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Abstract: In environmental research, remote sensing techniques are mostly based on orbital data,
which are characterized by limited acquisition and often poor spectral and spatial resolutions in
relation to suborbital sensors. This reflects on carbon patterns, where orbital remote sensing bears
devoted sensor systems for CO2 monitoring, even though carbon observations are performed with
natural resources systems, such as Landsat, supported by spectral models such as CO2Flux adapted
to multispectral imagery. Based on the considerations above, we have compared the CO2Flux model
by using four different imagery systems (Landsat 8, PlanetScope, Sentinel-2, and AisaFenix) in the
northern part of the state of Mato Grosso, southern Brazilian Amazonia. The study area covers three
different land uses, which are primary tropical forest, bare soil, and pasture. After the atmospheric
correction and radiometric calibration, the scenes were resampled to 30 m of spatial resolution, seeking
for a parametrized comparison of CO2Flux, as well as NDVI (Normalized Difference Vegetation
Index) and PRI (Photochemical Reflectance Index). The results obtained here suggest that PlanetScope,
MSI/Sentinel-2, OLI/Landsat-8, and AisaFENIX can be similarly scaled, that is, the data variability
along a heterogeneous scene in evergreen tropical forest is similar. We highlight that the spatial-
temporal dynamics of rainfall seasonality relation to CO2 emission and uptake should be assessed in
future research. Our results provide a better understanding on how the merge and/or combination
of different airborne and orbital datasets that can provide reliable estimates of carbon emission and
absorption within different terrestrial ecosystems in southern Amazonia.
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1. Introduction

Global warming, population growth, and the gradual increase in greenhouse gas
concentrations have been the subject of several studies using remote sensing (RS) tech-
niques [1–5]. RS has a critical role in understanding different environmental concerns,
especially those related to land use and land cover changes (LULCC).

Extremely useful and common in LULCC research, orbital remote sensing data are
characterized by limited acquisition since they are collected in a specific time interval, in
addition to the presence of clouds, which cover the surface, causing missing data problems
in optical datasets [6,7]. Moreover, most orbital sensors are multispectral, which usually
means poorer spectral resolution compared to suborbital sensors and, therefore, data
restraint [8].

Orbital remote sensing bears devoted sensor systems for CO2 monitoring and assess
different scenarios, for instance, quantifying power plants emission [9,10], urban emis-
sions [11], wildfire emissions [12] and the related measure of solar-induced chlorophyll
fluorescence [13,14]. However, recurrent observation systems as Landsat [15], Sentinel-
2 [16] and PlanetScope [17] provide reasonable data for modelling or assessing CO2 dynam-
ics [18]. Meanwhile, remote sensing based on airborne sensors are present on carbon cycle
research [19,20], where promising applications are emerging with LIDAR in measuring soil
organic carbon (SOC) [21], as well as with aboveground biomass [22,23].

The CO2Flux emission model [24] aims to parameterizes the photosynthetic flux,
originally of boreal forests, using the light use efficiency (LUE) concept. In turn, LUE is
related to the fraction of photosynthetically active radiation absorbed by green biomass
(fAPAR), i.e., canopy photosynthetic capacity [25–27].

Understanding the CO2Flux emission depends on the associated indices relying on
two spectral models. On one hand, the Normalized Difference Vegetation Index (NDVI)
expresses the presence or the absence of vegetation and, when it comes to vegetation,
the type (e.g., forest, soybean, pasture) and its greenness [28]. On the other hand, the
Photochemical Reflectance Index (PRI) is related to light use efficiency (LUE) of photosyn-
thetically active vegetation (that is, in the visible spectral range) based on hyperspectral
data from AVIRIS [29,30]. Assuming multispectral imagery, PRI and its scaled version
(sPRI) data have higher correlation to LUE using MODIS band 13 (662–672 nm), using
backscattered images [31].

As mentioned above, the applicability of the CO2Flux emission model [19] is based on
hyperspectral data of AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), which
qualifies the airborne sensor Specim® AisaFENIX [32] for this type of study. This airborne
dataset (in forestry research) has low temporal resolution and availability, impeding the
progress in terms of assessing the CO2 emission and uptake with this dataset. We also
highlight that CO2 surveys are characterized by requiring tuned models to different types
of ecosystems [33].

Although the CO2Flux model [24] has been mainly used with hyperspectral data,
several studies have assessed the application of PRI to multispectral imagery by using
this vegetation index (VI) with blue and green bands, substituting the bands at 531 nm
and 570 nm, respectively [16,34–40]. It is also important to mention that drought condition
affect PRI results in CO2Flux estimation [41].

Based on the considerations above, we have compared the CO2Flux model by using
four different imagery systems (Landsat 8, PlanetScope, Sentinel, AisaFenix) in the northern
part of the state of Mato Grosso, southern Brazilian Amazonia. The study area covers three
different land uses, which are primary tropical forest, bare soil, and pasture.
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2. Materials and Methods
2.1. Study Site

This research was based on a Specim® AisaFENIX image captured in the city of Alta
Floresta (09◦52′32′′ S; 56◦05′10′′ W, altitude of 283 m), located in the northern part of the
state of Mato Grosso, southern Brazilian Amazonia (Figure 1). With an average annual daily
temperature of 26.4 ◦C, it is characterized by two well-defined climate seasons with high
temperatures, the rainy and the dry season, classified as Aw according to Köppen–Geiger
Climate Classification, and an average annual rainfall of 2281 mm.

Figure 1. Description of the imaged area in Alta Floresta, Mato Grosso, Brazil.

The imaged area features primary tropical forest, pasture, and bare soil, which have
different CO2 emission and absorption patterns [42]. Four areas in the region of interest
(ROI) were visually classified [43] as forest, bare soil, or pasture in order to sample ten
random points for each land use type (i.e., into the polygon) in order to perform statistical
analysis (Figure 2a). Aiming for a detailed quantification of different spectral models, we
generated spectral profile plots based on a transect in the scene (Figure 2b).

2.2. Data Procurement and Image Pre-Processing
2.2.1. Hyperspectral Image

As mentioned above, the hyperspectral image (HSI) is based on Specim® AisaFENIX, a
push broom imaging hyperspectral spectrometer, which covers a spectral range from 380 to
2500 nm (visible, near infrared, and short-wave infrared) (Figure 3, Table 1). Data collection
was conducted on 9 October 2017, onboard an aircraft. The radiometric and geometric
corrections of the image were performed using CaliGeo Pro tool in ENVI, designed by
Specim. This step included the use of (i) Look Up Table (.LUT) files, which have specific
AisaFENIX parameters that need to be used during processing, and (ii) the dark reference
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files, which are the data captured in the same file as the image through its automatic
activation (Auto Dark) and the radiometric calibration file (2 × 2) [32].

Figure 2. (a) Regions of interest, classified as forest (green), bare soil (red), and pasture (yellow) areas;
(b) spectral profile transect over the OLI/Landsat-8 scene.

Figure 3. Equipment used in the airborne imaging of the study area.

Table 1. Details of AisaFENIX system and data acquisition traits.

VNIR 1 SWIR 2

Spectral range 380~970 nm 970~2500 nm
Spectral bands 344 275

Detector Complementary metal-oxide-semiconductor
(CMOS)

Mercury Cadmium Telluride (MCT)
cooled detector
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Table 1. Cont.

VNIR 1 SWIR 2

Spectral resolution 3.5 nm 12 nm
Field of View 32.3◦

Focal aperture F/2.4
Radiometric resolution 16 bits

Imaging speed 130 frames per second
Spatial resolution 0.65 m (at 600 m of altitude)

1 VNIR: Visible and Near-Infrared; 2 SWIR: Short-Wave Infrared.

2.2.2. Orbital Data

Based on open access imagery, we have chosen OLI/Landsat-8, MSI/Sentinel-2, and
PlanetScope data. The dates were chosen based on the nearest day of acquisition related to
HSI data collection.

Data from Landsat-8 have medium spatial resolution varying from 15 to 100 m, and
free-access data have abundant use in remote sensing. The OLI (Operational Land Imager)
sensor has nine spectral (Table 2) bands ranging from visible to short-wave infrared [44]. In
this study, we used the required bands to calculate NDVI (band 4 for red and band 5 for
near infrared) and the adapted PRI (band 2 for blue and band 3 for green), which have 30 m
of spatial resolution.

Table 2. OLI/Landsat-8 spectral bands.

Band Name Description Spectral Range (nm)

B1 Coastal/Aerosol 433~453
B2 Blue 450~515
B3 Green 525~600
B4 Red 630~680
B5 Near Infrared 845~885
B6 SWIR 1 1560~1660
B7 SWIR 2 2100~2300
B8 Panchromatic 500~680
B9 Cirrus 1360~1390

In order to focus on free-access orbital data, the MSI sensor on board both Sentinel-2
mission satellites fits in this criterion. This imagery has medium spatial resolution ranging
from 10 to 60 m, with 13 spectral bands (Table 3) from visible to short-wave infrared,
similarly to the OLI/Landsat-8 system [45]. Here, the NDVI was based on bands 8 (Near
infrared) and 4 (Red), while adapted PRI was calculated using bands 2 (Blue) and 3 (Green),
with 10 m spatial resolution.

Table 3. MSI/Sentinel-2 spectral bands.

Band Name Description Spectral Range (nm)

B01 Aerosols 421.7~463.7
B02 Blue 426.4~558.4
B03 Green 523.8~595.8
B04 Red 633.6~695.6
B05 Red edge 1 689.1~719.1
B06 Red edge 2 725.5~755.5
B07 Red edge 3 762.8~802.8
B08 Near infrared 726.8~938.8
B08a Red edge 4 843.7~885.7
B09 Water vapor 925.1~965.1
B10 Cirrus 1342.5~1404.5
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Table 3. Cont.

Band Name Description Spectral Range (nm)

B11 SWIR 1 1522.7~1704.7
B12 SWIR 2 2027.4~2377.4

The third imagery assessed was PlanetScope. The PS2.SD instrument provides data
on four spectral bands, between 464 and 888 nanometers with spatial resolution of 3 m
(Table 4). The whole spectral range is necessary to run the CO2Flux model, where NDVI
was based on red bands and NIR and PRI were based on blue and green bands.

Table 4. PlanetScope spectral bands.

Band Name Spectral Range

Blue 464~517
Green 547~585
Red 650~682

NIR 1 846~888
1 Near infrared.

The orbital data from OLI/Landsat-8 system were obtained on 6 October 2017. The
study site was completely covered by one scene in this imagery. Regarding to Sentinel-2, it
took two scenes to cover the entire study site, based on 14 October 2017. Last, PlanetScope
image was acquired on 8 October 2017. The orbital data were acquired with radiometric
calibration from Google Earth Engine and PlanetScope requisition, required to minimize
scattering effect and other factors (Table 5).

Table 5. Technical details of the scenes from different orbital platforms used in this study.

Imagery Scene

OLI/Landsat-8 LANDSAT/LC08/C01/T1_RT_TOA/LC08_227067_20171006 1

MSI/Sentinel
20171014T140051_20171014T140051_T21LWK 1

20171014T140051_20171014T140051_T21LXK 1

PlanetScope Acquisition through PlanetScope requisition
1 Acquisition through Google Earth Engine.

2.3. Data Processing

After acquisition (with atmospheric and shape correction), the AisaFENIX scene and
the orbital data were resampled based on nearest neighbor algorithm in order to equalize
spatial resolution among the different datasets. In this regard, AisaFENIX, PlanetScope,
and MSI/Sentinel-2 data were lowered to 30 m of spatial resolution (Figure 4).

Following that, we calculated the indices on which the CO2Flux emission model is
based, namely, NDVI (Equation (1)), PRI (Equation (2)), scaled PRI (Equation (3)), and
CO2Flux (Equation (4)) itself. The selected bands to replace 531 nm and 570 nm on orbital
datasets were blue and green bands respectively [16,33–40]. The AisaFENIX bands used
in the VI calculation were those closer to the reference models, 62 for NIR and 42 for RED
in NDVI equation, and bands 23 and 29 for 531 nm and 570 nm, respectively, in the PRI
equation. Equation (4) shows the linear and angular (slope) coefficients presented on
CO2Flux modelling [24]. In this model, linear and angular coefficients are presented as
NDVI and PRI vegetation models, and these coefficients should be adjusted according to
environmental traits and are expressed in Equation (4) fitted to Amazonian patterns [40]:

NDVI =
ρNIR − ρRED
ρNIR + ρRED

, (1)
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PRI =
ρ531nm − ρ570nm

ρ531nm + ρ570nm
, (2)

sPRI =
PRI + 1

2
, (3)

CO2Flux = 13.63− 66.207(sPRI×NDVI), (4)

Figure 4. (a) AisaFENIX scene to resampled (b) scene (RGB composition on bands 42, 26, and 12).
Scene detail from original (c) and resampled (d) image.

2.4. Statistical Approach

For each variable evaluated, we generated an analysis of variance (ANOVA). It was
considered an entirely randomized design with 10 repetitions in a 4 × 3 factorial scheme
(four sensors vs. three land use and land cover). Next, Tukey’s test was applied for
multiple comparisons of means. In all cases, a 5% significance level was considered. The
comparison among hyperspectral and multispectral profile transects was based on simple
linear regression model and coefficient of determination (R2), with a p-value of 0.05.

3. Results
3.1. CO2Flux

Initially, the spectral data from airborne and orbital systems were processed and
underwent VI’s calculation. From this approach, the band math was carried out with NDVI
(Figure 5), PRI (Figure 6), and mainly with CO2Flux (Figure 7) in the ROI.
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Figure 5. Normalized Difference Vegetation Index (NDVI) results for OLI/Landsat-8 (a),
MSI/Sentinel-2 (b), PlanetScope (c), and AisaFENIX (d) imagery.

Figure 6. Photochemical Reflectance Index (PRI) results for OLI/Landsat-8 (a), MSI/Sentinel-2 (b),
PlanetScope (c), and AisaFENIX (d) imagery.

Figure 7. CO2Flux emission (µmol m−2 s−1) results for OLI/Landsat-8 (a), MSI/Sentinel-2 (b),
PlanetScope (c), and AisaFENIX (d) imagery.

We generated the profile graphs (Figure 8) based on a north–south transect aligned
to the scene, described in the OLI/Landsat-8 scene with RGB true color composition in
Figure 2b. In the images, the lowest values on the horizontal axis from NDVI and PRI
profiles refer to primary tropical forests (green), while increasing values in this axis refer to
mixed forest and bare soil pixels (grey), turning to forest, then bare soil (red), and finally
concerning pasture (yellow). In relation to the CO2Flux, the opposite occurs. In Figure 8, it
can be observed that the different curves for NDVI, PRI, and CO2Flux are based on pixels
collected in the transect within each image.
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Figure 8. NDVI, PRI, and CO2Flux spectral profiles based on the transect described in Figure 2b t.
Horizontal axis refers to the spatial variation over the transect line (kilometers), while vertical axis
represents the index value for NDVI, PRI, and µmol m−2 s−1 for CO2Flux.

3.2. Statistical Approach

There were different significant interactions for the sensors and LULC types in all eval-
uated variables (Figure 9). In order to understand the Figure 9 results, there is no statistical
difference when comparing sensors (lowercase) or LULC (uppercase) with same letter.

Figure 9. Significant interaction among sensors versus LULC for the vegetation indices NDVI, PRI,
sPRI, and CO2Flux. Uppercase letters express statistical similarity or difference on by comparing
LULC for the same sensor, and lowercase letters express statistical similarity or difference on the
same LULC for different sensors.
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According to the spectral profile along the scene (Figure 2b), we compared the CO2Flux
values based on hyperspectral data to multispectral values with a simple linear regression
model and the coefficient of determination (R2), presented in the scatterplot (Figure 10).
A significance level of 0.05 was adopted, where these datasets tests showed correlation
with lower than 0.05 significance probability (p-value). In this scatterplot, lower levels of
CO2Flux mostly represent tropical forest pixels, whereas light brown dots apply to bare
soil and pasture pixels.

Figure 10. Linear regressions and trend lines based on AisaFENIX versus (a) OLI/Landsat-8,
(b) MSI/Sentinel-2, and (c) PlanetScope results of CO2Flux.

For NDVI (Figure 11), bare soil had no statistical difference between the sensors
analyzed. However, the AisaFENIX sensor had the highest NDVI averages in comparison
to multispectral sensors, mainly in forest and pasture, evidencing no statistical difference
between MSI/Sentinel-2 and PLANET. In addition, it is observed that the forest presented
the highest NDVI averages in relation to other LULC types, regardless of the sensor.

Figure 11. NDVI on bare soil area (blue polygon) based on OLI/Landsat-8 (a), MSI/Sentinel-2 (b),
PlanetScope (c), and AisaFENIX (d) images.

Regarding PRI or sPRI, we observed slight differences in inter-comparisons of the
sensors, with higher mean absolute values on Landsat-8 results. Furthermore, among LULC
types, tropical forest presented the highest mean values of PRI and sPRI on orbital datasets.
OLI/Landsat-8 and PlanetScope data presented no statistical difference between pasture
and bare soil for sPRI, as well as PRI on OLI/Landsat-8 data. Despite this, PRI values
across the entire dataset were close to zero, regardless of LULC type and sensor. Turning to
AisaFENIX results, PRI values were inversely related to orbital datasets, suggesting that
further assessments using this sensor are required.

Concerning CO2Flux, the AisaFENIX sensor showed the highest averages in relation
to the others, independent of LULC type. CO2Flux over bare soil (Figure 12) had no
statistical difference among sensors. In addition, OLI/Landsat-8 had no statistical difference
in tropical forest by comparing to MSI/Sentinel-2 (Figure 13). Regarding pasture, the
OLI/Landsat-8 and PlanetScope results had no statistical difference (Figure 14). On the
LULC prospect, bare soil presented the highest CO2Flux values regardless of sensor, and
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an opposite scenario is observed with forest, which presented the lowest CO2Flux values
in comparison to other LULC types, regardless of the sensor.

Figure 12. CO2Flux on bare soil area (blue polygon) based on Landsat-8 (a), Sentinel-2 (b), PLANET
(c), and AisaFENIX (d) images.

Figure 13. CO2Flux on tropical forest areas (blue polygons) based on OLI/Landsat-8 (a),
Sentinel-2 (b), PLANET (c), and AisaFENIX (d) images.

Figure 14. CO2Flux on pasture area (blue polygon) based on OLI/Landsat-8 (a), Sentinel-2 (b),
PLANET (c), and AisaFENIX (d) images.

4. Discussion

The atmospheric carbon uptake and emission phenomena assessment via remote
sensing techniques can be based on either net ecosystem exchange (NEE) and CO2Flux [24]
estimations. In the first case, eddy flux tower collateral information and different microm-
eteorological computational tools and techniques are required [46]. On the other hand,
CO2Flux uses mainly remote sensing data.

Regarding the PRI, the substantial difference in this VI (and in its scaled version, sPRI)
among sensors was evident, especially between different blue and green bands in the
multispectral and hyperspectral bands. This difference is greater in open access imagery
(Landsat-8 and Sentinel-2 systems) versus AisaFENIX, where both narrow PRI reference
bands are in the green band for these datasets. It is noticeable that spectral mixing can occur
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in PRI results, since PlanetScope and AisaFENIX presented negative values for this VI,
when OLI/Landsat-8 and MSI/Sentinel-2 presented values above zero in all LULC types.

The comparison between OLI and MSI on savanna areas and using resampling and
similar atmospheric correction techniques reached root mean square difference of 0.0314,
as showed in the study of [47], which could be assumed in our work, despite the fact that
we analyze an evergreen tropical forest area. This similarity between results is greater
when LULC classes which most resemble the savanna are observed, i.e., NDVI values in
pasture and bare soil were statistically similar between PlanetScope and Sentinel-2/MSI
comparison, and in turn, the CO2Flux results from OLI/Landsat-8 and PlanetScope were
statistically similar.

The lack of similarity among hyperspectral and multispectral sensors results from the
analysis of variance approach suggests that spectral mixing can affect better outcomes, since
NDVI and CO2Flux had statistical similarity to PlanetScope to MSI/Sentinel-2 in the first VI
and to OLI/Landsat-8 in the carbon model. We also highlight that environmental conditions
related to drought may affect PRI performance [41,48], suggesting further assessment of
CO2Flux emission model considering temporal variations related to drought and rainfall
seasonality is needed, since the performance of carbon sinks is related to canopy water
content and vegetation structure [49].

The presence of NDVI on CO2Flux rely on biomass measurement and its greenness [24],
as NDVI performs best in leaf biomass estimation, where PlanetScope and Sentinel-2 data
have been assessed as good predictors of aboveground biomass, which in turn evidences
the greatest carbon pool in trees [50]. In remote sensing, the Gross Primary Production
(GPP) is another metric for CO2 balance, which expresses the uptake via photosynthesis
and is less related to NDVI on LULC types with higher NDVI values [51]. In this scope,
higher values of NDVI had lower correlation among datasets specially in forest areas, as in
the PlanetScope versus Sentinel-2 comparison, which, in spatial variability, similar results
were expected from phenological research work based on heterogeneous landscapes [52].

Atmospheric carbon dioxide uptake and emission assessed through the CO2Flux
model provides a metric related to land cover types, although it is limited in temporal
variability. Considering land use change is more appropriate in the current scenario for the
Amazonian rainforest, taking into account the rainfall seasonality and the climate variations
that greatly affect the carbon uptake capacity of carbon sinks, is needed [53]. This suggests
that the model is potentially functional when studying spatial-temporal dynamics in the
Amazon biome.

The correlation among AisaFENIX and the different orbital datasets in this study
based on linear regression expresses a greater reliance for CO2Flux than discrete-sampling-
based ANOVA. A spectral profile carries a larger data volume, which contributes to closely
relating these results and could rely on analyzing different LULC types. Yet, the mean
absolute error (MAE) and root mean squared error (RMSE) metrics similarly reported
the difference among datasets seen on linear regression, whereas MSI/Sentinel-2 had
the highest error value and lowest correlation. Based on this, further assessment within
other land use types can improve remote sensing research devoted to carbon emission
and dynamics.

In a broad observation of multispectral sensors results, the spectral mixing could affect
CO2Flux results, since PRI and the scaled version were lower in high spatial resolution
sensors, i.e., PlanetScope and AisaFENIX. So far, the analysis of variance did not present
the visual similarity between MSI/Sentinel-2 and AisaFENIX, which was expected since
the variabilities in the scenes are similar in these datasets. On the other hand, the linear
regression model and coefficient of determination suggest that the CO2Flux model adapted
to multispectral imagery reliably provides carbon flux estimation similar to hyperspectral
sensor results. Despite the differences in the CO2Flux from hyper- to multispectral sensors,
NDVI achieved similarity in bare soil in all datasets, justifying further hyper-multispectral
comparison studies, especially in the Amazon biome.
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5. Conclusions

In this study, we developed an approach based on four different RS datasets in order
to compare the CO2Flux patterns within three land cover types in the southern part of
Amazonia. We demonstrate that the CO2Flux model can be based on open access orbital
multispectral imagery when it comes to bare soil, for example. The results obtained in this
study suggest that PlanetScope, MSI/Sentinel-2, OLI/Landsat-8, and AisaFENIX can be
similarly scaled, that is, the data variabilities along a heterogeneous scene in evergreen
tropical forest with different land uses are related. We highlight that the spatial-temporal
dynamics of rainfall seasonality in relation to CO2 emission and uptake should be assessed
in future research. Our results provide a better understanding of how the aggregated use
of different airborne and orbital datasets can provide reliable estimates of carbon emission
and absorption within different terrestrial ecosystems in southern Amazonia.
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