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Abstract: The non-convergence and low efficiency of the thermodynamic model make them difficult
to be used in the aero-engines degradation evaluation, while the negligence of the thermodynamics
process of data-driven degradation evaluation methods makes them inaccurate and hard to analyze
the actual degradation of air path components. So, we propose a thermodynamic-based and data-
driven hybrid model for aero-engine degradation evaluation. Different from thermodynamic-based
methods, the iteration calculation is converted to the forward flow in the proposed neural network,
thus improving convergence. Moreover, a multi-objective loss function considering the components
co-operation process and fusion training process fully taking advantage of simulation and degradation
trajectory datasets are proposed to improve the degradation evaluation accuracy. The test case is
carried out on NASA’s benchmark for aero-engine degradation evaluation. The result shows that the
proposed method can improve the accuracy significantly, which suggests its effectiveness.

Keywords: remaining useful life; hybrid model; aero-engine; degradation evaluation

1. Introduction

Aero-engines are technology-intensive and high-precision products. Because of op-
erating at an elevated temperature, high pressure, variable load and variable speed for a
long period, the performance of air path components (such as compressors and turbines) is
significantly degraded, resulting in air path failures from time to time.

As a key tool to improve the reliability and safety of the engine, remaining useful life
estimation has been a hot topic in the field of aero-engine monitoring [1].

To get an accurate estimation, two main methods are used.
One is the regression method based on the thermodynamic model. Urban first pro-

posed the concept of Gas Path Analysis (GPA) in the 1970s, arguing that the degradation
of air path components is firstly reflected in the changes in the air path structure, such
as blade contamination, falling blocks and increased tip clearance. The above structural
changes will cause significant changes in the characteristics of the air path components
(compressor efficiency, air mass flow, etc.), which in turn will lead to deviations in the air
path measurements from baseline conditions. Therefore, there is a corresponding func-
tional relationship between the degradation factors of the engine air path components
(e.g., compressor efficiency degradation factor) and the measurable parameters (e.g., total
compressor outlet pressure). Now, this functional relationship is widely constructed by
using a component-level thermodynamic nonlinear model for aero engines.

Given the aero-engine air path measurements and operating conditions, the degrada-
tion factors can be regressed or estimated in conjunction with the thermodynamic model of
the aero-engine, and then the degradation of each component can be assessed.

In the 1970s, nonlinear optimal regression of multiple degradation factors was ex-
tremely difficult due to the lack of computing power. Linear regression methods [2]
transform the nonlinear relationship between the component degradation factors and the
measured parameters into a linear one by introducing a linear approximation at a given
operating point and thus estimate the degradation factors through a matrix inversion
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process. However, large modeling errors are inevitably introduced in the linear process,
which reduces the accuracy of the degradation assessment.

With the development of computational power and optimization algorithms, more
nonlinear regression methods are introduced to solve the original nonlinear system of
equations. For example, the Newton-Raphson method is used to solve the nonlinear system
of equations iteratively directly, considering the nonlinear thermodynamic processes of
the engine [3]. Moreover, genetic algorithms were introduced into solving the nonlinear
equations to get a more accurate evaluation [4].

The thermodynamic model based regression method can calculate all the unmea-
surable parameters through the optimization and iteration process and thus can analyze
the air path degradation in detail. However, the iteration process inevitably introduces
convergence problems. Once the engine works near the flight envelope boundary, the it-
eration process may run outside the components’ map, resulting in interruptions of the
thermodynamics calculation [5]. What is more, it takes a long time in the iteration process,
and thus is impossible to use these methods in real-time monitoring.

The other one is the data-driven method that reflects the air path measurements
to the remaining useful life (RUL for short) directly. The data-driven approach uses
machine learning algorithms, such as support vector regression [6], and neural networks [7],
to directly establish the mapping relationship between the measurements and the remaining
useful life by learning from the training data. In the training phase, the data-driven model
is trained with a large number of samples with “measurements-remaining useful life”
mapping. In the evaluation phase, the remaining useful life can be calculated by the
mapping relationship obtained in the training phase.

With the development of deep learning theory, many related methods are proposed
and assessed on the widely used aero engine remaining useful life evaluation benchmark
called C-MAPSS released by NASA. Deep Belief Networks including a stack of Restricted
Boltzmann Machines are first introduced to evaluate the remaining useful life [8]. Li et al. [9]
proposed a deep branched network where failure mode classification and RUL prediction
are jointly learned sequentially and got a good result in the C-MAPSS dataset with multiple
failure modes. Convolution Neural Network (CNN) is also specified to evaluate RUL in the
aero engine field [10]. Li et al. [11] introduced a time window using the convolution neural
network to extract time information and get a better result. Recently, Recurrent Neural
Network (RNN) and its variation the Long Short-Term Memory (LSTM) networks gained
great attention in remaining useful life evaluation for their time information extraction
ability. Wu et al. [12] implemented vanilla LSTM networks to achieve good RUL prediction
accuracy in the cases of complicated operations, working conditions, model degradations
and strong noises. Sayah et al. [13] introduced an enhanced deep LSTM approach, for which
Gaussian mixture clustering is performed for all collected sensor data and operational
monitoring information. A detailed description of deep learning methods applied in the
C-MAPSS dataset can be found in [14,15].

Almost all the proposed methods applied to evaluate RUL in the C-MAPSS dataset
are data-driven or deep learning methods. Their advantage is obvious: these methods
do not consider the thermodynamic process of the aero-engine, nor do they involve the
iterative process of the nonlinear equations, so the computational efficiency is high and
can be used for online monitoring. However, the accuracy cannot be high because no
thermodynamic constraints are considered in the evaluation and these methods are easy
to run into overfitting to the training sets. Moreover, only the remaining useful life can
be evaluated using these data-driven methods and the component degradation factors
cannot be accessed, the evaluation cannot give a detailed analysis of the engine’s operating
condition [16].

Aiming to give a more accurate evaluation and detailed analysis of the engine’s
condition with the help of thermodynamic constraints, this paper proposed a novel hybrid
model considering both the convergence and thermodynamic process. The main innovation
points are as follows:
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• A novel hybrid framework converting the thermodynamic or physical based iterative
calculation to a forward flow of network is introduced to improve convergence.

• A novel disequilibrium loss function related to the engine components co-working and
fusion training process is proposed to improve the degree of matching to the engine
working process. So, the accuracy of the degradation evaluation can be improved.

The rest of the content is organized as follows. First, the traditional thermodynamic
models are briefly reviewed. Next, the proposed model is detailed presented. Finally,
the method proposed is experimentally validated.

2. Related Works

This section gives a brief review of the thermodynamic model in aero engine modeling.
In the thermodynamic-based model [17,18], major components of aero-engines such

as fan, combustion chamber and turbine are modeled by thermodynamic calculations.
Given the upstream and working parameters of one component, its exit parameters can be
calculated with the component characteristics.

The state parameters at the entrance and exit of the component are called station pa-
rameters.

All station parameters can be inferred by solving the equilibrium equation followed
during the engine operation.

• The work equation on one shaft.

NLPTηmL = NFan + NLPC,

NHPTηmH = NHPC,
(1)

where NLPT and NHPT are turbine output work on the low and high pressure rotor
respectively, NFan, NLPC and NHPC are the responding demanded work of compressors
and ηmL and ηmH are the responding transferring efficiency. The turbine output work
should match the compressor demanded work on the same shaft in a steady state.

• The flow equations through the air path.

WLPT = WLPTmap,

WHPT = WHPTmap,
(2)

where WLPT and WHPT are the mass flow from upstream through the turbine and
WLPTmap and WHPTmap are the mass flow calculated by the characteristics of turbines.

• The throat static pressure equation.

PSnozzle = PSnozzleQ, (3)

where PSnozzle and PSnozzleQ are the throat static pressure calculated by upstream
parameters and downstream or ambient parameters.

Newton-Raphson method is usually used to solve the above Equations (1)–(3) itera-
tively. However, when the engine works near the flight envelop boundary, the iteration
process is easy to run out of the characteristics map, leading to non-convergence.

3. Proposed Degradation Evaluation Method

The proposed degradation evaluation method comprises the following four processes.
First, the hybrid network framework is proposed to convent the thermodynamic-based
iterative calculation to a forward flow of the network. Then, to rebuild the equilibrium
equations in thermodynamic models for engine components collaboratively working,
a disequilibrium loss function describing the incompatibility between component modules
is introduced. Then, to ensure the accuracy of the hybrid model, the integration training
process with multi-source data is proposed. At last, the remaining useful life is estimated
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through a regression process. The remaining part of this section will separately introduce
the processes mentioned above.

3.1. Hybrid Model Framework

The iterative calculations in the thermodynamic-based method usually run out of
the components’ envelope, resulting in non-convergence. The main reason lies in that
the solution of the equilibrium equation is a nonconvex optimization problem, and un-
reasonable initial value settings tend to make the iterative process fall into local optimal
solutions. To address this issue, a hybrid network framework converting the iterative
calculation to the forward process is proposed. The component nets are built to model the
component characteristics. So, through the training process, the component characteris-
tics can be embedded in the weights of the component nets and the forward calculation
through the component nets can replace the iterative process in the thermodynamic model.
The framework is shown in Figure 1.

thermodynamic process of aero-enginethermodynamic process of aero-engine Hybrid model structureHybrid model structure

Fan net

LPC net

Bypass net

HPC net

Burner net
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Figure 1. The structure of the proposed hybrid model.

Figure 2 gives an example of a fan net module which is a single-entrance and double-
exits air path structure. One of the double-exits is connected to the low-pressure compressor
and the other one is connected to the bypass. To calculate the exit parameters of the fan
net, the entrance parameters (such as the total temperature and pressure), the working
parameters (such as the rotor speed) and its degradation rate should be given.

bypass

Input layer:

total temperature

total pressure

rotor speed

mass flow degradation

efficiency degradation

bypass entrance parameters: 

total temperature

total pressure

Mach number

LPC entrance parameters:

total temperature

total pressure

Mach number

Fan net

LPC net

bypass net

Figure 2. The structure of the fan net.

Once the entrance parameters, the exit parameters and the connection relationship
between components are determined, the airflow process inside the fan (the left in Figure 2)
can be converted to a network module (the right in Figure 2) whose forward calculation is
the same as the thermodynamic flow.
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As shown in Figure 3, the net modules for the components have four layers. The state
parameters of the component entrance such as the total temperature and pressure, the oper-
ating parameters such as the rotor speed and the degradation rate are taken as the inputs.
The state parameters of the component exit are calculated through the forward process of
the component net. The calculated outputs are in turn taken as the entrance parameters of
the downstream component.

Full connected 

net+ReLU

Full connected 

net+ReLU

Full connected 

net+ReLU

Full connected net

Normalization

Un-normalization

Inlet station parameters

Operation parameters

Degradation parameters 

Other Vars

Outlet station parameters

Figure 3. The structure of the component net.

3.2. Disequilibrium Loss

The thermodynamic-based model establishes a set of equilibrium equations for engine
components collaboratively working. These equations can be divided into three parts:
the mass flow equilibrium describes that the mass flow of the component entrance and
exit should be equal; the pressure equilibrium describes that the static pressure of certain
components such as nozzle should be equal; the power equilibrium describes that the
turbine output power is equal to the compressor power requirement.

Newton-Raphson method is used to solve the equilibrium equations iteratively. How-
ever, after transforming into the neural network model, the feed-forward process of the
network replaces the iterative solution process of the equilibrium equations. If the mean
square loss of the traditional neural network is used as the optimization objective, the equi-
librium state for components cooperating is no longer considered and thus is difficult to
be satisfied.

To address this issue, a disequilibrium loss based on component co-operating is
proposed. The equilibrium equations when components are co-operating at the steady state
are converted to corresponding disequilibrium losses as follows to train the hybrid network.

The work Equation (1) are converted to the work disequilibrium loss.

loss1 =
|ηmNT − NC − Pext|2

NC
, (4)
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where ηm is the mechanical drive efficiency of the turbine, NT is the turbine output work
calculated through the state parameters, NC is the compressor demanding work and Pext is
the work extraction from the turbine by aircraft and engine accessories.

The flow Equation (2) are converted to the flow disequilibrium loss.

loss2 =
1
M

M

∑
i=1

(Wi −Q(Ti, Pi, Mai, Ai))
2

W2
i

, (5)

where Ti, Pi, Mai and Ai denote the total temperature, total pressure, Mach number and
area at the ith station. Q(Ti, Pi, Mai, Ai) is the mass flow function:

Q(Ti, Pi, Mai, Ai) = K
Pi Ai√

Ti
q(Mai). (6)

The throat static pressure Equation (3) is converted to the pressure disequilibrium loss.

loss3 =

∣∣PS(Ti, Pi, Mai, Ai)− PSQ(Ti, Pi, Mai, Ai)
∣∣2

PS2(Ti, Pi, Mai, Ai)
, (7)

where PS(Ti, Pi, Mai, Ai) and PSQ(Ti, Pi, Mai, Ai) are the throat static pressure calculated
by the upstream parameters and the downstream/ambient pressure respectively.

Traditional mean squared loss is then added to lead all station parameters converging
to values calculated by the thermodynamic model in the simulation dataset or actual values
in the flight data.

lossm =

√√√√ 1
M

M

∑
i=1

(yi − ŷi)
2. (8)

where yi is the station parameters from the thermodynamic model or the flight data and ŷi
the evaluated values from the hybrid network.

Then, the total loss is as follows.

loss = λ0lossm + λ1loss1 + λ2loss2 + λ3loss3, (9)

where λi is the loss weight.
In (9), loss1 is the work disequilibrium loss measuring the compatibility of the com-

pressor and turbine in the aero engine, loss2 is the flow disequilibrium loss measuring
the mass flow compatibility of the inlet and the exit of a certain component in the aero
engine and loss3 is the pressure disequilibrium loss measuring the pressure compatibility
of the inlet and the exit of certain component in the aero engine. The loss weights in (9) are
determined through a hyper-parameter validation experiment where 16 groups of different
loss weight settings ((1, 2, 3, 4)× (2, 5, 7, 9)) are compared. Finally, the loss weights group
λ0 = 1, λ1 = λ2 = λ3 = 5 is chosen for its best performance.

Though the loss function in (9) has as many as four items, there are only two groups.
One is the traditional mean squared loss denoted as lossm. The other group is the thermo-
dynamic loss denoted as λ1loss1 + λ2loss2 + λ3loss3. The nature of these three losses is the
same (measuring the compatibility of the engine components) and can converge along the
same direction once given suitable λ.

3.3. Fusion Training

Based on the establishment of the network framework and disequilibrium loss, the hy-
brid model needs to be trained so that the model can converge toward the actual working
process of the path components under the guidance of the optimization objective. The mod-
eling accuracy of the hybrid model is closely related to the quality of the data set used for
training. Two datasets are used to train the hybrid model: the simulation dataset Ωs and
the degradation trajectories dataset Ωd.
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The degradation trajectories dataset includes “measurement—remaining useful life”
reflection samples along with certain degradation processes of engines, which is the ideal
training set. However, its volume is too small to train the hybrid model. So, the simulation
dataset generated by the traditional thermodynamic model with all station parameters and
components degradation factors is introduced. The simulation dataset has a large sample
volume and can encompass most of the flight envelope. However, there is a certain degree
of deviation from the actual working process of the air path components.

Inspired by the mixed batches for the GAN training [19] where the true and fake
samples are mixed to input into GANs, a fusion training process with multiple data sources
is proposed. The fusion training of the hybrid model within the full flight envelope is
performed by combining the data sets above according to the following process, as shown
in Figure 4.

operating

space

pretrained on the simulation data post trained on the 
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Figure 4. The fusion training process.

First, the hybrid model is pre-trained on the simulation dataset with a fine grid using
the diverse working and degradation samples in the simulation dataset that is generated
from the rebuilt thermodynamic model. The measurements corresponding to NASA’s
dataset are extracted from the parameters of the results output by the thermodynamic
model. To give a comprehensive description of the degradation situation, a total of ten
degradation parameters including the mass flow degradation and the efficiency degrada-
tion of the fan, low pressure compressor, high pressure compressor, high pressure turbine
and low pressure turbine are injected into the thermodynamic model to calculate the
targeted measurements.

As illustrated in the left part of Figure 4, the degradation space and the operating space
are divided into a grid to cover all the working states of aero-engines. Each intersection
in the grid is input into the thermodynamic model to calculate the parameters of the air
path. So, the hybrid model can roughly learn the thermodynamic processes in the working
and degradation space of the air path components. For consistency with the subsequent
degradation trajectories dataset, the degradation rate in the degradation trajectories dataset
is defined as the maximum of the ratios of the current stall and exhaust gas temperature
(EGT) margins to these of the undegraded sample.

θi = max(
SMi
SMn

,
EGTmi
EGTmn

), (10)

where θi is the degradation rate of the ith sample in the simulation set Ωs, SMi and SMn are
the stall margins of the ith sample and the undegraded sample respectively while EGTmi
and EGTmn are the exhaust gas temperature margin of the ith sample and the undegraded
sample respectively.
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Then, the hybrid model is mixed trained using samples from both the simulation
dataset and the degradation trajectories dataset. Since only remaining useful life values are
accessed related to the degradation information, the degradation rate is defined as the ratio
of the remaining useful life of the current sample to the total useful life.

θij =
rulij

lj
, (11)

where θij is the degradation rate of the ith sample in the jth degradation trajectory, rulij
is the remaining useful life of the ith sample in the jth degradation trajectory that can be
accessed in the dataset and lj is the total life of the jth trajectory.

The mixing strategy is to randomly select certain percent training samples from two
datasets to generate the training set for one epoch.

Ωk = {ss1, ss2, . . . , ssm, sd1, sd2, . . . , sdn},
ssi ∈ Ωs,

sdi ∈ Ωd,
n

m + n
= λk,

(12)

where Ωk is the training set in the kth epoch, Ωks is the subset whose samples are randomly
selected from the simulation dataset, Ωkd is the subset whose samples are randomly se-
lected from the degradation trajectories dataset and λk is the percent of samples from the
degradation trajectories dataset in the kth epoch:

λk =
1

1 + e1− ak−b
kmax

, (13)

where kmax is the total training epochs in the mixed training process, and a and b are the
parameters defining the mixing process in the fusion training. This equation comes from
the logistic regression function that can add samples from another dataset gradually.

In the test case, a and b are set to 0.05kmax and 5kmax respectively to form λk in Figure 5
controlling the percentage of the samples from the degradation trajectories dataset during
the training process.

At last, the hybrid model is post-trained on the degradation trajectories dataset for
shorter epochs.

Different from the traditional pre-training process where the model is first trained in
the pre-training dataset and further trained in the targeted dataset [20], the fusion training
process mixes the simulation dataset and degradation trajectories dataset in one training
epoch. This fusion method can avoid sudden changes in the network weight optimization
process caused by the switch of the training set so that the network training process is
much smoother and easier to get a better training result.
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Figure 5. λk during the training process.

3.4. Model Testing

When trained by the simulation data and degradation trajectory data, the hybrid model
can reflect the degradation rates and operating settings to the measurement parameters.

zj = h(ωj, θj), (14)

where ωj is the engine operating vector, θj is the degradation rate of the last cycle in the jth
testing sample, zj is the corresponding measurement parameters of the air path vector and
h is the hybrid model mapping the degradation rates to the measurement parameters.

When given the measurement parameters and engine operating parameters, the degra-
dation rates of the last cycle in the jth testing sample can be regressed using the reverse
operation of (14).

θj = h−1(ωj, zj), (15)

Then, the remaining useful life can be computed using the following reverse calculation.

r̂j =
cj

θj
, (16)

where r̂j is the evaluated remaining useful life value and cj is the cycle numbers that the jth
sample has operated.

At last, the root mean square error (RMSE) metric is used to measure the accuracy of
the proposed methods:

RMSE =

√√√√ 1
N

N

∑
1
(r̂j − rj)2, (17)

where N is the total sample number of the testing set, r̂j is the evaluated remaining useful
lift and rj the actual one.

4. Test Case
4.1. Dataset Description

The proposed method is tested under NASA’s benchmark [21,22]. Different operat-
ing states and fault types are included in the four datasets of this benchmark. Table 1
shows the detail of the benchmark whose four datasets are FD001, FD002, FD003 and
FD004 respectively.
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Table 1. Benchmark details.

Datasets FD001 FD002 FD003 FD004

the number of training units 100 260 100 249
the number of testing units 100 259 100 248

the number of operation states 1 6 1 6
the number of fault modes 1 1 2 2

the number of training samples 17,731 48,819 21,820 57,522
the number of testing samples 100 259 100 248

Three operating states including the flight altitude, Mach number and inlet total
temperature and twenty-one measurements are recorded in one sample. Table 2 shows the
meaning of the operation states and measurements. Certain reasonable initial wear and
individual variation are injected into every aero-engine which is taken to be healthy at the
beginning. With the continuous use of the aero-engine, it begins to degenerate at a certain
time point and then degrades to failures, when the remaining useful life of this aero-engine
is denoted as zero.

Table 2. Measurements in the NASA benchmark.

Indices Description

1 Altitude
2 Flight Mach number
3 Throttle resolver angle
4 Temperature at fan entrance
5 Temperature at the low-pressure compressor exit
6 Temperature at the high-pressure compressor exit
7 Temperature at the low-pressure turbine exit
8 Pressure at the fan entrance
9 Pressure at the bypass

10 Pressure at the high-pressure compressor exit
11 Fan speed
12 Core speed
13 Pressure ratio
14 Static pressure at the high-pressure compressor exit
15 Ratio of fuel flow
16 Corrected fan speed
17 Corrected core speed
18 Bypass ratio
19 Fuel-air ratio
20 Bleed enthalpy
21 Demanded fan speed
22 Demanded corrected fan speed
23 High-pressure turbine coolant bleed
24 Low-pressure turbine coolant bleed

To one sample of the training set, the remaining useful life can be inferred through the
following equation for each cycle of the aero-engine before failure.

ri = l − ci, (18)

where ri is the ith sample’s remaining useful life, ci is the cycle number this sample
experienced and l is the total cycle number of this sample.

An episode from the beginning to some point before failure is extracted from the entire
running cycle to form the testing sample. So its remaining useful life can be inferred by
Equation (18) and provided in the datasets. The proposed method is tested to evaluate the
remaining useful life in the four testing datasets.
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During the training phase, all the provided measurements associated with its remain-
ing useful life values are used as the training samples. During the testing phase, the data
point recorded at the last cycle for each aero-engine is used as the testing sample.

4.2. Data Correction and Augmentation

The degeneration is usually not occurred in the early phase of one engine while the
remaining useful life values given by Equation (18) show a decreasing trend. So, a constant
degradation correction [23] in the early phase is applied as follows:

rci = min(ri, rmax), (19)

where ri is the calculated RUL value from Equation (18) and rmax is the pre-set maximum
RUL that is set to 130 in our experiment. This correction assumes that the aero-engine will
not degenerate until 130 cycles from the bottom.

Because the proposed model is pre-trained by simulation data, the inputs and the outputs
of the model are the real values without normalization. So, there are no data pre-processing.

Another important issue in the aero-engine degradation evaluation is the measure-
ments or sensors selection. In the subsets FD001 and FD003 of NASA’s dataset, some
measurements remain constant all the engine’s lifetime. In this condition, these measure-
ments are useless to the RUL estimation. Therefore, sensors 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15,
17, 20, and 21 are selected as the input features for subsets FD001 and FD003. As for subsets
FD002 and FD004, no constant measurements exist and all the measurements are selected
as the input features.

The volume of the training set in the benchmark datasets is too small to fully train
the hybrid model. Only 100 units and an average of 150 samples per unit are accessed.
To enlarge the training sample, the rebuilt thermodynamic model is used to generate more
training data according to the setting of the benchmark datasets.

Four augmentation datasets with 20,000 samples each corresponding to the four
subsets in the benchmark datasets (Table 1) are generated from the rebuilt thermodynamics
model, which is called FD001AUG to FD004AUG respectively. In each augmentation
dataset, the fault modes are the same as the original subset, the degradation factors are
randomly generated over the scale of the original subset and the degradation rates are
computed according to (10).

4.3. Model Training and Testing

As proposed in Section 3.3, the hybrid model is pre-trained in the augmentation dataset
using the multi-objective loss function. The training epochs are set to 500. The learning rate
is set to 1e− 3 with 10% decay every 100 epochs. The batch size is 256.

Here, hyper-parameters such as the batch size and the initial learning rate are essential
to get a better result. To get a relatively reasonable set of these hyper-parameters, the final
hyper-parameters are the result of a grid-search process: the size of mini-batch [128, 256, 512]
and the learning rate [1e− 2, 5e− 3, 1e− 3, 5e− 4]. The hyper-parameters with the best
RMSE in the validation set (the batch size 256 and the initial learning rate 1e− 3) are chosen.

The trend of the maximum relative error of the Exhaust Gas Temperature (EGT) during
the simulation pre-training process is shown in Figure 6. It can be seen that when the
number of training epochs reaches about 200, the EGT tends to converge and the maximum
relative error is less than 0.1% which can be acceptable considering the max error of
corresponding thermodynamic model can reach 0.5%.
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Figure 6. The Exhaust Gas Temperature trend.

The trend of the maximum relative error of each equilibrium loss in (9) with the
training process is shown in Figures 7–9. It can be seen that each equilibrium loss gradually
converges to an acceptable error range as the training proceeds.

Figure 7. The flow equilibrium loss trend.

Figure 8. The work equilibrium loss trend.
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Figure 9. The pressure equilibrium loss trend.

Then, the hybrid model is mixed trained in the augmentation dataset and the degrada-
tion training set provided by the benchmark datasets as proposed in Section 3.3. The train-
ing epochs are also set to 500. The learning rate is set to 1e − 4 with 10% decay every
200 epochs. The batch size is also 256.

At last, the hybrid model is post-trained in the degradation training set. The training
epochs are set to 200. The learning rate is set to 5e− 4. The batch size is 256.

The trend of the maximum relative error of each equilibrium loss in (9) after the post-
training process is shown in Figures 10–12. It can be seen that although the error values of
each equilibrium loss are enlarged compared with the pre-training results of the simulation
data, each equilibrium loss is still in an acceptable range considering the tolerance of the
corresponding equilibrium equations for the thermodynamic model can be set to 1%.

Figure 10. The flow equilibrium loss trend in the post-training process.
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Figure 11. The work equilibrium loss trend in the post-training process.

Figure 12. The pressure equilibrium loss trend in the post-training process.

The hybrid model is then tested on the testing sets in the benchmark datasets. A total
of 200 repeated experiments are done. The RMSE values are computed as (17). The mean
and standard deviation RMSE values and the R2 scores mean of the repeated experiments
are shown in Table 3. And R2 scores is defined as follows:

R2 = 1− ∑(ri − r̂i)
2

∑(ri − r̄)2 , (20)

where ri is the true RUL value of the ith sample, r̂i is the evaluated one and r̄ is the mean of
all the true RUL values. The result shows that the proposed method’s R2 score is above 0.9
in FD001 and FD003 while above 0.65 in FD002 and FD004, validating the robustness of the
proposed method.

Table 3. Results of the proposed method.

FD001 FD002 FD003 FD004

RMSE-mean 11.34 19.89 11.87 22.07
RMSE-std 0.24 0.39 0.28 0.41
R2-mean 0.917 0.756 0.908 0.690
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Figure 13 shows an example of the evaluated remaining useful life by the proposed
model for the FD001 testing samples and the corresponding actual remaining useful life
given by the benchmark. These samples are arranged by the actual remaining useful life
values from small to large for better illustration. We can see that the differences are smaller
in the region where the actual remaining useful life values are small. This is mainly because
the changes in the air path are obvious near the aero-engine failure and the proposed
method can capture these air path changes through thermodynamics-oriented modeling.
However, the deviation becomes higher in the middle testing samples. This is mainly
because the engine has passed the break-in period and the fault features during this stable
period are not obvious, resulting in a relative higher evaluation error.

Figure 13. Sorted evaluations of the FD001 testing samples.

To verify the effectiveness of the fusion training proposed in Section 3.3, a comparison
experiment is carried out using traditional pre-training process. The trends of the maximum
relative error of the Exhaust Gas Temperature (EGT) with traditional pre-training process
and fusion training after the post-training process are shown in Figure 14. It can be
concluded that during the pre-training process, the training error converges slower than
the fusion training process and the final error under the pre-training process is also larger
than that under the fusion training process.

Figure 14. Comparison between pretraining and fusion training process.
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4.4. Models Comparison

Table 4 shows comparisons among different degradation evaluation methods mea-
sured by RMSE metric on the four benchmark datasets.

In Table 4, networks ensemble [8] is ensembled by deep belief networks composed of
three stacked Restricted Boltzmann Machines. Tensorcast [24] is a tensor-based method that
forecasts time-evolving series by incorporating multiple data sources in coupled tensors.
LSTM [25] used two Long short-term memory networks layers and an LSTM fusion layer
to estimate the RUL. BiLSTM [26] used two BiLSTM layers and two fully connected layers
to estimate the RUL. In the CNN LSTM hybrid [27], the CNN is used to extract the features
of time-series data and the long short-term memory (LSTM) networks considers the timing
of the data. The structure of 1D CNN [11] consists of 5 convolution layers and one fully
connected layer.

Table 4. Performance comparisons of the proposed method and state of the art methods.

Methods FD001 FD002 FD003 FD004

BiLSTM [26] 13.65 23.18 13.74 24.86
CNN LSTM hybrid [27] 12.58 19.34 12.18 20.03

1D CNN [11] 12.61 22.36 12.64 23.31
Bi-level LSTM [28] 11.80 23.14 12.37 23.38

MA-LSTM [29] 13.52 22.57 12.98 23.88
Proposed hybrid model 11.34 19.89 11.87 22.07

It can be seen that the model proposed in the paper achieves high accuracy on the
benchmark, verifying its validity. From Table 4, we can see that the accuracy of the proposed
method in FD002 and FD004 is not better than CNN LSTM hybrid [27]. We think there may
be the following reasons. One is that there are more training samples (about 250) in FD002
and FD004, and in this situation, the effectiveness of the simulation training will be reduced.
The other one is that the number of operating conditions in FD002 and FD004 (6 conditions)
is more than that in FD001 and FD003 (only one condition), so the gap between the rebuilt
thermodynamic model and the original model generating these datasets will be larger,
resulting in the lower accuracy of our method in FD002 and FD004.

5. Conclusions

This paper proposed a novel hybrid degradation evaluation model for aero-engines.
Thermodynamics-based network converting the iteration calculation into the forward flow
in the network is constructed to improve the convergence. Disequilibrium loss functions
considering air path components co-working and fusion training process taking advantage
of the multi-source dataset are proposed to improve the accuracy. The test case is carried
out on NASA’s benchmark for aero-engine degradation. The comparison with other meth-
ods shows that the proposed method can significantly improve the remaining useful life
estimation accuracy, which suggests its effectiveness in aero-engine degradation evaluation.

6. Future Work

Just as Simon Vollert and Andreas Theissler said in [15], it is one of the disadvan-
tages that neural networks or deep learning based approaches cannot generally provide
uncertainty quantification for their point predictions. However, uncertainty quantifica-
tion that gives a distribution for RUL evaluation is critical to the use and maintenance of
aero-engines. So, our future work mainly focuses on the uncertainty estimations of our
method for the RUL evaluation. Here, a few trial ideas are introduced: First, drop-out
module as a Bayesian approximation can be added to our network structures to model
uncertainty in RUL evaluation as [30]. Second, Monte Carlo simulation can be carried out
to give uncertainty analysis as [31].
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