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Abstract: Intense electromagnetic pulses are electromagnetic waves with sharp rise time, high field
strength and short duration. They have attracted more and more attention in recent years because
they can cause destructions or malfunctions of some key national core infrastructures, such as power
grids, communication and financial networks, etc. Hence, it is important to harden these facilities to
ensure that they can survive in the face of electromagnetic pulse attacks. A direct way to investigate
the vulnerabilities of these facilities is placing them in the electromagnetic environments generated
by EMP simulators. However, the scale of facilities under test are limited by the working volumes
of simulators. With the increase in working volumes and field strength, the price and technical
difficulty of simulators are increased. Therefore, low cost and sustainable test methods to investigate
vulnerabilities of large-scale systems against EMP are proposed in this study. The study takes
advantage of continuous wave immersion (CWI) test and pulse current injection (PCI) test methods,
which are low cost and sustainable to predict the pulse responses and assess the nonlinear effect
of large-scale facilities under EMP attacks. In a CWI test, the magnitude of the transfer function
of large-scale systems or facilities can be measured, and the corresponding phase information of
the transfer function can be reconstructed by minimum phase algorithm (MPA) if the systems meet
the minimum phase condition. After acquiring the entire information of the transfer function, we
can predict the responses of a system under threat-level EMP attacks. However, these responses
are obtained under the assumption that the system does not have nonlinear effects. Because the
CWI is a low-level test, it cannot simulate the threat-level EMP attacks. In the PCI test proposed
here, a bulky pulse current is coupled into the system to stimulate enough current intensity, just as
the system was attacked by threat-level EMPs. In this situation, the system would be destroyed, or
any other nonlinear effect would occur in the system. After that, the problem is to determine the
quantities of the injected current, and a few kinds of norms are introduced in this paper to define
the quantities. The method proposed here innovatively takes the experimental results of CWI as
reference inputs of PCI tests. In this paper, the accuracy of the response prediction is validated by
means of simulations and experiments. Results show that as a low-level test method in the frequency
domain, the CWI test method can not only analyze couplings of external electromagnetic energy from
frequency domain but also predict responses of the facilities under high amplitude electromagnetic
pulses. The nonlinear effect of large-scale facilities can be assessed by applying the PCI test method
with the results from CWI prediction. Therefore, if infrastructures or facilities are too large to be
tested under EMP simulators, an alternative approach is to carry out the CWI and PCI experiments.

Keywords: continuous wave immersion (CWI); electromagnetic pulse (EMP); pulse current injection
(PCI); transfer function; minimum phase algorithm (MPA)

1. Introduction

During the 1960s, the unusual electrical effects caused by nuclear tests in the atmo-
sphere have been noted [1]. Since then, interests have been focused on the electromagnetic
pulses with sharp rise time, high field strength and short duration time [2–7]. These EMPs
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usually cover a wide range of several hundred kilometers and cause destructions or mal-
functions to some key national core infrastructures, and many protection methods have
been proposed in the past [8–12]. When the EMPs arrived at the external surface of a system,
voltages and currents would be prevailing at typical locations within a system or installa-
tion through external and internal coupling processes. System-level EMP simulators are
the most effective means of assessing the effectiveness of these voltages and currents [13].
Some countries have built their various EMP simulators to investigate the vulnerabilities of
facilities or infrastructures [14,15]. In 1985 and 2005, China also developed small guided-
wave EMP simulators, which were named DM-1200 and MDES-60, respectively [16,17].
However, the test object dimensions should not exceed 60 percent of the working volume
dimensions for good simulation fidelity [18]. Hence, some large-scale facilities or systems
need to be tested under simulators with large enough working volumes.

However, with the increase in designed working volumes and field strength, the
price and technical difficulty of simulators are increased [19–21], especially in the field of
insulation technology and insulation materials [22–27]. For this reason, researchers have
developed the CWI test method, based on commercial equipment, and developed corre-
sponding standards [28]. The CWI is a low-level test method which is usually employed in
shielding designs, hardness surveillances or hardness assessments. It adopts commercial
CW sources and antennas with different frequency ranges to provide sufficient electro-
magnetic field immersion, and the coupling quantities can be measured [29]. Compared
with EMP simulators, the equipment that makes up the CWI system is commercial and
transportable, so it is easier to design and the cost is lower. As early as 1972, Carl E. Baum
theoretically analyzed and designed the topological structure and impedance loaded in a
low field intensity continuous wave hybrid simulator, and field distributions are charac-
terized by the loaded impedance, but it only existed conceptually at that time [30,31]. In
1995, Clayborne D. Taylor built an elliptical illuminator for CWI tests of large-scale systems,
which could work in two modes: horizontal polarization and vertical polarization, and it
is used for hardness maintenance/hardness surveillance (HM/HS) [32]. In 2012, William
D. Prather introduced a transportable CWI test system which was made up of different
antennas, attempting to cover a 100 kHz to 1 GHz frequency range, for HM/HS of fixed
facilities [33,34]. The main problem with the CWI test method is that it cannot simulate
threat-relatable electrical quantities because the radiated electromagnetic field strength is
weak (≈1 V/m) [35], and there are almost no nonlinear effects for electrical systems in such
weak fields.

The PCI is a test method for assessing conducted susceptibilities of electrical facilities
or systems [36]. Such test methods simulate a threat-relatable pulse current by injecting
high-power transients to lines that penetrate through electrical facilities. It can demonstrate
whether electrical systems are damaged or upset by the residual electromagnetic stresses
after attenuation or electromagnetic barrier. In some related standards, the PCI source
parameters and waveforms are defined according to different coupling paths [37–39],
whereas the injected electrical quantities for different objects have not been clearly defined.
Some researchers have proposed several modeling methods of inductive couplers used in
PCI tests [40–42], but the injected electrical quantities related to threat-relatable EMPs are
still not mentioned.

In order to investigate vulnerabilities or the nonlinear effect of large-scale facilities
or systems, two steps, including CWI and PCI, are proposed here, and the feasibility is
validated through simulations and experiments. First, when carrying out a CWI experiment,
large scale facilities or systems are illuminated at an appropriate distance so that CW
signals traveling from antennas can cover all of them. Transfer functions which relate pulse
responses and threat-relatable EMP excitations are derived from CWI test results by the
minimum phase algorithm. Then, the amplitudes of pulse currents predicted by transfer
functions are as the inputs of PCI tests. In this paper, the predicted pulse responses of
different objects against threat-relatable EMPs are considered as the injected quantities of
PCI, and a short-wave antenna is studied as a case.
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The remainder of this article is organized as follows: In Section 2, the principle of the
minimum phase algorithm (MPA) is reviewed and employed to process the CWI test data.
Circuit models of systems with different characteristics are built to verify the availability
and accuracy of MPA. In Section 3, a 3D model of a cubic shielding enclosure with a circular
hole is built to simulate the radiation and coupling process of CWI. Pulse responses in the
enclosure are predicted and simulated. In addition, an experimental study on a short-wave
antenna by CWI and EMP radiation tests is carried out to confirm that the predicted pulse
current on the antenna can be used to estimate that coupled by the EMP radiation. In
Section 4, the injected electrical quantities in PCI tests are defined by considering the CWI
test results, which make the vulnerabilities assessments of large-scale electrical systems or
facilities more reasonable. Finally, Section 5 concludes this article.

2. Principle and Methods
2.1. Review of the Hilbert Transform

The Hilbert Transform is a commonly used technique which can relate the real and
imaginary parts of a spectral response. It is an important theory and is widely used in
signal analyzing and processing. One useful application in CWI tests is to reconstruct the
phase information using magnitude-only data. The Hilbert Transform can be derived from
the Fourier Transform of a casual function, as follows [43]:

f (t) = f (t)u(t) (1)

where u(t) is a step function. The Fourier Transform of (1) can be obtained as:

F(ω) = X(ω) + jY(ω)
= FT( f (t)u(t)) = FT( f (t)) ∗ FT(u(t))
= 1

2π [X(ω) + jY(ω)] ∗
[
πδ(ω) + 1

jω

]
=
[

X(ω)
2 + 1

2π Y(ω) ∗ 1
ω

]
+ j
[

Y(ω)
2 − 1

2π X(ω) ∗ 1
ω

] (2)

where “∗” and FT(·) represent the convolution operation and Fourier Transform, respec-
tively. Since the real and imaginary parts at the two sides of Equation (2) are equal,
respectively, we will obtain the relations as:

X(ω) =
1
π

Y(ω) ∗ 1
ω

=
1
π

∫ ∞

−∞

Y(σ)
ω− σ

dσ (3)

Y(ω) = − 1
π

X(ω) ∗ 1
ω

= − 1
π

∫ ∞

−∞

X(σ)

ω− σ
dσ (4)

Equations (3) and (4) indicate that the imaginary parts of the spectrum of a casual
function can be derived from the real part by using Hilbert Transform, and vice versa. This
property leads to the derivation of the minimum phase algorithm (MPA). In the field of
digital signal processing, if the transfer function, including the magnitude and phase, of
a system is known, the system response can be obtained by convolution of the input and
transfer function. The magnitude of the system transfer function can be easily measured in
a CWI test, while the phase is difficult to measure. To solve this problem, the MPA could
be employed to reconstruct the phase information from the magnitude-only data, which
are measured in a CWI test, because the magnitude and phase of the transfer function of a
minimum phase system are not independent. After the phase information is reconstructed,
the response of the system can be predicted by convolving the input and the transfer
function. The details of reconstructing a complex spectrum by magnitude-only data with
MPA are summarized and illustrated in the next section.
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2.2. Procedure of MPA to Reconstruct Entire Complex Spectrum [44,45]

As the magnitude of a complex spectrum,
∣∣F(ejω)∣∣ can be acquired by CWI tests; the

problem is to reconstruct the corresponding phase information, and this requires that the
system function F(z) meets the minimum phase condition.

Suppose F(z) is the system function of a minimum phase system. It can be written as:

F(z) = |F(z)| · exp(jarg[F(z)]) (5)

Suppose H(z) is the logarithm of F(z), then let:

H(z) = ln(F(z)) (6)

Substitute (5) into (6), H(z) can be written as:

H(z) = ln|F(z)|+ jarg[F(z)]
= HR(z) + jHI(z)

(7)

When considering this problem on the unit circle, z can be replaced by ejω . According
to properties of a minimum phase system, HR

(
ejω) and HI

(
ejω) are Hilbert Transform

pairs [46], and they are not independent.

HR

(
ejω
)
= H(0) +

1
2π

∫ π

−π
HI

(
ejω
)

cot
(

ω− θ

2

)
dθ (8)

HI

(
ejω
)
= − 1

2π

∫ π

−π
HR

(
ejω
)

cot
(

ω− θ

2

)
dθ (9)

As
∣∣F(ejω)∣∣ can be measured in a CWI test, HR

(
ejω) can be derived from (7), and then

HI
(
ejω) can be calculated from (9). Then, the system function F

(
ejω) with both magnitude

and phase information can be obtained.
For a discrete spectrum to be processed on a computer, the procedure of MPA can be

implemented in another way, as follows:
(1) According to Equation (6), find the logarithm of the magnitude spectrum |F(k)| and

extend it in mirror image. This step means the real part of H(k) is known, but the imaginary
part of H(k) is not. However, all of the information about H(k) could be obtained by Hilbert
Transformation in the next step.

HR(k) = ln|F(k)|, k = 1, 2, . . . N/2 (10)

HR(N/2 + j) = ln|F(N/2− j)|,
j = 1, 2, . . . N/2− 2

(11)

where N = 2m and m is a positive integer.
(2) The function H(k), consisting of HR(k) and HI(k), can be obtained by a series of

operations on the Inverse Fast Fourier Transform (IFFT) of HR(k). Let hr(n) be the IFFT of
HR(k), then:

hr(n) = IFFT(HR(k)) (12)

Since HR(k) and HI(k) are Hilbert Transform pairs, then, according to [47], let:

hr(n) =


hr(n) n = 1, N/2

2hr(n) n = 2, . . . N/2− 1
0 n = N/2 + 1, . . . N − 2

(13)

Then, the function H(k) can be obtained by FFT of hr(n):

H(k) = FFT(hr(n)) (14)
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(3) According to (6), the transfer function of a minimum phase system may be com-
puted as:

fmin(n) = IFFT(F(k)) = IFFT
(

eH(k)
)

(15)

where fmin(n) is the IFFT of F(k), and it is a sequence in time domain.

2.3. Circuit Simulations of Systems with Different Characteristics

The CWI test system illuminates electronic equipment under test by different antennas,
which usually cover a frequency range from 100 kHz to 1 GHz. The test results are
only the magnitude of spectral responses without phase information. In order to predict
EMP responses with continuous wave data, the Hilbert Transform will be employed to
reconstruct the phase information. This technique requires the systems to meet minimum
phase conditions. However, it is difficult to verify whether a practical system is minimum
phase or not. Several specific magnitude-only spectral responses with different shapes
are illustrated and reconstructed in these papers [48,49] to determine the differences of
reconstructions between minimum phase functions and non-minimum phase functions, but
the characteristics that physical systems usually show are not considered in these studies.

A real system usually shows a frequency characteristic of low-pass, high-pass, band-
pass or band-stop. Circuit models with low-pass, high-pass, band-pass and band-stop
characteristic are built in ADS software and simulated to investigate whether these models
meet the minimum phase condition. The scheme of predicting these circuit responses using
magnitude-only data is shown in Figure 1.
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2.3.1. The Circuit Simulation Setup

The ADS is a software which is widely used in circuit design, signal analysis and
EM simulation. A low-pass circuit model is firstly built in ADS, including a source, two
resistors and a filter, as shown in Figure 2.
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Figure 2. Low-pass circuit model in ADS.

A CW source with a frequency from 100 kHz to 1 GHz is used to excite the model
and acquire the magnitude data on R2. By employing MPA, illustrated in Section 2.2, the
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transfer function of the low-pass system shown in Figure 2 is obtained and convoluted by
the pulse excitation. Then, the CW source is replaced by a pulse source with the waveform
defined by the Bell Lab. A double exponential EMP waveform is excited and the pulse
response is calculated by ADS software. By replacing the filter in Figure 2 with high-
pass, band-stop and band-pass filter, respectively, different responses are compared and
illustrated in Figures 3 and 4.
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Figure 3. Comparison of responses acquired by ADS and MPA in the low-pass filter and band-stop
filter. (a) Response of the low-pass filter; (b) response of the band-stop filter.
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2.3.2. Simulation Results

The results predicted by MPA and calculated by ADS are shown in Figures 3 and 4,
respectively, and details in the first 100 nanoseconds are magnified. The responses in
Figure 3a,b are similar because, at low frequencies, the characteristics of a low-pass filter
and a band-stop filter are similar. Besides that, most of the energy in EMP waveforms is
concentrated at low frequencies, so the residual energy of the low pass filter and band-stop
filter is more than that of the high pass filter and band-pass filter. This is why the response
magnitudes in Figure 3 are higher than those in Figure 4.

The correlation coefficients and root mean square errors (RMSE) of Figure 3a,b and
Figure 4a,b are calculated and listed in Table 1. The results show that there is a strong
correlation between simulation data and predicted data. The p values of the two curves
(predicted and simulated responses) in each picture reveal that at the 0.05 level, the two
curves are not significantly different.
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Table 1. Statistical characteristics between prediction and simulation results.

Curves in Correlation
Coefficients RMSE Significance

Level p Value

Figure 3a 0.99919 0.08477 0.05 0.99998
Figure 3b 0.99997 0.08467 0.05 1
Figure 4a 0.99973 0.00183 0.05 0.99993
Figure 4b 0.7826 0.00256 0.05 0.99995

3. Study on Systems in CW Electromagnetic Field

The accuracy of MPA on systems with different transfer functions has been verified
by simulation studies on circuit models in Section 2, showing that these systems satisfy
the minimum phase condition. However, the circuit simulations ignore the actual physical
process of electromagnetic wave coupling to the systems. Moreover, the CWI test may be
influenced by many factors—for example, the reflections from the surrounding environ-
ment, field uniformity and electromagnetic background noises—therefore, it is necessary
to study the responses of systems under CW or pulse field illuminations.

3.1. Numerical Analysis of Coupling Fields in a Shielding Enclosure

This study performs a FDTD analysis on a shielding enclosure immersed in CW and
a pulse electromagnetic field, as shown in Figure 5 [50]. The length of the shield is set to
40 cm long and the diameter of the hole is 10 cm. A uniform plane wave in the form of
CW or EMP propagates to the y-axis and goes through the circular hole. A field monitor is
placed at the center of the shield and used to record the coupling field strength.
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The coupling fields excited by CW and EMP in the center of this enclosure are analyzed
respectively. As the CW source sweeps from 100 kHz to 1 GHz, the magnitude of the
transfer function is calculated, as illustrated in Figure 6.
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The resonant frequency of a metal cavity can be determined by its edge length using
the following formulation:

ωmnp =
π
√

µε

√(m
a

)2
+
(n

b

)2
+
(p

l

)2
(16)

where a, b and l are the edge length of a cavity, and m, n and p represent the resonant
modes. The resonant frequencies at the center of the shielding cavity are 529 MHz and
917 MHz, which are slightly higher than the results of CST numerical simulations. These
results show that the simulation results of CST are consistent with the theoretical results
of a resonant cavity. In order to predict the pulse response in the center of the shielding
enclosure, the phase information of the transfer function is estimated by employing MPA,
and the results are illustrated in Figure 7. The correlation coefficient and RMSE are 0.86977
and 54.13469, respectively, indicating that the two phase informations are almost identical.
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Figure 7. The comparison of phases calculated by CST and estimated by MPA.

After predicting the pulse response by transfer function of the enclosure, a pulse
response analyzed by directly using CST is obtained and compared. In this simulation, the
standard HEMP waveform of the bell laboratory is still used. The waveform is a double
exponential pulse with about a 4 ns rise time and 184 ns FWHM (full-width at the half of
the maximum), as shown in Figure 8a.
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The CST simulates the process of EMP penetrating into the enclosure and analyzes
the coupling response in its center. The results of numerical analysis are summarized in
Figure 8b. All these programs show that it is feasible to predict electromagnetic pulse
responses in shielding enclosures with the continuous wave experimental data.
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3.2. Experimental Study of Coupling Currents on a Short-Wave Antenna

When a CWI test is carried out at an open area, background noises, field uniformity
and reflections from the surroundings may influence the accuracy of predicted responses.
From the present material, there are few relevant studies to show the differences between
the actual measured responses and the predicted responses of an actual system, except
one paper in 1993 [51]. The experiment results and setup in [51] are not so clear, and the
environment is not introduced. Therefore, it is necessary to learn more about the details
of the differences and improve experimental settings. The characteristics of predicted
responses induced in a real system, especially in a complex environment, need to be fully
explored and observed.

A CWI test system usually consists of power amplifiers, signal sources and antennas
with a different frequency band. In order to gain the ability to predict responses through
CWI test data and assess the electrical system susceptibility, a transportable CWI test
system is built for assessment of large-scale systems. This CWI test system is composed of
a continuous wave emission part, an automatic test and a measurement part and onboard
mobile part. It can produce 2 MHz~1 GHz continuous electromagnetic fields and can adjust
the polarization direction and radiation angle by a motor to meet different experimental
objects and requirements. The CW radiation antennas can be raised as high as 20 m to
simulate CW sources at different heights, and it is shown in Figure 9.
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Figure 9. The transportable CWI test system.

A case study of predicting pulse currents on a short-wave antenna is carried out at an
open area. The ratio of the induced current to the radiation field strength at the short-wave
antenna is defined as the amplitude spectrum of the system transfer function, and the
formulation is:

T( f ) =
Iinduced( f )

Ecw( f )
(17)

where T( f ) is the transfer function of the short-wave antenna, Iinduced( f ) is the induced
current on the antenna and Ecw( f ) is the continuous wave radiation field at the location
of the antenna. Ecw( f ) is measured by a D-dot sensor, and its characteristic curves in the
frequency domain are shown in Figure 10b.

The distance between a short-wave antenna and a CW source antenna is about 10.5 m.
A current sensor is used to measure the induced current on the antenna, and the frequency
range is 100 kHz–1 GHz. The current sensor transmits the signal to the oscilloscope through
the electro-optic conversion module and the optical fiber. The amplitude spectrum of the
transfer function between the current and the electric field is obtained by scanning the
amplitude of the induced current on the short-wave antenna and the continuous wave
electric field at the location of the antenna from 2 MHz to 1 GHz, as shown in Figure 11.
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Figure 10. A D-dot sensor and its characteristic curve. (a) D-dot sensor; (b) characteristic curve of the
D-dot sensor.
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Figure 12. Induced pulse current measurement setup. (a) Test setup of the simulator and the short-

wave antenna; (b) EMP waveform of the simulator. 

Figure 11. The transfer function measuring of a short-wave antenna. (a) The measurement setup;
(b) the measured amplitude of the transfer function.

The pulse response test of the antenna is carried out in a bounded wave simulator.
An EMP with a 70 kV/m amplitude is generated in the working volume, and it is the
same shape as that in the CWI data processing procedure. The induced pulse current on
the short-wave antenna represents the response of a system under the radiation of a real
electromagnetic pulse and is measured by an active sensor. The setup of the measurement
is shown in Figure 12.
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Figure 12. Induced pulse current measurement setup. (a) Test setup of the simulator and the
short-wave antenna; (b) EMP waveform of the simulator.
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For the purpose of estimating the injected quantities of a large-scale electrical system,
predicted pulse response from CWI test data and measured response excited by the same
EMP are compared in Figure 13. The results in Figure 13 show that the time-domain
responses predicted by the transfer function of the system are in good agreement with
the current oscillation periods and amplitudes of the test results, and because the system
frequency is limited to 1 GHz, high frequency oscillation components of predicted results
are obviously less than that of the actual test results. However, the prediction results still
can provide some reference values in amplitudes and periods.
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Figure 13. Comparing predicted and measured pulse currents on the short-wave antenna. 
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As the low field intensity in a CWI test, the nonlinear effect cannot be predicted by
the CWI test method. When the pulse response waveform is predicted through CWI test
data, the PCI test is needed to relate the nonlinear effect, if it exists, and the predicted pulse
response.

4. Injected Electrical Quantities in PCI Test

In this section, several criteria are defined in the time domain, since it may be related
to the nonlinear effects in PCI tests, such as circuit jamming and burn out. According to IEC
61000-4-33 [52] and MIL-STD-188-125 [35,53], several scalar numbers which characterize
the time-dependent waveform functions of electrical quantities are defined. To choose the
appropriate degree and waveform to be injected, these definitions need to be taken into
consideration.

(1) The peak current here is defined as the maximum value of the predicted current,
which can provide reference information for injected electrical quantities of PCI tests. When
injecting a current with the same peak value, it may cause damage by overcurrent to
the system under evaluation. The peak value is defined as N∞ = |I(t)|max, which is the
so-called infinite norm.

(2) N1 =
∫ ∞

0 |I(t)|dt is the rectified value of the response. This norm usually relates
the total impulse to equipment damage.

(3) The integral of the squared injected current can be used to evaluate the amount of
energy coupling to the system over a period, which may result in burnout damage due to

thermal effects. It is usually described as N2 =
√∫ ∞

0 |I(t)|
2dt.

The PCI tests can provide observations on nonlinear effects, including upset, break-
down and burnout damage, if the injected current is sufficient. By choosing an appropriate
injecting source and impedance to the ground, the injected current may be adjusted similar
to the predicted current by norm standards.
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5. Conclusions

It is hard to assess the susceptibility of large-scale systems against threat-level EMP
directly, because there are technical difficulties and a high cost in building EMP simulators
that are large enough. To solve this problem, an alternative way to study the vulnerabilities
of large-scale systems is proposed, which includes predicting system pulse currents under
threat-level EMP attacks and then injecting the currents into the system by PCI tests.
However, up to the present, there are no relevant standards and studies concerning this
problem. Therefore, this study aimed to verify the accuracy of predicting system response
by CWI test and the feasibility of studying nonlinear effects by PCI test.

Accordingly, a series of simulations and experiments has been carried out about
different systems. In the circuit simulations, four filter systems with different characteristics
are built in ADS software, including a low-pass system, high-pass system, band-pass
system and band-stop system. The characteristic curves of these systems are predicted
by MPA and simulated to verify accuracy of prediction. These systems can represent the
majority of systems in the real word. Another simulation run by CST in this paper considers
electromagnetic field coupling in 3D space, and field response in the center of the model
is also predicted and simulated. As there are many unexpected noises or reflections in
actual tests, a short-wave antenna is studied as a case. The pulse current on the antenna
is predicted by CWI test data and measured in an EMP simulator. The PCI test can inject
a pulse current, similar to that predicted by the CWI test data, into the system as a test,
and nonlinear effects, if any exist, can be observed. Different norms are defined to describe
the characteristics of injected quantities, and they are useful in studying the nonlinear
effects. With the results analyzed and discussed, three major conclusions are summarized
as follows:

(1) The low-pass, high-pass, band-pass and band-stop systems meet the minimum
phase condition, and their phase information can be reconstructed by magnitudes through
MPA. The system responses excited by the EMP source can be predicted by convoluting
the source and system transfer function, and the predicted results are in accordance with
results simulated by software.

(2) The feasibility of predicting system pulse response by CWI test data is verified
using a short-wave antenna. The oscillation period of the predicted current is slightly
different from the measured current for noises and reflections, but the predicted one can
still be used as a reference to inject quantities in a PCI test.

(3) Scalar norms can help when studying the nonlinear effects of the system under test.
By choosing the appropriate source and impedance in the PCI test, reasonable induced
current can be injected into the system, and then the vulnerability of a large-scale system
could be studied.

The method proposed in this paper tries to solve the problem of nonlinear effect
assessments of large-scale systems or facilities such as ships, airplanes, communication
base stations, power stations, etc. However, this method is still raw and needs further
improvement. There is still a lot of important work to do in the future.

(1) The accuracy of the response prediction method needs to be improved. The
simulations and experiments results reveal that the method is sensitive to noises. Therefore,
more rigorous experiment conditions should be set and a suitable filtering method needs to
be found. Another way to improve the prediction accuracy is to perform the calibration test
in a GTEM cell, and many experiments should be conducted to obtain empirical coefficients.

(2) More validation tests need to be performed. The MPA requires that the system
under test meets the minimum phase condition. Although, in this paper, some kinds of
systems are verified by simulations or experiments, in reality, we cannot enumerate all of
the systems.

(3) Standards concerning this method need to be established. In order to acquire
comparable data in experiments conducted by different researchers, lots of details and
general rules in experiments, such as the polarization and radiation direction of the CWI
test, the calibration of different measurement links, etc., need to be determined.
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