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Abstract: This work proposes a new indirect filed-oriented control (IFOC) scheme for double-powered
induction generators (DPIGs) in multi-rotor wind turbine systems (MRWTS). The IFOC strategy is
characterized by its simplicity, ease of use, and fast dynamic speed. However, there are drawbacks to
this method. Among its disadvantages is the presence of ripples in the level of torque, active power,
and current. In addition, the total harmonic distortion (THD) value of the electric current is higher
compared to the direct torque control method. In order to overcome these shortcomings and in terms
of improving the effectiveness and performance of this method, a new algorithm is proposed for
the super twisting algorithm (STA). In this work, a new STA method called simplified STA (SSTA)
algorithm is proposed and applied to the traditional IFOC strategy in order to reduce the ripples
of torque, current, and active power. On the other hand, the inverter of the DPIG is controlled by
using a five-level fuzzy simplified space vector modulation (FSSVM) technique to obtain a signal
at the inverter output of a fixed frequency. The results obtained from this proposed IFOC-SSTA
method with FSSVM strategy are compared with the classical IFOC method which uses the classical
controller based on a proportional-integral (PI) controller. The proposed method is achieved using
the Matlab/Simulink software, where a generator with a large capacity of 1.5 megawatts is used. The
generator is placed in a multi-rotor electric power generation system. On the other hand, the two
methods are compared in terms of ripple ratio, dynamic response, durability, and total harmonic
distortion (THD) value of the electric current. Through the results obtained from this work, the
proposed method based on SSTA provided better results in terms of ripple ratio, response dynamic,
and even THD value compared to the classical method, and this shows the robustness of the proposed
method in improving the performance and efficiency of the generator in the multi-rotor wind system.

Keywords: double-powered induction generator; indirect filed-oriented control; five-level fuzzy
simplified space vector modulation; super-twisting algorithm; simplified STA; multi-rotor wind
turbine systems

1. Introduction

Traditionally, field-oriented control (FOC) is among the most widely used control
methods in the field of controlling electrical machines, whether they are motors or electric
generators, due to its simplicity and ease of implementation. This method is based on the
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use of a classic proportional-integral (PI) controller, which gives this method a fast dynamic
response. On the other hand, this method is based on the use of the traditional pulse width
modulation (PWM) to control the inverter of the machine. There are two types of this
method, the direct FOC method and the indirect FOC method [1]. In the field of control,
this method was used to control several electrical machines such as the asynchronous
motor [2,3] and the synchronous motor [4]. However, this method has been used in the
field of renewable energies, as according to the reference [5], this method is among the
most widely used methods in the field of generating electric power from wind.

In the FOC method, internal loops are used to control electrical machines, creating
ripples in both the current and the torque level of the machine. Moreover, this method gives
a slow dynamic response compared to both direct torque control (DTC) and direct power
control (DPC) [6]. Among the disadvantages of this method is that the total harmonic
distortion (THD) value of the current is much higher compared to both DTC and DPC [7].

In the field of scientific research, there are several solutions that have been suggested
in order to improve the performance and effectiveness of the FOC method. Artificial
intelligence methods and nonlinear methods are among the most widely used methods.
The authors of [8] implemented a super twisting algorithm (STA) on a multi-phase induction
motor system using the FOC method where the intention was to minimize the current
and torque ripples. Despite the advantages that are achieved using the STA algorithm,
compared to the FOC strategy with PI controllers, the main drawback of this proposed
method is the unstable frequency and presence of torque and current ripples due to the
use of the pulse width modulation (PWM) technique. Another nonlinear FOC strategy is
proposed in [9] to control the active and reactive power of the induction generator (IG).
According to the study that was completed in [10] with the use of the nonlinear method
based on second-order sliding mode control (SOSMC), the results were compared with the
classical FOC method based on PI controller, and significant improvements were noticed in
both the current and the active power compared to the classical FOC method. The problem
with the proposed method is that there is a problem of chattering. However, one of the
major drawbacks of employing the SOSMC technique to control electrical machines is that
the mathematical form of the studied system must be precisely known. Another nonlinear
method was applied to an asynchronous generator controlled by the FOC method. In
this proposed method, the third-order sliding mode control (TOSMC) technique is used
to compensate for the PI and improve the quality of the active power. One of the results
obtained from this work is that the control by TOSMC reduces the chatter problem present
in the SMC in addition to reducing the ripples at the level of torque, current, and effective
power of the asynchronous generator. In [11], two different methods were combined in
principle, where the first method is represented by neural networks, which is characterized
by precision and speed of response, while the second method is the TOSMC technique,
which is characterized by durability and unaffected by external factors such as noise or
change in the parameters of the studied system. The result of combining these two methods
is to obtain a more durable method and get excellent quality of the electric current of the
induction generator.

In the field of electric machine control, response speed or dynamic response is very
important. This response is considered a criterion among the criteria that is selected
and differentiated between the control methods. In [12], a new method is proposed
under the name of terminal synergetic control in order to improve the performance and
effectiveness of the direct FOC strategy for an asynchronous generator integrated into a
wind turbine. This proposed method is a new method based on the use of nonlinear error
instead of using linear error. The obtained results showed the effectiveness of the proposed
method in improving the dynamic response of the induction generator while reducing the
ripples of torque and the active power of the induction generator. In [13], a method of
artificial intelligence based on the neural networks and fuzzy logic was used to improve the
performance and effectiveness of the IFOC strategy of the asynchronous generator, where
the classic PI controller was replaced by an intelligent controller under the name of the
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neuro-fuzzy controller. The proposed IFOC strategy with the neuro-fuzzy controller is more
robust compared to the traditional IFOC strategy. The results showed the effectiveness
of the proposed method in improving the THD of stator current value compared to the
classical method. Moreover, there is a fast dynamic response to the proposed method,
where we find that the response time is much reduced compared to the PI controller.
In [14], the author proposed a new FOC strategy based on an adaptive observer to control
the induction generator-based wind turbine. The proposed FOC strategy with adaptive
observer was experimentally tested on an 11 kW induction generator using a 27 kW DC
motor to rotate the generator. The experimental results showed the effectiveness of the
proposed FOC method in obtaining a fast dynamic response compared to the classical FOC
method.

In this work, a new FOC strategy method is introduced using a new nonlinear method
in order to obtain a more robust method and reduce the ripples of torque, active power, and
electric current generated by the double-powered induction generator (DPIG). In addition,
a new method for the STA algorithm is proposed, where this method is simplified more
than the traditional STA method. Thus, a simpler method that can be easily developed and
applied to any system regardless of its complexity is designed. The proposed nonlinear
method is called the simplified STA (SSTA) algorithm. Among the advantages of this
nonlinear method is the fact that the design of the method is not related to the studied
system, regardless of what this system will be. This proposed nonlinear method is used in
order to improve the performance and effectiveness of the STA method and on the other
hand to improve the dynamic response speed of the generator placed in the multi-rotor
wind electric power generation system.

The novelty and main contributions of this work accomplished in this paper are
summarized in the following points:

• A new super twisting algorithm is proposed and confirmed.
• A new space vector modulation (SVM) scheme is proposed based on the fuzzy logic

controller to control the five-level inverter of the DPIG.
• A new IFOC strategy scheme is proposed to control the DPIG-based multi-rotor wind

turbine system.
• A new SSTA algorithm is designed to improve the dynamic characteristics of DPIG-

based multi-rotor wind turbine systems.

This work is structured as follows. Section 2 presents the dynamic modeling of the
multi-rotor wind turbine system. In Sections 3 and 4, the proposed new super twisting
algorithm (STA) and the proposed multilevel fuzzy SVM technique are presented. Section 5
presents the traditional IFOC strategy with the PI controller. Section 6 presents the proposed
IFOC strategy using the proposed simplified STA controller and five-level fuzzy SVM
technique. Finally, Section 7 concludes the work by presenting the main findings and future
directions of research, as well as some comments and recommendations.

2. Multi-Rotor Wind Turbine System

The multi-rotor wind turbine is a new technology that has appeared in recent years
in order to overcome the problems and defects of the old technology (single-rotor wind
turbine). In this new technology, the output torque or power gained from the wind is
greater than that gained in the case of a single-rotor wind turbine. In addition, this new
technology surpasses the winds generated by wind farms, and thus the yield is greater
compared to the single-rotor wind turbine [15]. Figure 1 represents the electric power
generation system using the DPIG placed in the electric power generation system using a
multi-rotor wind turbine.
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Figure 1. Structure of the multi-rotor wind turbine system.

In the studied wind system, a large-power DPIG (1.5 megawatts) is used. This gener-
ator is fed from the electrical network using two different inverters. The first inverter is
on the side of the electrical network to convert alternating voltage into constant voltage,
while the second inverter, which is on the side of the DPIG, aims to convert the constant
voltage resulting from the first inverter into alternating voltage. To rotate the generator, a
dual-rotor wind turbine is used.

The two-rotor wind turbine is used in this work in order to increase the energy gained
from the wind. On the other hand, a dual-rotor wind turbine is two turbines linked together
forming one turbine. The two turbines have the same axis of rotation, and the torque and
energy resulting from them can be expressed by the following equations:

Pt = PST + PLT (1)

Tt = TST + TLT (2)

where Tt is the output torque of the dual-rotor wind turbine, TLT and TST are the output
torque of the large and small wind turbines, Pt is the output mechanical power of the
dual-rotor wind turbine, PLT and PST are the output mechanical power of the large and
small wind turbine torque.

The term torque for both large and small turbines is shown in Equations (3) and (4),
respectively [16].

TLT =
Cp

2λ3
LT

ρ·π·R5
LT ·w2

LT (3)

TST =
Cp

2λ3
ST

ρ·π·R5
ST ·w2

ST (4)

From the two equations, it can be seen that the torque of the two turbines is related to
each of the air density (ρ), coefficient of power (Cp), the mechanical speed of the small and
large turbines (wST and wLT), the blade radius of the small and large turbines (RST, RLT),
and the tip speed ration of the small and large turbines (λST and λLT).
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The energy gained from wind by a dual-rotor turbine is related to the power factor,
the value of which is related to pitch angle (β) and tip speed ratio (λ). This parameter can
be expressed by the following equation:

Cp(β, λ) =
1

0.08β + λ
+

0.035
β3 + 1

(5)

The terms of the energy produced by both the small turbine and the large turbine are
shown in Equations (6) and (7), respectively [17].

PST =
Cp(β, λ)

2
ρ·SST ·w3

ST (6)

PLT =
Cp(β, λ)

2
ρ·SLT ·w3

LT (7)

The value of the tip speed ratios of the small turbine and the large turbine are given in
Equations (8) and (9), respectively [15].

λST =
wST ·RST

VST
(8)

λLT =
wLT ·RLT

VLT
(9)

The values of the tip speed ratios for a large and a small turbine are related to the
wind speed (VST and VLT), The speed of the large and small turbine (wST and wLT), and the
blade radius of the small and large turbines (RST, RLT).

The wind speed between the large and small turbines is different from the wind speed
before the large turbines. The wind speed can be calculated at any point between the
turbines given the following relationship [17]:

Vx = VLT

(
1− 1−

√
(1− CT)

2

(
1 +

2x√
1 + 4x2

))
(10)

The wind speed of the small turbine is related to the wind speed of the large turbine
(VLT) and a constant value (CT = 0.9), as well as the separation distance (x) between the
large and small turbine. In this case, this distance between the center of the large and small
turbine is 15 m [15].

In this work, a multi-rotor turbine is used to drive an DPIG. The latter was used in this
work, and this is due to the advantages that distinguish it compared to other generators.
As it is known, the DPIG is characterized by durability, easy control, and low cost.

In order to give the generator a mathematical form, the park transformation is used.
To give the generator the mathematical form, the equations of voltage, flux, and mechanical
equation are used. In addition, the torque equation is given for the generator, since torque
is related to both current and flux. Quadrature and direct rotor voltages are shown in
Equation (11). The direct and quadrature rotor flux are related to the stator/rotor current
and are represented in Equation (12) [18–20].{

Vdr = Rr Idr − wrΨqr +
d
dt Ψdr

Vqr = Rr Iqr + wrΨdr +
d
dt Ψqr

(11)

{
Ψdr = Lr Idr + MIds
Ψqr = MIqs + Lr Iqr

(12)

Equation (13) represents each of the direct and quadrature stator voltages. Through
this equation, the tension is related to stator resistance (Rs), direct and quadrature stator
current (Ids and Iqs), direct and quadrature stator (Ψqs and Ψds), and electrical pulsation
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of the stator (ws). The direct and quadrature stator flux are represented in Equation (14).
These two fluxes are related to both the inductance of the stator (Ls), direct and quadrature
rotor current (Idr and Iqr), and direct and quadrature rotor current (Ids and Iqs).{

Vqs = Rs Iqs + wsΨds +
d
dt Ψqs

Vds = Rs Ids − wsΨqs +
d
dt Ψsd

(13)

{
Ψqs = MIqr + Ls Iqs
Ψds = Ls Ids + MIdr

(14)

The value of the generated torque (Te) is related to rotor current, the number of pole
pairs (p), and stator flux and its expression can be given by Equation (15) [19].

Te = 1.5 p
M
Ls

(
−Ψsd Irq + Ψsq Ird

)
(15)

The active power and the reactive power of the generator are represented in the
Equation (16). The active power is related to stator current and stator voltage, and the same
is related to the reactive power.{

Ps = 1.5
(
Vqs Iqs + IdsVds

)
Qs = 1.5

(
−IqsVds + Vqs Ids

) (16)

The mechanical part of the DPIG is represented by Equation (17). This equation gives
the relationship between torque and speed (Ω).

Te = J
dΩ
dt

+ f Ω + Tr (17)

where Tr is the load torque, Ω is the mechanical rotor speed, J is the inertia, f is the viscous
friction coefficient.

3. Simplified STA Controller

Super twisting algorithm (STA) is among the most widely used nonlinear methods
in the field of electrical machine control, due to its durability and ease of implementa-
tion [21]. The use of the STA algorithm in automated systems gives great effectiveness
in improving the performance and efficiency of electrical machines. On the other hand,
the STA algorithm is a type of SOSMC technique. The STA algorithm reduces chattering
problems compared to the traditional SMC technique [22]. Equation (18) represents the
super twisting algorithm [23]. The classical STA algorithm can be illustrated in Figure 2.{

u = Kp|e|rSign (e) + u1
du1
dt = KiSign (e)

(18)

where e is the error or surface, r is the exponent defined for the traditional STA regulator,
and Ki and Kp are positive values.

In this work, a new look is given to the STA algorithm in order to further simplify the
algorithm and increase its dynamic response. Equation (19) represents the proposed method
for the traditional STA algorithm which has been called the simplified STA algorithm (SSTA).
The Lyapunov theory is used in order to check the stability of this proposed SSTA controller.
This proposed SSTA algorithm is simpler compared to the traditional STA technique.

w = K× |e|r × Sign (e) (19)

e× .
e < 0 (20)
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4. Proposed Five-Level Fuzzy SVM Strategy

Traditionally, the SVM technique is among the most used methods for controlling
reflectors and this is because of the results it offers compared to other methods such as the
PWM technique [24]. In this method, the calculation of reference voltage and zones is relied
upon, which makes this method more complicated, especially in the case of a multi-level
inverter [25]. To overcome this problem, a new idea for this method was presented in [26],
where the calculation of the maximum and minimum values of the three-phase feeding
voltages was used in this proposed method. In this proposed method, the reference tension
is not used or calculated as well as the regions where the reference tension is present.
This proposed method in [26] is simpler and more intuitive compared to the classical
SVM method. In this part, the proposed fuzzy SVM technique is used to control a five-
level inverter for an asynchronous generator placed in a multi-turbine wind system. This
proposed method of controlling a 5-level inverter is illustrated in Figure 4. The proposed
method was used in [27] in order to give the five-level SVM technique.

In this proposed fuzzy SVM technique, twelve hysteresis comparators and four trigono-
metric signals are used. The use of hysteresis comparators in this proposed SVM method
creates a signal at the inverter output of a non-fixed frequency. In order to overcome this
drawback, fuzzy logic algorithm (FLA) is used instead of using hysteresis comparators.
The use of the FLA leads to a signal at the output of the inverter with a fixed frequency,
thus reducing the ripples of both the current and the active power. The SVM method based
on the FLA technique proposed in this work is illustrated in Figure 5. With this figure, the
proposed method of SVM for controlling the five-level inverter is simpler compared to
using the classical five-level SVM method using the calculation of reference voltage and
zones. In this method, twelve FLA techniques are used in order to obtain control signals
for the inverter transistors (IGBTs).
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The internal form of the FLA method is shown in Figure 6. From this figure, it is
noted that the structure of the FLA technique is simple. This fuzzy controller has two
inputs, the error and the change in error, and only one output. Three constant gains (K1,
K2, and K3) are used to improve the response and adjust the response of fuzzy logic. The
characteristics of the FLA method used to improve the performance and effectiveness of
the proposed five-level SVM technique are shown in the bottom of the Figure 6. The type
of fuzzy controller used in this work is the Mamdani controller.
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Seven membership functions (MFs) are used in the first entry (error) and seven MFs
are used in the second input (change in error). These functions used to accomplish fuzzy
logic are shown in Figure 7a,b. In order to get a good response and results for the fuzzy
logic, the 7 × 7 rule is used, where these rules are represented in Figure 7c.
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Using the Matlab/Simulink software, the surface for the fuzzy logic controller used
in this paper is given in order to compensate for the traditional hysteresis comparators.
This surface of the fuzzy logic controller is shown in Figure 8. The use of the fuzzy logic
technique leads to improving the performance and effectiveness of the proposed five-level
SVM technique and thus obtaining a good quality of the electric current, and this is the
main objective of this work.
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Compared to the PWM technique, the proposed five-level fuzzy SVM (FSVM) method
is more complex and contains 12 fuzzy logic controllers which make it not easy and costly
compared to the traditional PWM technique. However, in terms of the results obtained,
the proposed method is better than the PWM technique. The proposed five-level fuzzy
SVM method gives the output of the inverter a high-quality electrical signal (current) with
a small value of THD.

5. Traditional IFOC Strategy

The IFOC method is a type of FOC method which offers a fast dynamic response
compared to the direct FOC method [28]. The indirect FOC method is a method that differs
from the direct FOC method in terms of the principle of work and in terms of internal
structure. Several scientific works dealt with this method [29–31], where four PI controllers
are used in this method, which makes the dynamic response much faster. Thus, the indirect
FOC method is more complex than the direct FOC method [32], but the indirect FOC
method provides a better dynamic response than the direct FOC method. Moreover, the
indirect FOC method reduces the ripples of torque, reactive power, and flux compared to
the direct FOC method [33]. In order to control the generator inverter, the PWM technique
is used. This method is based on the principle shown in Equation (21) [34].

Ψqs = 0 and Ψds = Ψs (21)

Using Equation (21), the direct and quadrature stator voltages of the generator become
as follows: {

Vds = Vs = wsΨs
Vqs = 0

(22)

Using Equations (13) and (22), the direct and quadrature stator currents of the genera-
tor become as follows: {

Ids = −M
Ls

Idr +
Ψs
Ls

Iqs = −M
Ls

Iqr
(23)

Relying on Equations (11) and (23), the direct and indirect rotor voltages of the genera-
tor become as follows [34]: Vqr = Rdr Iqr +

(
Lr − M2

Ls

)
wr Iqr + g MVs

Ls

Vdr = Rdr Idr − wr

(
Lr − M2

Ls

)
Iqr

(24)

The direct and quadrature rotor flux of a generator can be expressed by the following
equation [33]:  Ψdr =

(
Lr − M2

Ls

)
Idr +

M
ws .Ls

Vs

Ψqr =
(

Lr − M2

Ls

)
Iqr

(25)

By Equation (25), direct rotor flux is related to both stator voltage and quadrature rotor
current. As for the quadrature rotor flux, it is related to the quadrature rotor current of the
generator.

From Equations (21)–(25), the internal structure of the indirect FOC strategy can be
given in Figure 9. Through this figure, we note that this technique controls the reactive and
active power by controlling the quadrature and direct rotor voltages (Vqr* and Vdr*).
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In order to estimate the active and reactive power, Equation (26) is used. In order to
estimate the two values, we need to measure both rotor voltage and rotor current. Qs = −1.5

(
ωsΨs M

Ls
Idr − ωsΨs

2

Ls

)
Ps = −1.5 ωsΨs M

Ls
Iqr

(26)

Figure 10 represents the total system used in this paper, where a multi-rotor wind
turbine (MRWT) was used to rotate the generator (DPIG). The latter is controlled by the
traditional IFOC method. In this work, the reference value of the reactive power (Qs*)
is set to 0 Var. The reference value of the active power (Ps*) is obtained using the MPPT
technique.
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The indirect FOC strategy gives more ripples in the current, torque, active power, and
flux compared to DPC and DTC. Moreover, it has a long dynamic response and gives a
poor quality of electric current and active power.

The reason for these shortcomings in this traditional indirect FOC strategy is due to
the use of both the traditional PWM technique and conventional PI controller. The use
of these classic methods (PI and PWM) makes the indirect FOC strategy not robust and
characterized by a long dynamic response compared to some methods such as the DTC
strategy.

In order to improve the performance and efficacy of the traditional indirect FOC
strategy, a novel scheme for the traditional indirect FOC strategy is proposed in Section 6.
This proposed indirect FOC strategy is based on the use of both the proposed SSTA
algorithm and the multilevel fuzzy SVM strategy.

6. Proposed Indirect FOC Strategy

In this part, a new idea for indirect FOC strategy is presented based on the proposed
simplified STA controller and the five-level fuzzy SVM strategy. The proposed indirect
FOC method is a change from the classic indirect FOC method, where the proposed SSTA
controller is used in place of the traditional PI controller and the five-level fuzzy SVM
technique is used instead of the PWM technique. This proposed indirect FOC method aims
to control the active and reactive power of the generator placed in the multi-rotor wind
turbine system. On the other hand, this proposed indirect FOC method reduces the ripples
of torque, active power, and electric current compared to the classical indirect FOC method.
The proposed indirect FOC strategy is shown in Figure 11. From this figure, to control
the active/reactive power, two proposed SSTA controllers are used and the same with the
reactive power.
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In this proposed indirect FOC method, the same equations used to estimate both the
active and reactive power are used in the classical indirect FOC strategy. Therefore, it
can be said that this designed indirect FOC strategy is more robust than the rest of the
controls such as the classical indirect FOC strategy and DTC. The objective of this designed
indirect FOC strategy is to obtain high-quality Vqr* and Vdr* from active and reactive power
references for the inverter DPIG control. Controlling the latter very well leads to obtaining
a high quality of stator current and active power. On the other hand, the reactive power
reference is set to zero. As for the reference value of the active power, it is obtained using
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the maximum power point tracking (MPPT) technique. The system studied using the
proposed indirect FOC method is represented in Figure 12, where almost the same structure
as the classical indirect FOC method is preserved.
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In Table 1, a comparison is given between the classical indirect FOC (IFOC) technique
and the proposed indirect FOC method. Through this table, the proposed indirect FOC
strategy is more robust and reduces torque and current ripples compared to the classical
indirect FOC technique. Moreover, the proposed indirect FOC method improves the rise
time, response dynamic, THD value of current, and power quality compared to the classical
indirect FOC technique. However, the proposed indirect FOC method is more complicated
than the classical indirect FOC method due to the use of the five-level fuzzy SVM (FSVM)
technique (instead, the classical indirect FOC method uses the PWM technique).

Table 1. A comparative study between the classical method and the proposed IFOC strategy.

Traditional Indirect FOC Technique Proposed Indirect FOC Technique

Type controller used PI controller SSTA controller
Rise time High Low

Modulation PWM Fuzzy SVM
Degree of complexity Medium High

Ease Medium Complicated
Simplicity of implementation Medium Complicated

Response dynamic Slow Quick
Robustness Low High

THD High Low
Power ripple High Low

The result of using the five-level fuzzy SVM technique in the proposed IFOC method
makes the proposed IFOC method not simple and somewhat complicated compared to the
classical IFOC method, where the latter uses PWM, which leads to problems in the case of
achieving this proposed IFOC-SSTA-FSVM method.

To implement the proposed method (IFOC-SSTA-FSVM) empirically, there are several
problems of implementation related to the large financial cost of completing this project
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due to the complexity of controlling the MRWT system. On the other hand, there is
the complexity of the use of the five-level fuzzy SVM technique to control the inverter
of the DPIG-based MRWT system. Moreover, the use of the maximum power point
tracking technique increases the complexity and financial cost of the studied MRWT system.
Nonetheless, given the results obtained in improving the quality of electric power and the
importance of the MRWT system in improving the performance of classical wind turbines
and in reducing the size of wind farms, this system is very necessary for the near future.

In the next part, the results are confirmed and the robustness of the proposed indirect
FOC method is verified using the Matlab/Simulink software.

7. Results

In order to verify the proposed indirect FOC method, the Matlab/Simulink software
is used. The results of the proposed indirect FOC method are compared with the classical
indirect FOC method in terms of the ratio of ripples at the level of torque, current, effective
power, and reactive power. The two methods are also compared in terms of the THD value
of the electric current.

In this work, a generator with the following data is used: 50 Hz, 380/696 V, Rs = 0.012 Ω,
Lr = 0.0136 H, Lm = 0.0135 H, p = 2, J = 1000 kg·m2, Psn = 1.5 MW, Rr = 0.021 Ω, Ls = 0.0137 H,
and fr = 0.0024 N·m/s [35].

In this work, a multi-rotor wind turbine with the following data is used: R1 = 13.2 m,
R2 = 25.5 m, r1 = 1 m, r2 = 0.5 m, rg = 0.75 m, J1 = 500 kg·m2, J2 = 1000 kg·m2, G1 = r1/rg,
and G2 = r2/rg.

In this work, the proposed indirect FOC method is tested in the case of two tests, the
first test is a tracking test and the second test is to study the behavior of the proposed
indirect FOC method in comparison with the classical indirect FOC method in the event
of a change in the generator parameters. This is in order to know the robustness of the
proposed indirect FOC method with the classical indirect FOC method.

7.1. First Test

In this test, the behavior of the reference tracking is studied, for both the proposed
IFOC-SSTA method and the classical IFOC method, where the obtained results are shown
in Figure 13. Through this figure, the active and reactive power follow the references
perfectly, and this is for the two IFOC methods with a preference for the proposed method
in the dynamic response (see Figure 13a,b). The proposed IFOC-SSTA method gave better
results in terms of ripples for both active and reactive power compared to the classical
IFOC method (see Figure 14a,b). In Figure 13c, the generated torque has the same shape as
the active power, where it can be seen that the increase in the active power corresponds to
the increase in the torque. In addition, the proposed IFOC-SSTA method reduced torque
ripples compared to the classical IFOC method (Figure 14c).

Regarding the current generated by the generator, it is shown in Figure 15d. Through
this figure, the electric current takes the form of the active power, where it is noted that
the behavior of the current is the same as the behavior of the active power. Moreover, the
proposed IFOC-SSTA method gave excellent results in terms of electric current ripples and
quality compared to the classical IFOC method (see Figure 14d).

Figure 13e,f represent the THD value of the proposed and classical IFOC method,
respectively. Through these two forms, the proposed IFOC-SSTA method reduced the THD
value of the electric current excellently compared to the classical IFOC method and the
reduction ratio was about 96.72%. These results confirm the robustness of the proposed
IFOC method in improving the quality of the effective power and electric current.
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Figure 13. First test results. (a) Active power; (b) Reactive power; (c) Torque; (d) Stator current;
(e) THD value of stator current (IFOC-SSTA strategy); (f) THD value of stator current (IFOC strategy).
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Figure 14. Zoom in the first test results. (a) Active power; (b) Reactive power; (c) Torque; (d) Sta-
tor current.
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Figure 15. Second test results. (a) Active power; (b) Reactive power; (c) Torque; (d) Stator current; (e)
THD value of current (IFOC-SSTA strategy); (f) THD value of current (IFOC strategy).

In the next test, the proposed IFOC method is further confirmed if the parameters of
the generator installed in the multi-rotor wind turbine system are changed.

The results obtained from this test are shown in Table 2. Table 2 represents the value
of ripples in each of torque, current, active power, and reactive power, and this is for the
two IFOC methods. Through this table, the proposed IFOC-SSTA method reduced the ratio
of ripples of torque, active power, current, and reactive power by excellent ratios, and the
ratios were as follows: 91.66%, 91.20%, 84.21%, and 93.75%, respectively.

Table 2. Comparative ripples obtained from the traditional IFOC with the proposed IFOC strategy.

Classical IFOC Technique Proposed IFOC Technique Ratios

Torque ripple (N·m) Around 60 Around 5 91.66%
Reactive power ripple (VAR) Around 8000 Around 500 93.75%

Active power ripple (W) Around 10,000 Around 880 91.20%
Stator current (A) Around 19 Around 3 84.21%

In Table 3, the response time is extracted for each of the active power, torque, and
reactive power of the two IFOC methods proposed in this work. Through this table, the
proposed IFOC-SSTA method gave a small response time compared to the classical IFOC
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method, and the improvement ratio was about 97.54%, 97.54%, and 98.23% for the active
power, torque, and reactive power, respectively. Moreover, the proposed method gave a
good response time in comparison with both the DPC strategy and neuro-second order
sliding mode control (NSOSMC) completed in [36] (see Table 4).

Table 3. Response time.

Response Time

Torque Reactive Power Active Power

Classical IFOC strategy 0.12 s 0.13 s 0.12 s
Proposed IFOC strategy 2.95 ms 0.0023 s 2.95 ms

Ratios 97.54% 98.23% 97.54%

Table 4. Comparative analysis of response time.

Response Time

Torque Reactive Power Active Power

Proposed technique: IFOC-SSTA 2.95 ms 0.0023 s 2.95 ms

[36]
Direct power control 18 ms 17 ms 18 ms

Neuro-second order SMC technique 5 ms 9 ms 5 ms

7.2. Second Test

The results of the second test are shown in Figure 15. In this test, the generated
parameter values were changed in order to know the change in the behavior of the proposed
IFOC-SSTA method compared to the classical IFOC method, as well as its robustness. In
this test, Rs, Ls, Rr, Lm, and Lr were changed to the values 0.024 Ω, 0.00685 H, 0.042 Ω,
0.00675 H, and 0.0068 H, respectively. Zoom is given for torque, current, effective power,
and reactive power in Figure 16. In Figures 15 and 16, there is a noticeable effect on the level
of torque, current, active, and reactive power, where the classical IFOC method was affected
by changing the generator parameters more than the IFOC-SSTA method. Moreover, active
and reactive power keep following the references well in this test for both the proposed
and the classical IFOC method (see Figure 15a,b). Both current and torque take the same
form as active power (see Figure 15c,d) with ripples in both torque and current levels. The
proposed IFOC-SSTA method reduced these ripples as compared to the classical IFOC
method (see Figure 16c,d). Moreover, the proposed IFOC-SSTA method also reduced the
ripples in both the active and reactive power compared to the classical IFOC method (see
Figure 16a,b). The THD value of the electric current is shown in Figure 15e,f and this is for
both the proposed and the classical IFOC method, respectively. Through the two figures,
the proposed IFOC-SSTA method reduced the THD value of the electric current compared
with the classical IFOC method.

The results obtained from this test are shown in Table 5. Through this table, the
proposed IFOC-SSTA method reduced the ripples of torque, reactive power, current, and
active power by 93.35%, 98%, 87.50%, and 83.33%, respectively.

The proposed IFOC-SSTA-FSVM method in this work provided excellent results
compared to the classical IFOC method in terms of reducing the ripples of torque, current,
and active power, as well as improving the quality of electric power. All of these factors
help reduce malfunctions and thus reduce maintenance costs and help extend the life of
the system as a whole.
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Figure 16. Zoom in the second test results. (a) Active power; (b) Reactive power; (c) Torque;
(d) Stator current.

Table 5. Comparative ripples obtained from both techniques.

Traditional IFOC Strategy Designed IFOC Technique Ratios

Torque ripple (N·m) Around 172 Around 11.60 93.35%
Reactive power ripple (VAR) Around 25,000 Around 500 98%

Active power ripple (W) Around 30,000 Around 5000 83.33%
Stator current (A) Around 40 Around 5 87.50%

The following is a comparison between the proposed IFOC-SSTA-FSVM method and
some published works in terms of the THD value of the electric current. The results of the
comparison are recorded in Table 6. Through this table, the proposed IFOC-SSTA-FSVM
method significantly reduced the THD value compared to several published methods,
which indicates the robustness of the proposed IFOC-SSTA-FSVM method and the effec-
tiveness of the proposed IFOC-SSTA-FSVM method in improving the quality of electri-
cal energy.

Table 6. Comparative results with other techniques.

References Techniques THD (%)

[37]
Field-oriented control with PI controllers 0.77

Super twisting algorithm (STA) 0.28
[38] Fuzzy DTC strategy 2.40
[39] Fractional-order sliding mode control 1.31

[40]
Integral SMC technique 9.71

Multi-resonant-based sliding mode controller (MRSMC) 3.14
[41] Backstepping control 2.19
[6] Field-oriented control 3.7

[12]
DPC control with PI controllers 0.46

DPC control with terminal synergetic controllers 0.25
[42] Direct torque control with second-order continuous SMC technique 0.78
[28] DPC control with integral-proportional controllers 0.43

[9]
DFOC control with PI controllers 1.45

DFOC control with synergetic- SMC technique 0.50
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Table 6. Cont.

References Techniques THD (%)

[13]
Field-oriented control with neuro-fuzzy controller 0.78

Field-oriented control with type-2 fuzzy logic controllers 1.14
[43] Multilevel DTC strategy 1.57

[32]
Vector control 2.20

Adaptive backstepping sliding mode control 1.15
[44] Traditional direct vector control 1.65

[45]
DPC with sliding mode controller 1.66

DPC with super twisting sliding mode controller 0.11
Proposed IFOC

strategy
First test 0.10

Second test 0.11

8. Conclusions

In this work, a new idea was given for the IFOC method based on both a simplified STA
controller and a five-level fuzzy SVM technique. This proposed method was verified using
the Matlab/Simulink software, comparing the results obtained with the traditional method.
The application of the proposed method in the wind system led to the improvement of
the dynamic response of the generator and the improvement of the quality of the electric
current with the electric energy.

The points drawn from this work are illustrated in the following points:

• A new fuzzy SVM technology was introduced to control the five-level inverter to give
a constant frequency at the inverter output, with this method confirmed by numerical
simulation.

• A new simplified STA controller was proposed in this paper.
• A new indirect FOC strategy based on the simplified STA controller and the pro-

posed five-level fuzzy SVM technique was presented and confirmed with numerical
simulation.

• The robustness of the proposed indirect FOC strategy was presented.
• The characteristics of the designed indirect FOC strategy was analyzed, showing that

the undulations of the reactive power, stator current, torque, and active power were
minimized.

In a future paper, to ameliorate the quality of the active power and current, the DPIG
will be controlled using another robust control scheme, such as fractional order synergetic
control and feedback PI controller [46,47].
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