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Abstract: It is known that the wave breaking process is significantly affected by a current, but little
attention has been paid to the effect of wave–current interaction on the breaking wave forces acting on
a monopile. This study presented a total of 88 flume tests, among which solitary and regular breaking
waves were generated with a following current. The waves propagated over an impermeable slope
and induced impulsive loads on a vertical monopile. The moments on the monopile were measured
utilizing a high-precision load cell, and the effect of current velocities on the peak moment was
analyzed. Test results indicate that there was an obvious nonlinear effect between breaking waves
and a following current. For solitary waves, a following current accelerated the breaking process,
leading to an increase by 274.21% at maximum in breaking wave forces. However, for regular
waves, both the wave heights and the reversing flow were restricted with the increasing velocity of a
following current, delaying the wave breaking process; under the regular test conditions, the moment
on the pile decreased by 65.25% at maximum.

Keywords: monopile; wave breaking; wave force; impermeable slope; wave–current interaction;
following current

1. Introduction

To date, the monopile is the most popular choice for the foundations of offshore wind
turbines (OWTs). More than 80% of OWTs in Europe have adopted monopile foundations,
especially in shallow water zones [1]. While a wave is propagating shoreward, its wave
height increases and wavelength decreases, ultimately leading to wave breaking. Com-
pared with non-breaking waves, breaking waves can impose extra slamming forces on
monopiles [2]. This leads to a design challenge, since the wave load is the major component
of overall loads acting on OWTs.

There have been considerable studies related to breaking wave forces over the past
decades. Wienke et al. [2] conducted large scale experiments and found that the pile-up ef-
fect must be considered for the calculation of breaking wave impact. Then, the effect of cylin-
der inclination was examined by Wienke and Oumeraci [3] experimentally. Mo et al. [4]
developed a LES model and illustrated the runup of plunging solitary waves on a vertical
cylinder. Xiao and Huang [5] discussed the variations in breaking wave forces with the ele-
vation of a pile, based on a RANS numerical wave model. Alagan Chella et al. [6] utilized
CFD model REEF3D to investigate the significance of the relative distance between break-
ing points and a cylinder on the breaking solitary wave forces. Vested et al. [7] presented
the experimental measurements of the force distribution on a vertical cylinder exposed
to shoaling regular waves. However, in these studies, waves were always generated un-
der still-water conditions, which means the effect of currents on breaking wave forces is
inherently ignored.

In fact, waves coexist with currents in natural ocean environments. For instance, the
extreme wave loads caused by a storm surge can seriously threaten the structural safety
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of OWT foundations in the typhoon season, while currents simultaneously reach their
maximum velocities. It is known that the energy transfer and breaking of waves can be
significantly affected by currents [8], and some studies related to the effect of currents
on wave–monopile interaction have been conducted [9–17]. Miles et al. [10] undertook
laboratory measurements to study the wave and current velocities in the vicinity of a
monopile foundation. Chen et al. [11] investigated the complex interactions between a
combined wave–current flow and a vertical surface, and the characteristics of harmonic
forces under various wave–current conditions were analyzed numerically. Chen et al. [12]
investigated the pore-water pressures around a partially embedded monopile under the
combined action of regular waves and a following current. Furthermore, studies also
revealed that the combined waves and currents can significantly affect the local scour
around a monopile [18–25]. However, extreme cases where waves can break have not
been considered in these studies, and the breaking wave forces acting on a monopile have
not been experimentally obtained when wave–current interaction occurs. This gap of
knowledge could cause the overestimation of monopile capacity under severe weather
conditions, resulting in potential economic losses. As a result, the effect of currents on wave
breaking needs to be thoroughly studied.

In this paper, a total of 88 flume experiments were conducted to investigate the break-
ing wave loads on a vertical cylinder over an impermeable slope with and without a
following current. The impermeable slope was introduced to model common submarine
topography and induce waves breaking. Following currents with various velocities were
superimposed on the solitary and regular waves. Then, moments on the cylinder con-
tributed by the waves under the combined wave–current conditions were experimentally
measured. The effects of the following currents on wave loads have been discussed.

2. Laboratory Experiments
2.1. Experimental Setup

As shown in Figure 1, the flume was 75 m long, 1.8 m wide, and 2.0 m deep, and could
generate bidirectional currents and unidirectional waves. An impermeable slope (7.31 m
in length, 1.2 m in width, and the slope angle of 5.1◦) was constructed in the middle of
the flume. The model pile had a diameter of 0.10 m or 0.20 m and a length of 1.80 m. It
was installed vertically at the top of the slope, with a 2.4 m long horizontal plank around
it. The slope and the pedestal of the pile were mounted on the flume bottom. A load cell
KISTLER 9317C and a stainless spindle were installed on the top and bottom of the pile,
respectively, as detailed in Figure 2. In this way, the model pile was allowed to produce a
relative rotation tendency around the spindle. Based on the moment equilibrium equation
about the axis of the spindle, the moment M acting on the pile about the spindle, which is
caused by wave loads, can be calculated by

M = FwLw = FmLm (1)

where Fw is the wave force; Lw is the acting height of the wave force; Fm is the force
measured by the load cell; Lm is the vertical distance between the centers of the load cell
and the spindle (1800 mm in this study), as shown in Figure 2. Because the height of the
spindle is negligible, the calculated moment could also be regarded as the pile moment
acting at the level of the flat seabed. The sampling frequency of the load cell was set to
2000 Hz to capture the high-frequency components of breaking wave loads. The high
sampling frequency also introduces significant digital noise, so an extra data smoothing
process is required when interpreting the measured data.
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Figure 1. Flume test setup.
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Figure 2. Schematic diagram of the load cell measurements and free body diagram of the pile.

Both solitary and regular waves were generated by a piston-type wave maker, which
supports active-wave absorption. A sponge-type wave absorber was used to absorb the
wave reflections at the downstream end. A circulating current generation system that was
independent of the wave maker could produce a steady current with a flow rate of up
to 0.8 m3/s, and the current velocity precision was less than 0.03 m/s. In every test, a
following current was generated first, whose direction was same as the wave propagation
direction. After stabilization of the current, the wave maker was started. Due to an intrinsic
feature of the load cell, only dynamic responses can be sampled, which means the recorded
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Fm reflects pure wave loads whether with or without the following current (i.e., subtracting
a constant current load from the combined wave–current load). Furthermore, two wave
gauges (WG, model number: YWH200-D) were used to measure the wave heights with
a sampling frequency of 100 Hz, while the surface velocities were measured by acoustic
Doppler velocimetry (ADV, model number: Vectrino Plus) with the same frequency.

The conventional experimental setup related to breaking waves suggests using a slope
whose width is same as that of the flume [26–38], which is unachievable when the currents
are introduced. The width of the slope has to be smaller than that of the flume in this
study, in order to not only allow the current to pass by easily, but also generate the breaking
waves. To validate the range of the unintentional 3D effect caused by the gaps between
the slope and flume boundaries, a preliminary numerical simulation was performed using
computational fluid dynamics software OpenFOAM (version 4.1). The olaFlow solver was
adopted to solve the Reynolds-averaged Navier–Stokes (RANS) equations. The turbulence
was modeled by the k-ω SST model. All boundary conditions and initial conditions were
the same as those in the experimental flume tests. The origin O of the numerical Cartesian
coordinates is illustrated in Figure 1. Note that only the slope was simulated for simplicity,
as shown in Figure 3a. Typical simulated results are illustrated in Figure 3b, where the
variations of free surface elevations on three cross sections of the slope (i.e., x = 3.5 m, 5.5 m,
7.0 m) were measured at different distances from the slope edges (i.e., y = 0.0 m, 0.5 m,
0.6 m). It was found that the surface elevations at different locations within a width of
1.0 m on the slope were almost identical. The maximum discrepancy between the peak free
surface elevations measured in front of the pile (x = 7.0 m, y = 0.0 m) and above the slope
edge (x = 7.0 m, y = 0.6 m) was about 16%. In addition, the velocity components Uy (not
drawn here for brevity) in all y-directions on the center line of the slope surface were found
to be close to zero, implying a simple two-dimensional flow around this region. In summary,
the unintentional 3D effect caused by the gaps was negligible in the experimental tests.
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2.2. Test Conditions

The tests were performed for varying water depths, current velocities, and wave
conditions. The extreme parameters considered in the flume tests were scaled according
to the measured hydrological conditions in the Zhoushan Sea Area, Zhejiang Province,
China, with the Froude similitude kept between the prototype and model scale, as given in
Table 1. The water depths ranged from 65 cm to 80 cm and current velocities from 0 cm/s
to 25.8 cm/s. Both solitary waves and regular waves were tested, whose wave heights
varied from 5 cm to 15 cm. For regular waves with a height of 10 cm, five wave periods
were considered. Detailed conditions are summarized in Table 2. S0 and ξ in Table 2
are dimensionless parameters to predict the breaking types of solitary waves and regular
waves, respectively, whose detailed definitions are given in Section 3.

Table 1. Parameters at the prototype and model (geometry scale: 1:60).

Parameter Prototype Scale Model Scale

Pile diameter D 6 m/12 m 10 cm/20 cm
Maximum water depth h 48 m 80 cm
Maximum wave height H 9 m 15 cm

Mean surface current velocity ν̃ 1 m/s 12.9 cm/s
Maximum surface current velocity vm 2 m/s 25.8 cm/s

Table 2. Test conditions for the breaking wave loads with different following current velocities on an
impermeable slope.

Test No. Wave
Type

Pile
Diameter

Water
Depth

Wave
Height

Wave
Period

Wave
Length BreakingIndex Breaker Type Current Velocity

D [cm] h [cm] H [cm] T [s] L [m] S0/ξ - v [cm/s]

1 solitary 10 65 5 - - 0.49 Non-breaking 0/6.5/12.9/25.8
2 solitary 10 65 10 - - 0.35 Surging 0/6.5/12.9/25.8
3 solitary 10 65 15 - - 0.28 Plunging 0 */6.5/12.9/25.8
4 solitary 10 70 5 - - 0.51 Non-breaking 0/6.5/12.9/25.8
5 solitary 10 70 10 - - 0.36 Surging 0/6.5/12.9/25.8
6 solitary 10 70 15 - - 0.29 Plunging 0/6.5/12.9/25.8
7 solitary 10 75 5 - - 0.53 Non-breaking 0/6.5/12.9/25.8
8 solitary 10 75 10 - - 0.37 Surging 0/6.5/12.9/25.8
9 solitary 10 75 15 - - 0.30 Plunging 0/6.5/12.9/25.8

10 solitary 10 80 5 - - 0.54 Non-breaking 0/6.5/12.9/25.8
11 solitary 10 80 10 - - 0.38 Non-breaking 0/6.5/12.9/25.8
12 solitary 10 80 15 - - 0.31 Surging 0/6.5 */12.9/25.8 *
13 solitary 20 80 5 - - 0.54 Non-breaking 0/6.5/12.9/25.8
14 solitary 20 80 10 - - 0.38 Non-breaking 0/6.5/12.9/25.8
15 solitary 20 80 15 - - 0.31 Surging 0 */6.5/12.9/25.8 *
16 regular 20 80 5 1.8 5.06 0.90 Plunging 0/6.5/12.9/25.8
17 regular 20 80 10 1 1.56 0.35 Spilling 0/6.5/12.9/25.8
18 regular 20 80 10 1.4 3.06 0.49 Spilling 0/6.5/12.9/25.8
19 regular 20 80 10 1.8 5.06 0.63 Plunging 0/6.5/12.9/25.8
20 regular 20 80 10 2.2 7.56 0.78 Plunging 0/6.5/12.9/25.8
21 regular 20 80 10 2.6 10.55 0.92 Plunging 0/6.5/12.9/25.8
22 regular 20 80 15 1.8 5.06 0.52 Plunging 0 */6.5/12.9/25.8

* Several typical test conditions, marked with an asterisk, were repeated five times to verify the repeatability of
the results.

It is worth mentioning that the water depths were measured under still-water condi-
tions. The current velocity measurements were performed 0.05 cm below the free surface
before waves were generated. The wave parameters and output power of the wave maker
were calibrated under wave-only conditions in preliminary tests, then, these wave-making
data were adopted in the formal tests to make sure the wave heights were still equivalent
under different current velocities. Figure 4 illustrates the wave height signals measured by
WG1 under two typical wave conditions in the formal tests. It is evident that the measured
wave heights were in good agreement with the input wave parameters. In addition, it
was found that the difference between the wave heights recorded by WG1 and WG2 was
negligible, so the data from WG2 are not reported here for brevity.
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2.3. Post-Processing

The force measurements were calibrated between every two formal tests using a
spring-type dynamometer (model number: NK-100). Linear relationships between the
input forces and output forces were obtained, and the coefficient of determination was
always more than 0.99. In order to eliminate the effect of natural frequency, a low-pass
filter was introduced to filter the data, whose cut-off frequency of 10 Hz was obviously
lower than the natural frequency of the measurement system (about 47 Hz). Note that all
of the results analyzed in this paper were calibrated and filtered. Furthermore, data from
the repeated tests showed that the relative error of the measured peak moments was less
than 5%, indicting a good repeatability of the test results.

3. Results and Discussion
3.1. Solitary Waves

Grilli et al. [39] introduced a dimensionless parameter S0 to predict the types of wave
breaking as

S = 1.521
s√
H′

(2)

where s is the slope gradient and H’ = H/h is the relative wave height [40]. Here, the values
of S0 for the solitary wave tests with h = 65 cm were 0.283, 0.346, and 0.489, corresponding
to the plunging breaker, surging breaker, and non-breaking wave, respectively. However,
actual breaking types could be slightly different to the predicted ones due to the influence of
the horizontal plank. Experimental observations showed the breaking points of all broken
solitary waves were located at the downstream side of the pile.

Figure 5 shows the effect of a following current with various velocities on the nor-
malized peak moment on the pile under different water depths and solitary wave heights.
Usually, the term ρgD3 is used for normalized wave forces, so the moment was normalized
by ρgD3h in this study to further consider the change in the force-arm length caused by var-
ious water depths. It was not surprising to see that the peak moment increased with wave
heights, since the impact area was directly proportional to the wave heights. Furthermore,
with various water depths, higher following current velocities always led to greater peak
moments acting on the pile. As previously described, the force measured by the load cell
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reflects the pure wave loads. Thus, the increase in the measured loads reflects the nonlinear
effects between the solitary waves and the following current since the predefined wave
parameters remained the same.
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It was also evident that the peak moment with H = 10 cm or 15 cm increased sig-
nificantly and then remained relatively stable as the current velocities increased in the
shallower water (h = 65 cm). A similar tendency was observed when h = 70 cm and
H = 15 cm. However, when the wave height was the smallest (H = 5 cm), or the water
depth was deeper (h = 75 cm and 80 cm), there was no moment plateau, and the moment
continued increasing. Finally, the maximum peak moment appeared at the maximum
current velocity of 25.8 cm/s. In other words, the effect of the following current could reach
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a plateau in shallower water, indicating an upper limit of the breaking wave force that
could be mobilized. The reasons for these variation features can be explained from Figure 6.
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Figure 6 presents the snapshots of the free surface around the pile when the solitary
wave gained the maximum run-up with different following current velocities. Note that
the incident wave heights are always 15 cm. Free surfaces around the pile were detected by
edge detection algorithms provided by MATLAB (version R2021a). As mentioned before,
the waves with h = 65 cm and H = 15 cm can be regarded as plunging breakers according to
Equation (2), and their breaking points were downstream from the pile, whereas the waves
with h = 80 cm and H = 15 cm should be non-breaking waves in view of the slope angle
changing downstream from the pile. Because waves do not entirely break before impacting
on the pile, the profiles of free surfaces around the pile mainly reflect the breaking intensity
of waves above the impermeable slope. It can be seen that the increase in the current
velocity results in two kinds of main changes (i.e., the wave shape steepening for breaking
waves in the shallow water (h = 65 cm) shown in Figure 6a–c and the elevation of wave
run-up rising for non-breaking waves in the relatively deep water (h = 80 cm) shown in
Figure 6d–f). These changes illustrate that the breaking intensity of the solitary waves was
enhanced by applying the following current under different water depths. As a result, the
breaking points of the solitary waves would shift toward deep-water zones and be closer
to the pile. Previous studies have shown that waves that break exactly on the front surface
of a pile can produce the maximum breaking wave force [2,6]. This is the reason why the
solitary wave loads increased with the increase in current velocities. Meanwhile, it was
found that the moment on the pile could be qualitatively indicated by the maximum wave
run-up. In shallow water, the wave run-up reached the maximum value when the velocity
of the following current was relatively low. Then, the backwater started to collapse with the
current velocity increasing consistently, and the wave run-up remained stable, as shown
evidently in Figure 6c. However, the wave run-up kept increasing as the current velocity
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increased from 12.9 cm/s to 25.8 cm/s, when water depth h was 80 cm. This variation
feature of the maximum wave run-up is consistent with the changing trend in the peak pile
moment, which is shown in Figure 5d. Under the solitary wave test conditions, the peak
moment on the pile increased by 274.21% at the maximum because of the following current
(h = 70 cm, H = 5 cm, v = 25.8 cm/s).

Furthermore, Figure 5d also presents the normalized peak moment on the pile with
a diameter of 20 cm. In terms of the absolute value of the pile moment, the increase in
the pile diameter resulted in the increase in the pile moments. However, because the pile
diameter plays an important role in moment normalizations, the normalized moments
of D = 20 cm pile are significantly smaller than those of the D = 10 cm pile. The growth
rate of the pile moment, which is caused by the pile diameter increasing from 10 cm to
20 cm, is given in Figure 7. Its maximum growth rate was 102.9%, very close to the growth
rate of the pile diameter. A linear relationship can be used to describe the increase rate
of the pile moment when the wave height is relatively small. However, the wave with a
height of 15 cm showed a different trend in Figure 7 because it showed the most significant
breaking tendency. Therefore, Figure 7 highlights the importance of investigating the effect
of the current on breaking wave forces, instead of simply assuming a linear relationship
between them.
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3.2. Regular Waves

Generally, wave run-up can be characterized by the Iribarren number ξ [41], which
can be expressed as:

ξ =
s√

H/L
(3)

where H is the incident wave height at the toe of the slope, and L is the deep-water wave-
length. Utilizing the Iribarren number and the criteria regarding breaker types presented
by Galvin [42], the breaker types of the regular wave cases are shown in Table 2. Although
two cases were predicted as the spilling waves, they were observed as plunging waves
during the experiments. As for the breaking location, the breaking points of case no. 19
and no. 22 were around the pile. The breaking points of case no. 16, no. 20, and no. 21 were
downstream from the pile. Others were upstream from the pile.

Unlike solitary waves, regular waves require extra time to stabilize at the beginning of
each test. After the wave shapes became stable, 10 peak forces measured by the load cell
were averaged to obtain the representative peak value for analysis in this paper. Although
the impact forces can vary between successive periods due to the stochastic nature of
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breaking waves, their average values are able to reflect the general level of the wave loads
accurately. Figure 8 illustrates the relationship between peak moments on the pile and
the following current velocities under regular waves with different wave heights and
wave periods. Similar to what has been found for solitary waves, there were significant
nonlinear effects between the regular waves and following currents. The existence of
the following current decreased the pile moments caused by wave loads. When current
velocities increased from 0 cm/s to 6.5 cm/s, the pile moments with higher regular wave
heights showed greater attenuation, as given in Figure 8a. However, this attenuation
tendency became insignificant as the wave periods changed from 1.8 s to the others in
Figure 8b. The reason is that the regular wave with H = 10 cm, T = 1.8 s, and v = 0 cm/s
broke nearest the pile, providing a larger moment acting on the pile. Because breaking
wave forces are sensitive to the change in breaking-point positions, the most significant
attenuation can be observed in this case.
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Previous theoretical and experimental investigations have proven that the wave height
decreases significantly as the velocity of a following current increases [21]. This can be
seen from the free surface profiles when regular waves impacted on the pile under specific
conditions, as given in Figure 9. Because an impermeable slope was adopted, broken
regular waves can produce a strong reversing flow, which would interact with the next
wave. When the following current existed, this reversing flow also met the following
current before the next wave impacted on the pile. Significant spindrift appeared at the
meeting point. Then, the intensity of the reversing flow and the following current reached
a dynamic equilibrium around a balance point. Thus, the position of this balance point
suggests the extent of the influence of the reversing flow. As the following current velocity
increases, the balance point transferred from the frontal side to the lee side of the pile,
indicated by the spindrift in Figure 9(d1–d3). Thus, the mechanism of how following
currents affect the wave breaking could be explained as follows: on one hand, when
following currents exist, the wave height decreases, leading to the decrease in the wave
loads. In terms of impermeable slopes, the reversing flow volume is proportional to the
corresponding wave height. Hence, this means that the volume of the reversing flow will
decrease because of the following currents. This process happens before the waves run-up
the slope seabed. On the other hand, the flow intensity of the reversing flow depends on
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how violently the waves break. It is an inherent attribute of breaking waves. Due to the
existence of the following currents, the velocity and the flow distance of the reversing flow
are restricted, indicating the waves’ breaking trend weakening during the wave run-up
process. Under regular wave test conditions in this study, the peak moment on the pile
decreased by 65.25% at maximum due to the influence of the following current (h = 80 cm,
H = 10 cm, T = 1.8 s, v = 25.8 cm/s).
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4. Conclusions

This study investigated the effect of the following currents on the breaking wave forces
acting on a vertical monopile. A total of 88 flume tests were conducted, among which
solitary waves and regular waves were generated with or without a following current.
The moments on the pile were measured and calculated using a high-precision load cell.
Furthermore, the relationship between the peak moments acting on the pile and current
velocities was presented and analyzed. It was found that there were obvious nonlinear
effects between the waves and following currents. The main conclusions can be drawn
as follows:

(1) The breaking intensity of solitary waves under different water depths is enhanced
by a following current, leading to steeper wave shapes, higher wave run-up, and the
acceleration of breaking processes. The effect of the following current could reach a
plateau in shallower water, indicating an upper limit of the breaking wave force that could
be mobilized.

(2) The reversing flow generated by broken regular waves over an impermeable slope
can be suppressed by a following current (i.e., both the velocity and flow distance of the
reversing flow are restricted). This results in the delay of wave breaking processes and the
corresponding decrease in wave loads, especially for waves with higher wave heights.

(3) For solitary waves, the enhancement effect of a following current on wave loads
can occur more significantly with a low current velocity in shallower water. An increase
by 274.21% at maximum in the breaking wave forces on a monopile was observed with
the increase in the following current velocities under the test conditions. For practical
design, an extra safety factor is required when breaking wave loads and current loads are
calculated independently under such situations.

In terms of regular waves, as the following current velocity increases, corresponding
breaking wave forces decrease obviously. However, the effect of the following current
on waves with varying periods is generally insignificant. The peak moment on the pile
decreased by 65.25% at the maximum with the existence of a following current.

The measured nonlinear feature of breaking wave loads under the action of a following
current highlights the importance of investigating the combined effect of breaking waves
and currents over a realistic permeable seabed in the future. Further studies are also
needed to investigate the effect of slope angles and provide more recommendations for
design practices.
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