristics of the ground
objects, but also considers their shape, texture and structure, so as to form a number
of non-overlapping non-empty sub regions after segmentation to reduce “salt-and-
pepper noise” [63]. As the objects are relatively uniform, the phenomena of “same
spectra with different object” and “same object with different spectra” are solved to
some extent [4,64–66].

4.1.2. Crop Remote Sensing Recognition Method Based on Crop Phenological Characteristics

Due to the characteristics of seasonal rhythm and phenological change, the time-phase
change law of remote sensing data of time series can be used to recognize different crop
types. The vegetation index is the most widely used parameter to describe the seasonal
change characteristics of vegetation.

1. Time series matching method. High temporal resolution images can fully reflect the
seasonal changes in vegetation, and the same vegetation in the same area has similar
change curves, so different ground features can be identified using the change charac-
teristics of the vegetation index time series [41]. By analyzing the matching degree
between the unknown pixel spectral curve and the pure pixel spectral curve, the
surface feature types are identified [67,68], including the spectral angle classification,
spectral feature fitting and binary coding [69,70]. Inspired by the spectral analysis of
hyperspectral remote sensing, this method has been applied to the analysis of time
series data to identify crop types [71,72]. The purpose of this method is to make use
of the differences in seasonal rhythm, so as to avoid the problem of similar spectral
characteristics among crop types [73]. However, the spatial resolution of remote
sensing data, which can form time series and is often used in large-scale research, is
usually very low, so the monitoring accuracy is not high [74].

2. Dentification of key phenological periods. In general, the same crop has relatively
stable growth and development characteristics in the same area [75]. The key pheno-
logical period can allow crops and other vegetation a greater degree of recognition,
which can be used as an important basis to improve the accuracy of crop type recogni-
tion [76]. The purpose of this method is to analyze the characteristic value of the key
phenological period of crop growth in time series data by selecting the appropriate
remote sensing image and using the local crop phenology information, so as to achieve
the purpose of crop extraction [77]. This method can make crop type recognition more
targeted, thus avoiding the blindness of remote sensing data selection.

3. Time series transformation method. Each crop has a unique seasonal growth pattern,
which makes the NDVI time series curve reflect its phenological characteristics. The
change characteristics of time series data can be described quantitatively after the cor-
relation transformation, and then the crop types can be identified [78]. The amplitude
and phase angle images of each crop were extracted using the harmonic analysis of
time series, and then the crops were identified using discriminant analysis [79,80].
Based on the discrete Fourier transform to detect the frequency distribution, the ex-
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tracted biological features can be introduced into the classification feature space, so
the separability between categories is improved [81]. The core idea of this method is to
extract the time series features of crops different from other land objects using various
transformation methods, and can obtain some specific details so that the results of
crop classification are more accurate, but only the low-spatial resolution data can
be used.

4.1.3. Crop Remote Sensing Recognition Method Based on Multi-Source Data

Due to the influence of the weather, climate and other natural conditions, it is difficult
to obtain timely, full coverage of high-resolution remote sensing images [82]. The advantage
of high-temporal resolution remote sensing is that it can obtain complete time series in the
crop growing season, but the disadvantage is that it is limited by spatial resolution and
low monitoring accuracy, especially in areas with complex planting structures [83]. Many
practices have proved that the combination of spectral features and time series information
can provide more accurate results in the recognition of ground objects [84]. Therefore, the
main trend of crop recognition at a regional scale is to make full use of the advantages
of multi-source remote sensing and combine low- and medium-spatial resolution remote
sensing [85].

The crop remote sensing recognition method based on multi-information source data
can make full use of the characteristics of various data, realize complementary advantages,
make up for the defects of single remote sensing data and classification methods, and
greatly improve the precision of crop remote sensing recognition [86]. The combination of
multi-source data includes not only the combination of multi-source remote sensing images,
but also the combination of remote sensing images and non-remote sensing data sources.
The combination of multi-source remote sensing images can obtain more information and
reduce the ambiguity of understanding.

1. Pixel decomposition method. The key point of this method is to provide endmembers
from medium- and high-resolution images, and decompose pixels based on low-
spatial resolution images of a single scene or multiple scenes in a key phenological
period. A large number of studies at home and abroad show that the accuracy of
crop recognition is high, which can basically meet actual needs [87–89]. This method
considers the availability of different types of remote sensing data and makes full use
of the advantages of multi-resolution remote sensing with relatively high accuracy.
However, the disadvantages of this method are that it does not take advantage
of the time advantage of low-spatial resolution remote sensing, the effect is more
obvious when the planting structure is relatively simple, and the result is a low-spatial
resolution abundance map, which can count the total planting area of crops, but the
determination of sub-pixel positions cannot provide much support.

2. Correlation analysis model. The key aspect of this method is to establish a semi-
quantitative or regression model with low-resolution time series or key phenological
data to identify crops [90–92]. There are also studies that consider the quantitative
functional relationship between the vegetation index and planting area in the key
phenological period of crops [93]. The principle of this is that, when the pixel is
mixed with other types of ground objects, the slope of the curve in the key period will
change. The advantage of this method is that it makes full use of the advantages of
multi-resolution remote sensing, highlights key phenological characteristics, makes
the theory more sufficient and the accuracy higher. However, the disadvantage of
this method is that the result is still an abundance map, which cannot determine the
specific location of the sub-pixels and is only used to count the total planting area and
the approximate planting distribution.

3. Multi-phase mask method. The key aspect of this method is to make use of the time
continuity advantage of low-spatial resolution remote sensing data, distinguish crops
and non-crops based on the seasonal rhythm characteristics of crops, and identify crop
types based on medium- and high-resolution images with crop areas as masks [94,95].
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This method takes advantage of the time advantage of low-resolution remote sensing
to narrow the spatial range of crop recognition, reduce the influence of “the same
object with different spectrum” and “foreign object with the same spectrum” to a
certain extent, so as to improve the recognition accuracy. However, it is necessary to
formulate relevant rules to ensure the mixed pixels contain crops in the mask.

4. Sequence data fusion. The key aspect of this method is the fusion of low-resolution
time series data and high-resolution multispectral data, which not only improves the
spatial resolution and clarity, but also the accuracy and reliability of recognition [96,97].
The advantage of this method is that it fully integrates the advantages of multi-
resolution remote sensing in time and space and improves the spatial accuracy without
losing the advantages of time series. However, when using single or several temporal
high-resolution remote sensing images to fuse with time series low-spatial resolution
remote sensing images, it is necessary to focus on the temporal differences between
images of different scales, which also further verifies the applicability of this method.

4.2. Remote Sensing Monitoring of Multiple Cropping

Cultivated land is an important form of land resource utilization, and carries the basic
food sources for human survival. Its change has a very important impact on food security
and the stability of the ecological environment. In recent years, with the increasingly
prominent distance between people and land, the promotion of urbanization and the rising
price of food, food issues have gradually become a hot topic of global concern, and regional
food security has also attracted a large amount of attention [30]. Multiple cropping is
the most simple, direct and effective way to increase regional grain yield. The multiple
cropping index is the basic index to measure the intensive utilization degree of cultivated
land resources in the study of the farming system, and it is also an important technical index
for the macro-evaluation of the basic situation of cultivated land resource utilization [98,99].
It refers to the times of planting crops in a year.

Generally speaking, in the case of a certain yield per unit area, the higher the multiple
cropping index, the higher the degree of cultivated land utilization, and the higher the grain
yield. On the contrary, the smaller the multiple cropping index, the lower the degree of
cultivated land utilization and the lower the grain yield [100]. Multiple cropping can make
full use of the characteristics of agricultural natural conditions in Asia, such as abundant
light and heat resources, uneven spatial and temporal distribution of water conditions and
small cultivated land area, and improve the utilization efficiency of land, light, heat and
water resources so as to ensure the agricultural production capacity to meet the survival
needs of many people.

The application of remote sensing technology in multiple cropping mode monitoring
mainly uses different fitting methods to obtain the crop growth curve according to the
crop seasonal activity process described by the time series vegetation index, so as to realize
the effective monitoring of the multiple-cropping mode. The specific process is as follows:
the vegetation index data obtained in a year that reflect the growth status of vegetation
are arranged over time as the abscissa to form a time series to describe the annual change
characteristics of vegetation growth; that is to say, the core idea of this method is that the
time series change in the vegetation index corresponds to the seasonal activity process of
vegetation growth and decline [6].

The temporal dynamic change in vegetation index can reflect the growth process
of crops, including the periodic cycle of sowing, emergence, heading to maturity and
harvesting. Figure 8 shows that the vegetation index curve of the first cropping system
completed one cycle in a year, the second cropping system completed two cycles and the
third cropping system completed three growth cycles. Therefore, based on the time series
vegetation index, using various smoothing methods to fit the crop growth curve can realize
the effective monitoring of the multiple-cropping mode [6].

The multiple cropping index can be divided into the potential multiple cropping
index and the actual multiple cropping index. The potential multiple cropping index is the
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maximum multiple cropping index, that is, the maximum multiple cropping index that can
be achieved when making full use of light, heat and water resources in the region. However,
due to the limitations of economic conditions, human costs, topography, technical level,
crop varieties and other factors, the actual situation of the multiple cropping index in a
region may not reach its maximum level, which is called the actual multiple cropping
index here.
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4.2.1. Research Method of Potential Multiple Cropping Index (PMCI)

1. AEZ (Agro-Ecological Zones). This method is commonly used to calculate the poten-
tial productivity of regional cultivated land in the world. Its purpose is to integrate
climate, soil, topography, land use, irrigation conditions and other factors with the
growth models of various crops, and finally calculate the maximum production po-
tential of each piece of land [101,102]. The AEZ model considers the factors of crop
growth more comprehensively, which has high theoretical significance and practical
application value, but for small areas, the accuracy is not high.

2. Methods based on aerolithology. The core idea of this method is to divide multiple
cropping potential into heat and precipitation potential, and take the smallest one as
the final multiple cropping index potential. The heat and precipitation potential is
divided into multiple cropping regions by the accumulated temperature of ≥10 ◦C
and the average annual precipitation [103,104]. Based on the agricultural climatology
model, the current development still depends on the experience stage, and the deter-
mination of the heat and precipitation threshold mostly depends on the experience
value, which has some limitations.

3. Method based on an economic model. This method considers that the production of
crops and the concept products in economics have some similarities; that is, under
the input of some production factors, a certain output can be obtained. If light, tem-
perature, water resources and other natural conditions are regarded as input factors,
and the multiple cropping index is regarded as the output, then the potential of the
multiple cropping index can be measured by using the stochastic frontier production
function, which is used to measure the technical efficiency in economics [105,106].
The method based on the economic model can be used to analyze the non-benefit part
of multiple cropping, but the premise of application is that multiple cropping must
reach the maximum potential in some places.

4.2.2. Research Method of Actual Multiple Cropping Index (MCI)

1. Statistical method of the Statistical Yearbook. The most commonly used method is to
obtain the actual multiple cropping index by dividing the sown area of crops by the
cultivated area in the Statistical Yearbook. The statistical method is relatively simple
in calculation. The advantage of this method is that it can quickly evaluate the change
trend of the multiple cropping index on the regional scale, but the disadvantage is that
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the accuracy is often restricted by the reliability and lag of statistical data, and it cannot
effectively represent the local pattern change in the cultivated land multiple cropping
index or accurately describe the spatial characteristics of the planting system [107,108].

MCI = Ah/Ac (1)

where MCI is the multiple cropping index of regional cultivated land; Ah is the total
harvest area of the whole year; Ac is the total area of cultivated land.

2. Peak value method. The peak value method is the most widely used method in
multiple cropping monitoring due to being simple and easy to use. The core idea of
the peak value method is that the peak value of the crop multiple cropping mode is
consistent with that of the crop vegetation index change curve; that is, the vegetation
index data of crops in one season of a year forms an obvious single-peak curve, the
vegetation index of crops in two seasons of a year forms a double-peak curve and the
vegetation index of crops in three seasons of a year forms a triple-peak curve. The
key aspect of the peak method is to obtain the frequency and distribution of the peak.
However, only calculating the peak number may cause an error in multiple cropping
monitoring. As the remote sensing data are disturbed by the condition of the remote
sensing sensor itself (inclination, resolution and sensor aging), cloud, atmosphere
and sun height angle, the vegetation index directly obtained from the remote sensing
image has a large amount of noise. This results in the irregular fluctuation of the time
series vegetation index data, which is not suitable for extracting the information of the
cultivated land multiple species index directly. Therefore, it is necessary to remove
the noise from the time series vegetation index data and reconstruct a smooth time
profile to better describe the process of cultivated land seasonal change. Common
data smoothing methods are shown in Table 2. The calculation process of the multiple-
cropping index is shown in Figure 9.

Table 2. Smoothing method of multiple cropping index.

Smoothing Method Advantages Disadvantages

Fourier transform

1. It can not only remove the noise, but also
represent the harmonic of the different
vegetation growth cycle.

2. It can reflect the periodicity of the vegetation
growth curve as much as possible.

3. It is realized by the software package
method, and it is relatively simple to use.

1. It is sensitive to pseudo-high and
pseudo-low values in NDVI data.

2. The threshold of reference setting needs
experience and many experiments to obtain
the best value, and the environmental and
human factors have great influence.

S g filtering

1. The theory is simple and easy to implement.
2. It is not limited by the data time, space scale

or sensor.
3. It can clearly describe the long-term trend of

time series and local mutation information.

1. It is difficult to determine the filter
coefficients and active window bandwidth.

2. S g filter reconstruction can only process the
time series data with an equal interval.

Asymmetric Gaussian
function fitting

It can clearly describe the long-term change trend
and local mutation information of the vegetation
index in time series.

1. It is difficult to find suitable peak and
valley points.

2. It is not suitable for the area where the
seasonal variation is not obvious.

Wavelet transform

1. Multi-resolution is the local transformation
of the time and frequency domains.

2. There are many smooth wavelets to
choose from.

1. Different wavelets have different
experimental results, which need a large
amount of data to verify.

2. It has not been used for a long time in the
field of data smoothing and needs further
research and exploration.
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4.3. Remote Sensing Monitoring of Crop Planting Patterns

Crop planting is a comprehensive summary of continuous cropping, rotation, inter-
cropping and interplanting [109]. The planting mode of crops is closely related to the
pattern of crop replanting. Both of them make full use of natural resources such as water,
soil, light and heat to improve the utilization rate of light energy and land yield [110].
However, there are still significant differences between them. The mode of crop replanting
mainly describes the amount of crop planting in a certain region or production unit in a
year, while the crop planting mode explains the planting order and mode of crops under
different multiple cropping patterns.

For the area with more than one year of maturity, the planting method of the same
crop in the same field is continuous cropping, while the planting mode of rotating different
crops in the same field in sequence is called rotation [111]. Rotation also includes single
rotation, intercropping rotation and interplay rotation. Therefore, the crop planting mode
is more complex and diverse, and the remote sensing monitoring of crop planting mode is
a higher-level remote sensing application. The spectral and seasonal information recorded
by remote sensing sensors is different for different planting methods [112].

The most commonly used remote sensing monitoring method of crop planting patterns
is to use high-temporal resolution time series remote sensing data, such as NOAA/AVHRR
and MODIS, to distinguish crop growth cycles according to the change law of the crop
index, and to couple this information with the crop growth cycle model established by the
ground survey so as to judge different crop planting patterns [113]. For the multi-mature
area of single cropping rotation, the growth season of the crops in the front and back crops
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does not coincide, and the time series remote sensing data reflect the complete growth
season of each season. If the intercropping rotation is used, the later growth season of
the former crop and the early stage of the later crop growth season overlap due to the
planting or planting of the later plants, rows or borders of the crops in the later period of
the previous season, so that the single rotation and interplanting rotation can be extracted
by using the above characteristics. The remote sensing monitoring process of the cultivated
land rotation mode is shown in Figure 10.
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4.4. The Mechanism of Crop Spatial Pattern Change

The research focus on the mechanism of crop spatial pattern change is to analyze the
dynamic process of crop spatial pattern change from one state to another, and analyze
the internal and external reasons leading to the evolution of the crop spatial pattern, so
as to determine the mechanism of different “natural-social-economic” driving factors
in the evolution of the crop spatial patterns [8]. The formation of and changes in crop
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spatial patterns are the products of natural factors and human activities. As a system,
natural driving forces can be divided into different components, such as climate, soil and
hydrology. As a system, human driving forces can be divided into population, technology,
wealth, political and economic situations, and culture. Compared with the mechanisms
of natural driving forces, the impact of human activities on the spatial pattern of crops is
more complex.

The essence of crop spatial pattern change is the relationship between humans and
the environment. The existing research on the driving mechanism of crop spatial pattern
focuses on the application of a variety of system analysis and mathematical statistics
methods to analyze the impact of natural ecological environment changes on crop spatial
and temporal patterns. The analysis objects are usually land units with a certain area, or a
certain area represented by a grid in a grid system; it is easy to establish the relationship
between crop spatial pattern change and environmental factors by using geographic grid
data or regional socio-economic statistics. However, the change in crop spatial patterns is
affected not only by natural factors but also by social and economic factors [25,114,115].
It is difficult to fully understand the dynamic change process of the crop spatial pattern
only from a certain perspective of natural driving or human driving forces. Therefore, it is
necessary to integrate natural socio-economic factors and, at the same time, compare and
study the dynamic characteristics of crop spatial patterns in different spatial and temporal
scales, so as to truly understand the causes of their dynamic changes.

On the one hand, previous studies have only analyzed the driving mechanism of crop
spatial pattern change at the macro-level, without paying attention to the decision-making
behavior of farmers, which plays a key role in crop spatial pattern change [116,117]. In
fact, the macro-scale spatial pattern of crops is the aggregation and synthesis of farmers’
decision-making behavior and process at the micro-level; that is, the macro-scale pattern
is the result of the aggregation of micro-processes [118,119]. Due to internal and external
factors, different decision makers have different characteristics of adaptability to policy, sen-
sitivity to interests, initiative, adaptability and interaction, which means that the choice or
decision-making behavior regarding crops among decision makers shows significant differ-
ences, dynamics and correlations, thus leading to changes in the crop spatial pattern [120].
Therefore, in future research of crop spatial pattern change, from the perspective of the
human decision-making mechanism, the analysis of crop spatial pattern change caused by
the interaction between humans and the natural environment will be a development trend
and an angle that warrants special attention [121].

On the other hand, the traditional research will statically analyze the relationship
between the driving factors and the change results, assuming that the causal relationship
between the spatiotemporal pattern change in crops and its driving factors does not change
with time; that is, it posits that the driving factors determine the results of the spatial
pattern change in crops [110,122,123]. This kind of research paradigm does not pay enough
attention to the time mechanism, and lacks in-depth thinking on the nonlinear, multidimen-
sional, path-dependent and feedback mechanisms of crop spatial pattern change. As shown
in Figure 11, due to the multiplicity, dynamic, different time and different place correlations
between humans and nature, comprehensive spatial and temporal mechanisms will be a
direction of future crop spatial pattern research, so as to better describe and explain the
causes, process, results and trends of crop spatial pattern change.
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5. Discussion
5.1. Inspiration of Remote Sensing Cloud Platform to the Research of Crop Spatial Pattern

Since the launch of the first satellite, human beings have accumulated decades of
remote sensing data on a global scale [43]. With the rapid development of remote sens-
ing technology, its spatial resolution, temporal resolution, spectral resolution and other
technical indicators continue to improve, resulting in a rapid increase in various remote
sensing data. At the data level, it has reflected the “5V” characteristics of large volume,
variety, velocity, veracity and high value; it has entered an unprecedented era of remote
sensing big data [124]. The emerging massive remote sensing data need a large amount
of storage and computing resources, but the traditional desktop or server has difficulty
meeting this demand. New changes urge us to seek a new scientific paradigm of “remote
sensing big data”, which emphasizes international cooperation, intensive data analysis,
huge computing resources and high-end visualization. The development of remote sens-
ing cloud computing technology and the emergence of platforms provide unprecedented
opportunities for remote sensing big data processing and analysis, as follows: (1) there
are massive data resources in the cloud, so there is no need to download them for local
processing; (2) the cloud provides batch and interactive big data computing services; (3) the
application programming interface (API) is provided in the cloud, so it is not necessary to
install software locally for processing and analysis. This completely changes the traditional
mode of remote sensing data local download, processing and analysis; further reduces
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the access threshold of remote sensing data; greatly improves the operation efficiency;
accelerates the iterative process of algorithm testing; and makes it possible for the rapid
analysis and application of global-scale Earth system science, which is difficult to realize
on a desktop or server [125]. After a period of development, many remote sensing cloud
platforms have emerged, as shown in Table 3.

Table 3. Major remote sensing cloud platforms.

Platform Country Dataset API WebSite

Google earth
engine (GEE) U.S.A.

Remote sensing image, terrain
data, land cover, weather,

precipitation and atmospheric
data, population data and some

vector data

JavaScript
Python

www.earthengine.
google.com

(5 June 2021)

NASA Earth
Exchange (NEX) U.S.A. MODIS, Landset, VIIRS, GOES,

Sentinel-2, etc. MATLAB, IDL www.nasa.gov/nex
(5 June 2021)

Descartes Labs U.S.A.

Remote sensing image,
meteorological data, elevation,

geographical location,
land use data

Python www.descarteslabs.com
(5 June 2021)

AWS Australia Landset

C++, Go, Java,
JavaScript, .NET,

Node.js, PHP,
Python, Ruby

www.aws.amazon.com/
cn/earth

(5 June 2021)

Data Cube Germany
Landset, Sentinel, MODIS,

elevation data, vegetation cover,
land cover

Python www.opendatacube.org
(5 June 2021)

CODE-DE China Sentinel, Landset, land cover Python www.code-de.org
(5 June 2021)

Earth Data Miner China

Sentinel, Landset, land cover, bio
ecological data, atmospheric
ocean data, basic geographic
data and ground observation

data, stratigraphy and
paleontology data, China

biological species list, microbial
resources data and omics data

Python
www.earthdataminer.

casearth.cn
(5 June 2021)

PIE-Engine China Landset, Sentinel JavaScript www.engine.piesat.cn
(5 June 2021)

Being limited to the same sensor makes it impossible to provide the simultaneous
interpretation of high-temporal–spatial resolution optical remote sensing data, and the
classification method of different remote sensing data has also become a research hotspot.
In order to integrate different Sentinel-2 and Landsat data in different temporal and spatial
domains, the high-frequency observation of the provincial and even wider surface has
been achieved. This gives rise to unprecedented demand for data storage and processing
capacity, which can only be realized through cloud computing [4,126]. Figure 12 shows a
remote sensing cloud platform framework and application direction.

Based on the cloud platform of Google Earth Engine, Tan Shen et al., used online
medium-resolution optical and microwave remote sensing data, innovatively used the
method of extracting features by month and histogram size and used a random forest
classifier to draw a distribution map of rice planting in Hainan Province in 2016 with a
10 m resolution [127]. Carlos et al., aimed to estimate and map soybean areas in almost real
time using temporal series multispectral images and vegetation indices (near-infrared and
red) in the Google Earth Engine system in the state of Mato Grosso, Brazil, indicating that
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the use of the MODIS images for the monitoring of soybean areas using the Google Earth
Engine platform was a viable and promising automated alternative for large-scale soybean
area estimates [128]. Shimpei Inoue et al., propose a novel paddy field mapping method
that uses Sentinel-1 synthetic aperture radar (SAR) time series that are robust for cloud
cover, supplemented by Sentinel-2 optical images that are more reliable than SAR data for
extracting irrigated paddy fields [129].
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5.2. Future Research Direction for Crop Spatial Pattern Change

In recent years, scholars have conducted much exploration into crop spatial pattern
change, and many meaningful results have been obtained. The following aspects can be
used as a reference for follow-up research.

5.2.1. The Change Characteristics of Crop Spatial Patterns

As shown in Figure 13, the spatial distribution characteristics of a single crop and the
planting system characteristics of multiple crop combinations determine the spatial pattern
characteristics of crops to a great extent, which can be obtained by three methods, namely
data statistics, remote sensing extraction and spatial simulation [8]. The data statistics
can not only obtain detailed information of the quantity and degree of the spatial pattern
change in crops within the statistical unit, but also provide other information closely related
to it, such as labor costs, machinery input and farmers’ willingness [29,130]. However, in
the monitoring of large-scale crop spatial pattern change, the use of statistical methods
will consume a large amount of manpower, material and financial resources, and is also
vulnerable to human factors. As statistical data can only reflect the quantity changes at the
level of statistical units, it is difficult to analyze the spatial variability of crop distribution
within the statistical unit.

Due to the advantages of speed and accuracy, the remote sensing methods widely
used for the observation of Earth also have many problems that need further research in
the extraction of crop spatial patterns, such as mixing pixels, scale conversion, “the same
object with different spectrum” and “foreign object with the same spectrum” [131]. Simple
remote sensing image classification methods are difficult to apply to the identification
of large-scale spatial crop species, and it is difficult to obtain the characteristics of the
dynamic changes in crop spatial patterns [132]. Through the formula of a series of natural
factors, including climate, topography and soil, needed in the process of crop growth,
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the model was constructed to simulate and analyze the spatial pattern information of
crops. However, social and economic factors such as planting habits, prices of agricultural
products and agricultural policies closely related to the real spatial distribution of crops are
not sufficiently taken into consideration [133].
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The occurrence, function and evolution of the crop spatial pattern change process
at different scales affect the actual rate and spatial distribution of crop spatial pattern
change, which makes the composite method based on multi-scale and multi-information
source data fusion an important research direction of crop spatial pattern dynamic change
characteristics [134]. The differences in scale, accuracy and collection methods between
different data sources will affect the application process of multi-source data. Therefore, the
characteristics of multiple data information can be fully utilized to realize complementary
advantages, make up for the defects of single remote sensing data and classification meth-
ods and improve the accuracy of information acquisition and analysis [135]. For example,
the classification rules and systems adopted by different remote sensing data sets may
be different, and the crop area obtained from remote sensing data may not be consistent
with the number of crop areas obtained from statistical data. In the study of crop spatial
distribution, data mutual verification and reducing data differences can not only help data
users choose appropriate data products according to their research purposes and regions,
but also provide feedback for data producers, so as to promote the improvement of the
data processing algorithm and better serve future crop spatial distribution mapping.

5.2.2. Simulation of Crop Spatial Pattern

The spatial patterns of crops can reflect many service functions contained in the
agricultural land system, such as the circulation of nitrogen, phosphorus and potassium
nutrients, food security, farmland carbon storage and landscape service, and also reflect
the situation of the human utilization of agricultural production resources in a certain
space [118]. The spatial pattern of crops is an important basis for the adjustment and
optimization of crop structures. Therefore, it is of great practical value and important
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scientific significance to carry out research on the process and characteristics of crop spatial
pattern change.

In the agricultural land system, cultivated land is the most important carrier of agricul-
tural land use, which provides the necessary natural ecological environment for the growth,
development and maturity of crops [120]. Affected by many factors, the spatial pattern
of crops is changing constantly, including the land use types of cultivated land, forest
land and grassland, etc., which are in the process of dynamic change, and also include
the alternation or transformation of different crops in the cultivated land [136]. Therefore,
the premise of the change in the spatial pattern of crops was analyzed by the simulation
of the dynamic change in the spatial pattern of cultivated land, because the change in
cultivated land will affect the change in the spatial pattern of crops. Based on this idea,
on the basis of the CLUE-S model (conservation of land use change and its effects), this
study proposes a model based on farmers’ decision-making behavior. At the first level,
the dynamic change process and state of cultivated land spatial patterns can be expressed
by simulating the dynamic change among different land use types. At the second level,
based on the output of the cultivated land spatial pattern from the first level, the change
in the crop spatial–temporal pattern was simulated by expressing the effect of natural
factors and socio-economic factors on farmers’ land use behavior. The internal factors
mainly include the age structure, population structure, education level, family income and
business scale, while the external factors mainly include climate change, policy, market,
economic development level, changes in regional layout, interaction among farmers and
path dependence [137–139]. Internal factors are the fundamental factors (wishes and ability)
that determine farmers’ decision making, while external factors are the specific basis of
farmers’ decision making.

In a certain “natural–social–economic” environment, different crops will show dif-
ferent yields and prices, which will greatly affect farmers’ decision making and lead to
changes in crop spatial patterns [140]. In the process of building the model, the feedback
and correlation between different spatial scales cannot be ignored. For example, if indi-
vidual farmers all choose the same crop planting method, it may lead to the saturation or
surplus of agricultural products in the regional or higher-level regional market; then, the
optimal crop selection at the farmer level will no longer be the optimal choice, and its crops
may change with it. In addition, crop demand on the regional scale cannot be realized due
to the limitation of land resources and the unsuitable site conditions on the micro-scale,
which may lead to changes in and adjustment of crop spatial patterns on the micro-scale in
other regions [141]. Generally speaking, the “natural–social economy” comprehensive sce-
nario will derive new natural environment constraints, policy management measures, etc.,
which will continue to affect farmers’ behavior, thus forming a closed feedback mechanism
within the “human–nature” system, and finally realizing the dynamic simulation process
of “farmers’ behavior—agricultural crop spatial–temporal pattern—natural–social compre-
hensive scenario—farmers’ behavior” [142]. The simulation of crop spatial pattern change
aimed to summarize the practical problems in the land change system into corresponding
mathematical problems.

As shown in Figure 14, with the help of the computer simulation model, we could
analyze the rate, quantity and spatial characteristics of crop spatial pattern change from a
qualitative or quantitative point of view; explain its change process and mechanism; and
explore the possible change trend under different scenarios in the future, so as to inform a
realistic management decision.
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6. Conclusions

The purpose of this paper was to introduce the progress path, research hotspots and
potential research directions in the CSP field formulated on the bibliometric method. There-
fore, initial data were gathered together from the Web of Science Core CollectionTM (WoS),
and 5356 related publications were acquired following data cleaning. In addition, further
courses in relation to the present status, which were inclusive of publication trends, fore-
most journals, top authors, top institutions and main country or region, were carried out.

On the basis of the bibliometric analysis, key results are as follows: (1) the number
of publications in the CSP domain has increased gradually in the period of 2005–2020;
(2) 895 journals and proceedings incorporated publications regarding CSP, in which approx-
imately 18.66% of the publications were published in 1.12% of the journals, and the Indian
Journal of Agricultural Sciences was ranked in top place as per the number of published
articles; (3) according to Price’s law, 264 authors were core authors, while 15,702 authors
were involved; (4) this paper discusses the current research progress of crop spatial patterns
and the advantages and disadvantages of the methods from four aspects: crop planting
area monitoring, multiple cropping monitoring, crop planting modes, and the mechanism
of crop spatial pattern change; (5) this paper discusses the future development direction
from three aspects of the crop spatial pattern research mechanism, crop spatial pattern
change characteristics, and crop space pattern simulation, so as to provide corresponding
support for interested researchers.

In short, in recent years, many scholars have carried out a large amount of research
on the characteristics, mechanism and simulation of crop spatial pattern change, and have
made great progress in theory and practice. The relevant work has played an important
role in providing decision support for government departments. It is undeniable that,
in essence, the spatial pattern of crops is a complex problem of the interaction between
humans and environment, and its scientific research is still facing many difficulties and
challenges. For example, the automatic extraction of crop spatial pattern information from
remote sensing images has been a desired goal of scholars for a long time, but the effect
of the automatic extraction of remote sensing information is not satisfactory at present.
Realizing the automation and refinement of crop spatial pattern extraction can greatly
improve the accuracy and efficiency of crop spatial pattern monitoring, and will provide
stronger support for national economic construction. To solve these complex scientific
problems, it is urgent to comprehensively consider the complex relationship between
humans and land from a more systematic perspective in follow-up research. Therefore, the
comprehensive research based on remote sensing big data, multi-scale, multi-model and
high precision will be an important direction of crop spatial pattern research in the future.
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15. Yang, Z.; Wu, W.; Di, L.; Üstündağ, B. Remote sensing for agricultural applications. J. Integr. Agric. 2017, 16, 239–241. [CrossRef]
16. Song, Q.; Zhou, Q.B.; Wu, W.B.; Hu, Q.; Yu, Q.; Tang, H. Recent Progresses in Research of Integrating Multi-Source Remote

Sensing Data for Crop Mapping. Sci. Agric. Sin. 2015, 48, 1122–1135.
17. Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and

Major Information Needs. Remote Sens. 2013, 5, 949–981. [CrossRef]
18. Zhong, G.; Zhou, Q.; Wang, D. Spatial variability of crop area sampling unit and its influence on sampling extrapolation efficiency.

Chin. J. Agric. Resour. Reg. Plan. 2019, 40, 20–36.
19. Yu, X. Application of remote sensing technology and information in agricultural statistical investigation. China Stat. 2016, 3, 9–11.
20. Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; de Abelleyra, D.; Ferraz, P.D.R.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.

Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [CrossRef]
21. Zhou, T.; Pan, J.; Han, T.; Wei, S. Planting area extraction of winter wheat based on multi-temporal SAR data and optical imagery.

Trans. Chin. Soc. Agric. Eng. 2017, 33, 215–221.
22. Liu, H.Q.; Jin, M.Y.; Gong, W.P. Applications of remote sensing in agriculture in the United States. Chin. J. Agric. Resour. Reg. Plan.

1999, 20, 58–62.
23. Xu, W.; Tian, Y. Overview of extraction of crop area from remote sensing. J. Yunnan Agric. Univ. 2005, 20, 94–98. [CrossRef]
24. Liu, J.; Wang, L.; Ji, F.; Teng, F.; Yao, B. Design and application of “One Map” crop area remote sensing monitoring operation.

China Agric. Inf. 2018, 30, 77–89.
25. Wang, L.M.; Liu, J. Analysis of Spatial-temporal Dynamic Change of Wheat Planting Structure of China. Chin. Agric. Sci. Bull.

2019, 35, 12–23.
26. Yan, H.; Xiao, X.; Huang, H.; Liu, J.; Chen, J.; Bai, X. Multiple cropping intensity in China derived from agro-meteorological

observations and MODIS data. Chin. Geogr. Sci. 2014, 24, 205–219. [CrossRef]
27. Su, S.; Wang, Y. Analysis on the evolution track of crop gravity center and geographical agglomeration trend in China. Rural Econ.

Sci.-Technol. 2017, 28, 1–4.
28. Liao, Y.; Song, Z.; Zhao, F.; Lu, K. Impacts of Climate Change on the Agricultural Planting Structure of Main Crops in Hunan.

Chin. Agric. Sci. Bull. 2010, 26, 276–286.
29. Du, G.; Zhang, Y.; Li, Q. The evolution path of crop structure in the Sanjiang Plain in the 21st century. Res. Agric. Mod. 2019, 40,

736–744.
30. Li, Y.; Qiu, B.; He, Y.; Chen, G.; Ye, Z. Cropping intensity based on MODIS data in China during 2001–2018. Prog. Geogr. 2020, 39,

1874–1883. [CrossRef]
31. Zhu, X.L.; Li, Q.; Shen, M.G.; Chen, J.; Wu, J. A Methodology for Multiple Cropping Index Extraction Based on NDVI Time-Series.

J. Nat. Resour. 2008, 23, 534–544.
32. Wei, W.; Wu, W.; Li, Z.; Yang, P.; Hu, Q.; Zhou, Q. Comparative study on reconstruction methods of time series vegetation index.

Chin. J. Agric. Resour. Reg. Plan. 2014, 35, 34–43.
33. Qiu, J. Bibliometrics, 2nd ed.; Science Press: Beijing, China, 2019.

http://doi.org/10.5814/j.issn.1674-764x.2020.06.007
http://doi.org/10.3390/su10113953
http://doi.org/10.1016/j.rse.2021.112365
http://doi.org/10.1016/S2095-3119(16)61549-6
http://doi.org/10.3390/rs5020949
http://doi.org/10.3390/rs10010099
http://doi.org/10.16211/j.issn.1004-390x(n).2005.01.019
http://doi.org/10.1007/s11769-013-0637-2
http://doi.org/10.18306/dlkxjz.2020.11.008


Sustainability 2022, 14, 4104 26 of 29

34. Li, J. Scientometrics and Knowledge Networks Analysis, 2nd ed.; Capital University of Economics and Business Press: Beijing,
China, 2017.

35. Yuan, Z.; Li, J.; Li, F. Visualization analysis on discipline dynamic of tillage erosion in recent 30 years based on Citespace. Res. Soil.
Water Conserv. 2021, 28, 407–411.

36. Mauricius Co-Occurrence Analysis. Available online: https://blog.csdn.net/zhaozhn5/article/details/78120507 (accessed on 8
January 2021).

37. Garfield, E.; Paris, S.W.; Stock, W.G. HistCite™: A software tool for informetric analysis of citation linkage. Inf. Wiss. Prax. 2006,
57, 391–400.

38. Xiao, P.; Zhou, Y.; Li, X.; Xu, J.; Zhao, C. Assessment of Heavy Metals in Agricultural Land: A Literature Review Based on
Bibliometric Analysis. Sustainability 2021, 13, 4559. [CrossRef]

39. Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci.
Technol. 2006, 57, 359–377. [CrossRef]

40. Liu, X.; Pei, T.; Shu, H.; Gao, X. A Bibliometric Investigation of Research on Social-Ecological System Resilience. Adv. Earth Sci.
2019, 34, 765–777.

41. Zhang, X.; Liu, J.; Qin, F. A Review of Remote Sensing Application in Crop Type Discrimination. Chin. Agric. Sci. Bull. 2014, 30,
278–285.

42. Wang, Y.; Gong, Y. Spectral Remote Sensing Technology Applied in Crop Yield Estimation: Research Progress. Chin. Agric. Sci.
Bull. 2019, 35, 69–75.

43. Zhang, Z. Accuracy analysis of ground feature recognition of gaogao-1 image. Geospat. Inf. 2018, 16, 21–25.
44. Tian, J.; Deng, R.; Qin, Y.; Liu, Y.; Liang, Y.; Liu, W. Visual Interpretation and Spatial Distribution of Water Pollution Source Based

on Remote Sensing Inversion in Pearl River Delta. Econ. Geogr. 2018, 38, 172–178.
45. Li, Z.; Zhang, Y.; Yang, S.; Zhu, Q.; Wu, J.; Ma, H.; He, Y. Error assessment of extracting morphological parameters of bank gullies

by manual visual interpretation based on QuickBird imagery. Trans. Chin. Soc. Agric. Eng. 2014, 30, 179–186.
46. Bey, A.; Sánchez-Paus Díaz, A.; Maniatis, D.; Marchi, G.; Mollicone, D.; Ricci, S.; Bastin, J.-F.; Moore, R.; Federici, S.; Rezende,

M. Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote Sens. 2016, 8, 807.
[CrossRef]

47. Schepaschenko, D.; See, L.; Lesiv, M.; Bastin, J.F.; Mollicone, D.; Tsendbazar, N.E.; Bastin, L.; McCallum, I.; Laso Bayas, J.C.;
Baklanov, A.; et al. Recent Advances in Forest Observation with Visual Interpretation of Very High-Resolution Imagery. Surv.
Geophys. 2019, 40, 839–862. [CrossRef]

48. Yang, Y.; Kasimu, A. Several Problems of Remote Sensing Image Visual Interpretation of the Arid Area. J. Xinjiang Norm. Univ.
2016, 35, 12–16.

49. Amani, M.; Brisco, B.; Afshar, M.; Mirmazloumi, S.M.; Mahdavi, S.; Mirzadeh, S.M.J.; Granger, J. A generalized supervised
classification scheme to produce provincial wetland inventory maps: An application of Google Earth Engine for big geo data
processing. Big Earth Data 2019, 3, 378–394. [CrossRef]

50. Dhingra, S.; Kumar, D. A review of remotely sensed satellite image classification. Int. J. Electr. Comput. Eng. (IJECE) 2019, 9,
1720–1731. [CrossRef]

51. Abbas, Z.; Jaber, H.S. Accuracy assessment of supervised classification methods for extraction land use maps using remote
sensing and GIS techniques. IOP Conf. Ser. Mater. Sci. Eng. 2020, 745, 012166. [CrossRef]

52. Liu, W.; Qin, R.; Su, F. Weakly supervised classification of time-series of very high resolution remote sensing images by transfer
learning. Remote Sens. Lett. 2019, 10, 689–698. [CrossRef]

53. Raj, A.; Minz, S. A Scalable Unsupervised Classification Method Using Rough Set for Remote Sensing Imagery. Int. J. Softw. Sci.
Comput. Intell. 2021, 13, 65–88. [CrossRef]

54. Zhao, Z.; Liu, D.; Hang, Z. Research status and Prospect of crop remote sensing recognition methods. Jiangsu Agric. Sci. 2019, 47,
45–51.

55. Wang, D.; Zhang, A.; Zhao, A.; Li, J. Extraction model of winter wheat planting information based on unsupervised classification.
Bull. Surv. Mapp. 2019, 8, 68–71.

56. Wang, C.; Zhao, Q.; Ma, Y.; Ren, Y. Crop Identification of Drone Remote Sensing Based on Convolutional Neural Network. Trans.
Chin. Soc. Agric. Mach. 2019, 50, 161–168.

57. Zhou, L.; Mu, H.; Ma, H. Remote sensing estimation on yield of winter wheat in North China based on convolutional neural
network. Trans. Chin. Soc. Agric. Eng. 2019, 35, 119–128.

58. Li, L.; Pan, Y.; Zhang, J.; Song, G.; Hou, D. Method of winter wheat planting area estimation based on support vector machine
and post-classification changed vector analysis. Trans. Chin. Soc. Agric. Mach. 2010, 26, 210–217.

59. Du, B.; Zhang, J.; Wang, Z.; Mao, D.; Zhang, M.; Wu, B. Crop Mapping based on Sentinel-2A NDVI Time Series Using Object-
Oriented Classification and Decision Tree Model. J. Geo-Inf. Sci. 2019, 21, 740–751.

60. Wu, L.; Wang, X.; Wang, Z.; Fang, X.; Zhu, T.; Ding, L. Crops identification based on hyperspectral data and random forest
method. J. Zhejiang AF Univ. 2020, 37, 136–142.

61. He, Y.; Wang, C.; Jia, H.; Chen, F. Research on Extraction of Winter Wheat based on Random Forest. Remote Sens. Technol. Appl.
2018, 33, 1132–1140.

https://blog.csdn.net/zhaozhn5/article/details/78120507
http://doi.org/10.3390/su13084559
http://doi.org/10.1002/asi.20317
http://doi.org/10.3390/rs8100807
http://doi.org/10.1007/s10712-019-09533-z
http://doi.org/10.1080/20964471.2019.1690404
http://doi.org/10.11591/ijece.v9i3.pp1720-1731
http://doi.org/10.1088/1757-899X/745/1/012166
http://doi.org/10.1080/2150704X.2019.1597295
http://doi.org/10.4018/IJSSCI.2021040104


Sustainability 2022, 14, 4104 27 of 29

62. Li, H.; Xu, F.; Weng, X. Recognition method for high-resolution remote-sensing imageries of ionic rare earth mining based on
object-oriented technology. Arab. J. Geosci. 2020, 13, 1137. [CrossRef]

63. Zhou, T. Object-Oriented Land Cover Classification Using High Spatial Resolution Remote Sensing. Geomat. Sci. Technol. 2020, 8,
9–16. [CrossRef]

64. Jin, B.; Ye, P.; Zhang, X.; Song, W.; Li, S. Object-Oriented Method Combined with Deep Convolutional Neural Networks for
Land-Use-Type Classification of Remote Sensing Images. J. Indian Soc. Remote Sens. 2019, 47, 951–965. [CrossRef]

65. Tan, Q.; Guo, B.; Hu, J.; Dong, X.; Hu, J. Object-Oriented Remote Sensing Image Information Extraction Method Based on
Multi-Classifier Combination and Deep Learning Algorithm. Pattern Recogn. Lett. 2020, 141, 32–36. [CrossRef]

66. Zhao, F.; Wu, X.; Wang, S. Object-oriented Vegetation Classification Method based on UAV and Satellite Image Fusion. Procedia
Comput. Sci. 2020, 174, 609–615. [CrossRef]

67. Mars, J.C.; Rowan, L.C. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of
rocks and minerals. Remote Sens. Environ. 2010, 114, 2011–2025. [CrossRef]

68. Li, H.; Chen, Y.; Zhang, Z.; Wu, H.; Liu, Z. Planting Structure Changes of the Main Crops in Heilongjiang Province Based on Long
Time Series MODIS Images. J. Hangzhou Norm. Univ. 2021, 20, 658–665.

69. Deng, S. ENVI Remote Sensing Image Processing Method; Science Press: Beijing, China, 2010.
70. Hao, Y.; Chen, Z.; Hou, R.; Wang, B. Spatiotemporal Information Extraction of Agricultural Land Occupied by Construction

Based on Time Series of Remote Sensing. Resour. Environ. Yangtze Basin 2021, 30, 371–381.
71. Murakami, T.; Ogawa, S.; Ishitsuka, N.; Kumagai, K.; Saito, G. Crop discrimination with multitemporal SPOT/HRV data in the

Saga Plains, Japan. Int. J. Remote Sens. 2001, 22, 1335–1348. [CrossRef]
72. Chen, S.; Zhao, Y.; Shen, S. Crop classification by remote sensing based on spectral analysis. Trans. Chin. Soc. Agric. Eng. 2012, 28,

154–160.
73. Wen, C.; Lu, M.; Song, Q.; Cheng, R.; Zhang, S. A comparative analysis of feature extraction and classifiers for crop classification

based on time series data. China Agric. Inf. 2021, 33, 1–16.
74. Chao, Z.; Che, M.; Hou, S. Brief review of vegetation phenological information extraction software based on time series remote

sensing data. Remote Sens. Nat. Resour. 2021, 33, 19–25.
75. Pan, L.; Xia, H.; Zhao, X.; Guo, Y.; Qin, Y. Mapping Winter Crops Using a Phenology Algorithm, Time-Series Sentinel-2 and

Landsat-7/8 Images, and Google Earth Engine. Remote Sens. 2021, 13, 2510. [CrossRef]
76. Zhou, L.; Zhou, W.; Chen, J.; Xu, X.; Wang, Y.; Zhuang, J.; Chi, Y. Land surface phenology detections from multi-source remote

sensing indices capturing canopy photosynthesis phenology across major land cover types in the Northern Hemisphere. Ecol.
Indic. 2022, 135, 108579. [CrossRef]

77. Su, R.; Xiong, Q.; Geng, Y.; Liu, K.; Gao, H.; Jin, W. Multi temporal hj-ccd image monitoring of cotton and medium rice planting
area in the south of Jianghan Plain. Resour. Environ. Yangtze Basin 2013, 22, 1441–1448.

78. Cui, L.; Shi, J.; Du, H. Advances in Remote Sensing Extraction of Vegetation Phenology and Its Driving Factors. Adv. Earth Sci.
2021, 36, 9–16.

79. Wardlow, B.; Egbert, S.; Kastens, J. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S.
Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [CrossRef]

80. Zhang, J.; Zhao, G.; Hong, Y.; Sun, Z.; Duan, Y. Spatial extraction of winter wheat in Hebei in growing season using pixel-wise
phenological curve. Trans. Chin. Soc. Agric. Eng. 2020, 36, 193–200.

81. Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Crop identification using harmonic analysis of time-series AVHRR NDVI data.
Comput. Electron. Agric. 2002, 37, 127–139. [CrossRef]

82. Castillejo-González, I.L.; López-Granados, F.; García-Ferrer, A.; Peña-Barragán, J.M.; Jurado-Expósito, M.; de la Orden, M.S.;
González-Audicana, M. Object- and pixel-based analysis for mapping crops and their agro-environmental associated measures
using QuickBird imagery. Comput. Electron. Agric. 2009, 68, 207–215. [CrossRef]

83. Le Toan, T.; Ribbes, F.; Wang, L.; Floury, N.; Ding, K.; Kong, J.A.; Fujita, M.; Kurosu, T. Rice crop mapping and monitoring using
ERS-1 data based on experiment and modeling results. IEEE Trans. Geosci. Remote Sens. 1997, 35, 41–56. [CrossRef]

84. Townshend, J.; Justice, C.; Li, W.; Gurney, C.; McManus, J. Global land cover classification by remote sensing: Present capabilities
and future possibilities. Remote Sens. Environ. 1991, 35, 243–255. [CrossRef]

85. Wessels, K. Mapping regional land cover with MODIS data for biological conservation: Examples from the Greater Yellowstone
Ecosystem, USA and Para State, Brazil. Remote Sens. Environ. 2004, 92, 67–83. [CrossRef]

86. D’Este, M.; Elia, M.; Giannico, V.; Spano, G.; Lafortezza, R.; Sanesi, G. Machine Learning Techniques for Fine Dead Fuel Load
Estimation Using Multi-Source Remote Sensing Data. Remote Sens. 2021, 13, 1658. [CrossRef]

87. Kerdiles, H.; Grondona, M.O. NOAA-AVHRR NDVI decomposition and subpixel classification using linear mixing in the
Argentinean Pampa. Int. J. Remote Sens. 1995, 16, 1303–1325. [CrossRef]

88. Xu, W.; Zhang, G.; Fan, J.; Qian, Y. Remote sensing monitoring of winter wheat areas using MODIS data. Trans. Chin. Soc. Agric.
Eng. 2007, 23, 144–149.

89. Jing, Y.; Li, G.; Huang, W. Area estimation of double cropping rice based on similarity analysis and linear spectral mixture model.
Trans. Chin. Soc. Agric. Eng. 2013, 29, 177–183.

90. Potapov, P.; Hansen, M.C.; Stehman, S.V.; Loveland, T.R.; Pittman, K. Combining MODIS and Landsat imagery to estimate and
map boreal forest cover loss. Remote Sens. Environ. 2008, 112, 3708–3719. [CrossRef]

http://doi.org/10.1007/s12517-020-06104-0
http://doi.org/10.12677/GST.2020.81002
http://doi.org/10.1007/s12524-019-00945-3
http://doi.org/10.1016/j.patrec.2020.08.028
http://doi.org/10.1016/j.procs.2020.06.132
http://doi.org/10.1016/j.rse.2010.04.008
http://doi.org/10.1080/01431160151144378
http://doi.org/10.3390/rs13132510
http://doi.org/10.1016/j.ecolind.2022.108579
http://doi.org/10.1016/j.rse.2006.11.021
http://doi.org/10.1016/S0168-1699(02)00116-3
http://doi.org/10.1016/j.compag.2009.06.004
http://doi.org/10.1109/36.551933
http://doi.org/10.1016/0034-4257(91)90016-Y
http://doi.org/10.1016/j.rse.2004.05.002
http://doi.org/10.3390/rs13091658
http://doi.org/10.1080/01431169508954478
http://doi.org/10.1016/j.rse.2008.05.006


Sustainability 2022, 14, 4104 28 of 29

91. Gu, X.H.; Pan, Y.Z.; Zhu, X.F.; Zhang, J.S.; Han, L.J.; Wang, S. Consistency Study between MODIS and TM on Winter Wheat Plant
Area Monitoring—A Case in Small Area. J. Remote Sens. 2007, 11, 350–358.

92. Verbeiren, S.; Eerens, H.; Piccard, I.; Bauwens, I.; Van Orshoven, J. Sub-pixel classification of spot-vegetation time series for the
assessment of regional crop areas in Belgium. Int. J. Appl. Earth Obs. 2008, 10, 486–497. [CrossRef]

93. Pan, Y.Z.; Li, L.; Zhang, J.; Liang, S.; Hou, D. Crop area estimation based on MODIS-EVI time series according to distinct
characteristics of key phenology phases: A case study of winter wheat area estimation in small-scale area. J. Remote Sens. 2011, 15,
578–594.

94. Li, Y.; Chen, X.W.; Duan, H.W.; Shen, Y. Application of Multi-source and Multi-temporal Remote Sensing Data in Winter Wheat
Identification. Geogr. Geo-Inf. Sci. 2010, 26, 47–49.

95. Lanjeri, S.; Melia, J.; Segarra, D. A multi-temporal masking classification method for vineyard monitoring in central Spain. Int. J.
Remote Sens. 2001, 22, 3167–3186. [CrossRef]

96. Cai, X.; Cui, Y. Crop planting structure extraction in irrigated areas from multi-sensor and multi-temporal remote sensing data.
Trans. Chin. Soc. Agric. Eng. 2009, 25, 124–130.

97. Gu, X.; Han, L.; Wang, J.; Huang, W.; He, X. Estimation of maize planting area based on wavelet fusion of multi-resolution images.
Trans. Chin. Soc. Agric. Eng. 2012, 28, 203–209.

98. Huang, H.; Gao, Z. The Extraction of Multiple Cropping Index of China Based on NDVI Time-Series; SPIE: Bellingham, WA, USA, 2011;
p. 81560Z.

99. Chen, D.; Wu, W.; Lu, M.; Hu, Q.; Zhou, Q. Review on research progress of surface coverage data reconstruction based on
multi-source data fusion. Chin. J. Agric. Resour. Reg. Plan. 2016, 37, 62–70.

100. Wang, L.; Qi, F.; Shen, X.; Huang, J. Monitoring Multiple Cropping Index of Henan Province, China Based on MODIS-EVI Time
Series Data and Savitzky-Golay Filtering Algorithm. Comput. Model. Eng. Sci. 2019, 119, 331–348. [CrossRef]

101. Wang, L.; Lu, Y.; Li, Q.; Hu, Z.; Wu, D.; Zhang, Y.; Wang, T. Spatio-temporal analysis of winter wheat yield gaps in Henan
Province using AEZ model. Chin. J. Eco-Agric. 2018, 26, 547–558.

102. Xie, J.; Cai, Y.; Zheng, Z. AEZ-based Assessment for Food Productivity Potential of Cultivated Land in China. China Land. Sci.
2004, 18, 31–37.

103. Hatfield, J.L.; Dold, C. Agroclimatology and Wheat Production: Coping with Climate Change. Front. Plant. Sci. 2018, 9, 224.
[CrossRef]
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