
Citation: Zhao, H.; Zhang, G.; Yang,

X. GIS Fault Prediction Approach

Based on IPSO-LSSVM Algorithm.

Sustainability 2023, 15, 235.

https://doi.org/10.3390/su15010235

Academic Editor: Mohamed

A. Mohamed

Received: 27 November 2022

Revised: 12 December 2022

Accepted: 15 December 2022

Published: 23 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

GIS Fault Prediction Approach Based on
IPSO-LSSVM Algorithm
Hengyang Zhao 1,*, Guobao Zhang 2 and Xi Yang 3

1 State Grid Anhui Electric Power Company Limited, Hefei 230022, China
2 Electric Power Research Institute, State Grid Anhui Electric Power Co., Ltd., Hefei 230601, China
3 School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
* Correspondence: jianyanghubei@gmail.com

Abstract: With the improvement of industrialization, the importance of equipment failure prediction
is increasing day by day. Accurate failure prediction of gas-insulated switchgear (GIS) in advance can
reduce the economic loss caused by the failure of the power system to operate normally. Therefore, a
GIS fault prediction approach based on Improved Particle Swarm Optimization Algorithm (IPSO)-
least squares support vector machine (LSSVM) is proposed in this paper. Firstly, the future gas
conditions of the GIS to determine the characteristic data of SF6 decomposition gas are analyzed;
Secondly, a GIS fault prediction model based on LSSVM is established, and the IPSO algorithm is
used to normalize the parameters LSSVM. The parameters of c and radial basis kernel function σ2

are optimized, which can meet the needs of later search accuracy while ensuring the global search
capability in the early stage. Finally, the effectiveness of the proposed method is verified by the
fault data of gas-insulated switch. Simulation results shows that, compared with the prediction
methods based on IGA-LSSVM and PSO-LSSVM, the prediction accuracy rate of the proposed
method reached 92.1%, which has the smallest prediction absolute error, higher accuracy and stronger
prediction ability.

Keywords: gas-insulated switchgear; failure prediction; parameter optimization; improved particle
swarm optimization algorithm

1. Introduction

Gas-insulated switchgear (GIS) has the advantages of a small footprint, high opera-
tional reliability, and a long maintenance cycle [1–3]. So, it has been widely used in power
systems, especially in high-voltage power grids [4,5]. Although GIS equipment has the
advantage of high operational reliability, insulation and mechanical defects and failures still
occur from time to time during its operation [6–8]. In order to meet the high efficiency and
reliability of equipment operation, fault prediction can process the information measured
by each sensor through certain theories and algorithms to infer the trend of fault develop-
ment, so as to check the equipment to reduce the loss caused by the fault [9]. Therefore, to
propose a GIS fault prediction method for accurate fault prediction in advance is of great
significance to ensure the stable operation of the power system [10].

Because the fault prediction is carried out before the fault occurs, it often has the
characteristics of small fault amplitude, inconspicuous fault characteristics, and easy to
be covered by noise. Therefore, the signal processing and analysis before the fault occurs
are the focus of fault prediction technology research [11–13]. The authors in [14] used
the combination of deep neural network (DNN) and principal component analysis (PCA)
to realize the early diagnosis and life prediction of small and slowly changing faults.
In [15], in order to realize the active early warning of familial defect faults of power grid
equipment, a familial defect fault database is established, and a probability prediction
model between a single influencing factor and the defect decision data is established by the
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Copula function. In order to solve the problem of large error and low accuracy in predicting
equipment failure rate with a single model, a method for equipment failure rate prediction
based on Autoregressive Moving Average Model-Back Propagation (ARMA-BP) combined
model was proposed in [16]. The prediction results show that compared with the single
prediction model, the equipment failure rate prediction result of the ARMA-BP combined
model is more accurate. Reference [17] predicts the next batch of statistic values in GIS by
establishing an autoregressive model, and compares the calculated value with the control
limit, thereby realizing the prediction of S fault, but this method assumes that the trend of
the fault is linear, and prediction results of the quantity are independent, so it is difficult to
predict the nonlinear and multi-coupling data.

SF6 gas-insulated metal-enclosed combined electrical appliances have become the
main component of modern power systems because of their small footprint and high relia-
bility [18]. Reference [19] proposed a fault detection method for gas-insulated switchgear
based on a support vector machine and nuclear principal component analysis, and verified
the reliability and accuracy of the algorithm through the actual sample test. Reference [20]
established a GIS internal insulation electric field degradation calculation model, and used
the central limit theorem to estimate the failure probability of the most harmful metal tip.
In the literature [21], the online monitoring of the content of SO2, SOF2, H2S, CO and other
components in the SF6 gas decomposition products can quickly find the location of the
gas chamber where the fault point is located, but no research has been conducted on the
types of faults that cause gas composition changes. Reference [22] proposes a GIS state as-
sessment method combining the subjective weighting method and the objective weighting
method to judge the operating status of GIS equipment. This method can systematically
and comprehensively evaluate the health status of GIS, but it cannot provide a reference
for more detailed troubleshooting, which is difficult to apply in practical engineering.
The applicability of the model to the data characteristics is not highly consistent, and the
prediction accuracy cannot meet the requirements.

In summary, how to accurately diagnose GIS faults according to operating parameters
has become a key technology that needs to be overcome. For this reason, a GIS fault
prediction approach based on IPSO-LSSVM is proposed in this paper. The contributions
are as follows:

(1) A GIS fault prediction model based on IPSO-LSSVM is established.
(2) The PSO algorithm is improved through weight nonlinear adjustment and iterative

speed optimization, so as to improve the optimization ability and convergence speed
of the algorithm.

(3) The normalization parameter c of LSSVM and the parameter of radial basis kernel
function σ2 are optimized by the improved PSO algorithm, so as to improve the
accuracy of the prediction model.

The organization of this paper is as follows: Section 2 analyzes the GIS fault char-
acteristics; Section 3 introduces the GIS fault prediction model based on the improved
PSO-LSSVM; Section 4 introduces the improvement strategy of the PSO algorithm; the
Section 4 is the simulation verification; Section 5 is the conclusion.

2. GIS Fault Feature Analysis

The main faults of SF6 electrical equipment are discharge and overheating. The
discharge mainly includes three types: arc discharge, spark discharge and corona dis-
charge [23]. Both discharge and overheating will generate energy to promote the decompo-
sition of SF6 gas. The main components decomposed under the action of discharge are SF6
and metal oxides of electrodes or containers. In the presence of water vapor and oxygen,
SF4 reacts with them and finally generates SO2, HF, SO2F2 and SOF2 and other compounds.

In the discharge state, the energy generated by different discharge types is differ-
ent, which promotes the decomposition of SF6 gas into different stable substances under
different energy conditions. Studies have found that the ratio of SO2F2/SO2 has certain
regularity [24]. During corona discharge, its ratio is often in the range of 4.0~6.0 or even
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higher, and spark discharges are mostly concentrated in 2.0~3.5. During arc discharge,
the ratio is the smallest, mostly 0.1~0.3, which decreases with the increase in intensity of
discharge. SO2 and SO2F2 are substances that are produced in large quantities during
discharge faults. Considering that they have good stability at the same time, monitoring
will be more convenient and accurate. Based on the observation data of 220 kV voltage
level GIS in a substation, some data of SF6 decomposition gas characteristics are shown in
Table 1.

Table 1. Characteristic data of SF6 decomposition gas.

Fault State
Sample Eigenvalues

SO2/(µL·L−1) SO2F2/(µL·L−1) SO2F2/SO2

Arc discharge 19.47 4.14 0.213
Arc discharge 16.41 3.70 0.225
Arc discharge 12.73 3.29 0.258

Spark discharge 18.74 55.95 0.986
Spark discharge 21.11 44.87 2.126
Spark discharge 17.55 45.35 2.584

Corona discharge 26.77 151.91 5.675
Corona discharge 20.99 84.50 4.026
Corona discharge 23.12 121.07 5.237

When predicting the future failure condition of GIS, it is necessary to analyze the
future gas condition of GIS. In this paper, based on the historical data of decomposed gas
content in GIS gas chamber, the GIS fault prediction method based on IPSO-LSSVM is used
to predict the decomposition gas of GIS gas chamber in the future.

3. GIS Fault Prediction Approach Based on Improved PSO-LSSVM
3.1. Least Squares Support Vector Machine

The least squares support vector machine is a new type of support vector machine
developed on the basis of the standard support vector machine. It replaces the inequality
constraints of the traditional support vector machine (SVM) with equality constraints,
and uses the sum of squares of errors as the empirical loss of the training set [25]. By
transforming the quadratic programming problem into a system of linear equations, the
solution speed and convergence accuracy are improved.

For the training sample set Tr = {(x1, y1), (x2, y2), · · · , (xn, yn)} xi ∈ Rd,
yi ∈ {1, 2, · · · , k}, i = 1, 2, · · · , n. The sample is mapped from the input space Rd to
the feature space, the nonlinear mapping is ϕ(·), namely:

ψ(x) = (ϕ(x1), ϕ(x2), · · · , ϕ(xn)) (1)

construct an optimal decision function in the mapped feature space as follows:

y = wT ·ϕ(x) + b (2)

The decision function parameters w and b are determined based on the principle of
structural risk minimization, and the solution process can be equivalent to solving the
following optimization problems: minR = c ·

n
∑

i=1
ξ2

i +
1
2 · ‖w‖

2

s.t. yi = wT · ϕ(xi) + b i = 1, 2, · · · , n
(3)
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The solution using the Lagrange method can be written as:

L(w, b, ξi, α) = c ·
n

∑
i=1

ξ2
i +

1
2
‖w‖2 −

n

∑
i=1

{
αi ·
[
wT · ϕ(xi) + b− yi

]}
(4)

where α = [α1, α1, · · · αn] is the Lagrange multiplier.
According to the optimization conditions ∂L

∂w = 0, ∂L
∂b = 0, ∂L

∂ξi
= 0, ∂L

∂αi
= 0, we can get:

w =
n

∑
i=1

αi·ϕ(xi) (5)

n

∑
i=1

αi = 0 (6)

2cξi = αi (7)

yi = wT ·ϕ(xi) + b + ξi (8)

Substituting Equations (5) and (7) into Equation (8), we can get:

yi =
n

∑
j=1

(
αi ·
〈

ϕ
(

xj
)
, ϕ(xi)

〉)
+ b +

1
2c

αi (9)

Assuming that the kernel function K(xj, xi) =
〈

ϕ
(
xj
)
, ϕ(xi)

〉
is defined, then

yi =
n

∑
j=1

(
αi · K

(
xi, xj

))
+ b +

1
2c

αi (10)

Combining Equations (6) and (10) into a system of linear equations is as follows:
0 1 1 · · · 1
1 K(x1, x2) +

1
2c K(x1, x2) · · · K(x1, xn)

1 K(x2, x1) K(x2, x2) +
1
2c · · · K(x2, xn)

...
...

...
. . .

...
1 K(xn, x1) K(xn, x2) · · · K(xn, xn) +

1
2c

 ·


b
α1
α2
...

αn

 =


0
y1
y2
...

yn

 (11)

Based on the previously set training sample set (xi, yi), i = 1, 2, · · · n, x ∈ Rd, y ∈ R,
the model parameters can be obtained by solving the linear equation system (11). Then the
decision function

[
b α1 α2 · · · αn

]
can be determined:

f (x) =
n

∑
i=1

αi · K(x, xi) + b (12)

In the coefficient α of the support vector machine, if the element αi is not equal to zero,
the so-called support vector αi is the corresponding sample (xi, yi).

On the basis of LSSVM binary classification, a one-to-many classification algorithm
is used to establish a multi-class classifier. For the k (k > 2) class classification problem,
take all the training samples of y = i and y 6= i, and construct k training subsets Tri. When
constructing the m-th classifier among the k classifiers (m ∈ yi), the m-class training samples
are used as the first class, the class number is ym

i = ±1, and the other m-1 classes are used
as one class, the class number is ym

i = −1.
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When classifying the test sample, the test sample is first input to the classifier 1. If
the output of the discriminant function is 1, the judgment category is the first type of fault;
otherwise, it is automatically input to the next classifier 2, and so on, until the classifier k.
If the output of the judgment function is 1, the judgment category is the k-th fault; if the
output is −1, the test sample is not in the k categories and belongs to other categories.

3.2. Kernel Function and Parameter Selection

LSSVM transforms the optimization problem into solving a system of linear equations,
which makes its model have better generalization ability, and the parameters in LSSVM
have a great influence on the performance of the algorithm. In this paper, the Gaussian
radial basis kernel function is selected as the kernel function. The normalization parameter
c and the parameters of the radial basis kernel function σ2 play a key role in the learning
ability, generalization ability and training calculation amount of the algorithm [26]. The size
of is σ2 closely related to the sparsity of the coefficient matrix in formula (11). Another thing
that needs to be determined is the regularization parameter c (also called penalty factor)
of the model. Based on the principle of minimizing structural risk, its size determines the
proportion of empirical risk in structural risk. The smaller c is the weaker the proportion of
empirical risk will be, so the model will be simpler, but the accuracy will be reduced. If c
is larger, the proportion of empirical risk will be larger, which can improve the accuracy
of the model, but the cost is the model will be more complicated. Therefore, in practical
applications, an optimal choice should be made between the accuracy and complexity of
the model. Take a section of c and σ2, and form a two-dimensional plane with the two
sections, and perform continuous search based on the accuracy rate. It can be determined
that the only one (c, σ2) has the highest accuracy rate. It should be noted that this (c, σ2)
may be not the optimal solution of above, but it is also an acceptable satisfactory solution.
Therefore, finding the most parameters and applying them to the state estimation model of
LSSVM will improve the accuracy of state estimation.

This paper has utilized the improved particle swarm optimization algorithm to find
the optimal parameters of LSSVM.

4. Improved LSSVM Parameter Optimization for PSO

In the prediction method proposed in this paper, the parameters c and σ2 of the LSSVM
are determined by the improved particle swarm optimization algorithm, and the behavior
of a group of particles with randomly selected initial values is modeled by the particle
swarm optimization algorithm. The position and velocity of each particle over k iterations
in the search space are described by Xi

k and Vi
k , respectively, and each particle records its

best local position Pi
lbest. Then, at (k + 1) iterations, the velocity of particle i is obtained by

the following equation:

Vi
k+1 = ω ·Vi

k + C1 · R1

(
Pi

lbest − Xi
k

)
+ C2 · R2

(
Pi

global − Xi
k

)
(13)

where R1 and R2 are random functions that generate random numbers between 0 and 1; C1
and C2 are training coefficients; ω is inertia weight factors, which linearly decrease from
0.9 to 0.4, and it can be obtained by the following formula:

ω = ωmax − ((ωmax −ωmin)/kmax)× k (14)

where kmax is the maximum number of iteration. At the end of each iteration, the new
position of each particle is obtained by the sum of its old position and new velocity:

Xi
k+1 = Xi

k + Vi
k+1 (15)
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In addition to improving the accuracy of the GIS fault prediction, the training time and
convergence speed are also particularly important. Therefore, we use the particle swarm
algorithm to optimize the parameters of the LSSVM model in this section, the particle
swarm algorithm is mainly improved in terms of optimization effect and calculation time.

4.1. PSO Weight Nonlinear Adjustment

The inertia weight factor ω has a great influence on the position update of the PSO
algorithm. When the inertia weight factor ω is relatively large, the particle can quickly
converge to the optimal position, but the volatility is large; when the inertia weight factor
is relatively small, the particle convergence speed is slow, and it is easy to fall into the local
optimum when faced with uncertain bionic optimization. Equation (14) is only processed
by linearly decreasing the weight, and there is still room for improvement in the actual
optimization process. Therefore, in this paper, the formula (14) is improved, and the weight
is decreased by a nonlinear method. The improved inertia weight factor ω is:

ω = ωmin

(
ωmax

ωmin

) 1
1+
√

k/kmax
(16)

The nonlinear decreasing change of the inertia weight factor can be realized through
the above formula, which not only ensures the global search ability in the early stage, but
also meets the needs of the later search accuracy.

4.2. PSO Iteration Speed Optimization

After each iteration, the new position of each particle will also change, so the search
state will also be different. To adapt to this situation, this chapter optimizes and improves
the iteration speed of Equation (15), namely:

Xi
k+1 = Xi

k + ξVi
k+1 (17)

where ξ is the speed coefficient.
The parameter optimization process is shown in the Figure 1.
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5. Simulation Results

Taking the data collected by the SF6 online monitoring device of GIS in a distribution
network as an example. A total of 400 sets of data from 1 March to 5 December 2021 are
selected as the training set, and a total of 50 sets of samples of fault type data are selected as
the test set. Code c and σ2 according to the real number coding mode, and the optimization
interval is (0, 200), (0, 15), respectively. The basic parameters of the PSO algorithm are
shown in Table 2. The IPSO iteration curve is shown in Figure 2.

Table 2. Related parameters of PSO.

Parameter Numerical Value

ωmax 0.8
ωmin 0.5
kmax 25

C1, C2 1.5
number of particles 100
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It can be seen from Figure 2 that IPSO reaches the minimum fitness value after 37 iter-
ations, and after that the value no longer changed. In addition, the corresponding optimal
solutions c and σ2 are 64.35 and 2.47, respectively. In order to compare the optimization
effect of IPSO, PSO and IGA are used to optimize c and σ2, respectively, and the maxi-
mum number of iterations is set to 300. The calculation results of the three optimization
algorithms are shown in Table 3.

Table 3. Comparison of optimization algorithms.

Optimization Algorithm IGA PSO IPSO

Number of iterations at convergence 154 126 52
Minimum fitness value 0.0918 0.0642 0.0223
Convergence time/ms 7.49 8.66 4.24

It can be seen from Table 3 that IPSO is better than PSO and IGA in terms of the number
of iterations, optimal value and convergence time. It can be seen that the improvement
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strategy of the improved PSO algorithm proposed in this paper is successful. IPSO can
effectively reduce the number of iterations and accelerate the convergence of the algorithm.

The ratio of SO2F2/SO2 was calculated to find the PD fault types, in which the number
of samples of arc discharge fault types was 14, the classification error was 2 times, and the
model prediction accuracy was 85.7%. There are 10 spark discharge fault type samples, one
classification error, and the prediction accuracy rate is 90.3%. There are 18 normal samples,
one prediction error, and the prediction accuracy rate is 94.4%. The overall accuracy of the
model reached 92.1%. Prediction results and accuracy comparisons of different algorithms
are shown in Tables 4 and 5.

Table 4. Analysis data of GIA gas prediction results.

Method of Prediction SO2 HF SO2F2 SOF2

Actual value 11.84 0.67 0.15 0.8
IGA-LSSVM predictive value 11.21 0.69 0.175 0.72

Absolute error −0.63 0.02 0.025 0.08
PSO-LSSVM predictive value 11.19 0.64 0.159 0.75

Absolute error 0.65 −0.03 0.009 −0.05
IPSO-LSSVM predictive value 11.79 0.68 0.143 0.82

Absolute error −0.05 0.01 0.007 0.02

Table 5. Comparison of prediction results of different algorithms.

Fault Type Number of
Samples

Accuracy

IGA-LSSVM PSO-LSSVM IPSO-LSSVM

1 15 86.4 77.6 85.7
2 10 81.7 89.5 90.1
3 8 77.4 87.4 99.8
4 20 83.2 85.2 95.6

It can be seen from Tables 4 and 5, compared with the prediction methods based
on IGA-LSSVM and PSO-LSSVM, the method proposed in this paper has the smallest
prediction absolute error, higher accuracy and stronger prediction ability.

6. Conclusions

A GIS fault prediction approach based on IPSO-LSSVM is proposed in this paper. The
PSO algorithm is improved by nonlinear weight adjustment and iterative speed optimiza-
tion, so as to optimize the normalization parameters of LSSVM. Simulation results show
that: on the one hand, the improved PSO algorithm is superior to PSO and IGA in terms
of the number of iterations, optimal value and convergence time, which can effectively
reduce the number of iterations and speed up the algorithm convergence; on the other
hand, compared with the traditional algorithm, prediction results of the proposed method
are more accurate, so that the failure trend can be detected before the failure occurs, which
can provide reference for the relevant staff.

In the aspect of power transformer fault diagnosis, with the development of electronic
technology and sensor technology, the means of monitoring power transformers are increas-
ing day by day. How to make full use of multi-dimensional information to comprehensively
diagnose power transformers is a problem that needs further research in the field of power
transformer fault diagnosis.
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