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Abstract: Forecasting the performance and energy yield of photovoltaic (PV) farms is crucial for
establishing the economic sustainability of a newly installed system. The present study aims to
develop a prediction model to forecast an installed PV system’s annual power generation yield
and performance ratio (PR) using three environmental input parameters: solar irradiance, wind
speed, and ambient air temperature. Three data-based artificial intelligence (AI) techniques, namely,
adaptive neuro-fuzzy inference system (ANFIS), response surface methodology (RSM), and artificial
neural network (ANN), were employed. The models were developed using three years of data from
an operational 2MWp Solar PV Project at Kuzhalmannam, Kerala state, India. Statistical indices such
as Pearson’s R, coefficient of determination (R2), root-mean-squared error (RMSE), Nash-Sutcliffe
efficiency (NSCE), mean absolute-percentage error (MAPE), Kling-Gupta efficiency (KGE), Taylor’s
diagram, and correlation matrix were used to determine the most accurate prediction model. The
results demonstrate that ANFIS was the most precise performance ratio prediction model, with an R2

value of 0.9830 and an RMSE of 0.6. It is envisaged that the forecast model would be a valuable tool
for policymakers, solar energy researchers, and solar farm developers.

Keywords: artificial intelligence; forecasting; solar irradiance; energy generation; solar plant; neuro-fuzzy

1. Introduction

Renewable energy is the best solution for mitigating the threats of climate change.
With technology making rapid advancements, the renewable energy sector has achieved
incredible progress in the last decade [1]. Since almost all renewable energy sources are
intermittent, improved forecasting and modeling of power resources becomes essential for
renewable energy to manage the grid effectively [2]. The vulnerabilities in the supply chain
of renewable energy must be smoothened to cope with the variabilities. The incorporation
of storage systems benefits the large scale solar power developments [2]. Intelligent systems
can support the integration of renewables into the existing grid and make renewable energy
competitive in the current market. When artificial intelligence (AI) is integrated into
renewable energy plants, the sensors and internet of things (IoT) devices can give new
insights to the grid operators. Hybridization and storage are also becoming popular
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with solar Photovoltaic (PV) plants, which help the grid in the case of intermittency and
unreliability of the power source [3].

The increased acceptance of distributed energy resources in the grid necessitates
integrating AI techniques to control and optimize loads and manage the selection of
different renewable energy resources for meeting the loads based on availability. With
AI integration, microgrids and virtual power plants have become more dynamic and
intelligent [4]. Artificial intelligence can enhance the performance of solar power plants to
a greater level. The weather remains a significant factor in influencing the generation of
renewable energy-based plants, such as solar and wind plants [5]. It is crucial to predict the
output of wind and solar PV plants for the demand and supply management of electricity
systems worldwide. Different AI techniques can predict PV plants’ performance precisely
and thus, improve efficiency and accessibility. AI can address the issues of variability in
renewable energy generation [6]. AI-based techniques offer a higher potential for predicting
both the weather and the performance of renewable energy [7]. AI techniques will learn
critical information patterns, avoiding the need for mathematical routines and complex
rules. Intelligent sensors and IoT systems are interconnected to collect vast amounts of
data [8].

1.1. Literature Review

Most of the published work on this topic is concerned with predicting solar radiation.
The power output of a PV-based solar farm/plant module, though, is affected by factors
other than solar irradiation. There has been little research on projecting PV-generated
electricity. Factors such as hardware (cell size, solar cell type, incidence angle, layout) and
weather conditions influence the electrical power output. In a PV system, for example,
the temperature of the solar cell influences the quantity of electricity generated. Solar
irradiation, ambient temperature, wind speed, and relative humidity affect the cell’s tem-
perature. Various researchers have made efforts to predict the power generated from a
solar PV plant by utilizing artificial intelligence (AI) tools like adaptive neuro-fuzzy infer-
ence system (ANFIS) [9], artificial neural networks (ANN) [10], numerical regression [11],
support vector machines [3,12], and response surface methodology (RSM) [13] based on
weather categorization concepts. Shi et al. [14] used a support vector machine for weather
categorization to create a unique prediction model for estimating the power production of
a 20 MW PV facility. The prediction model had a prediction error of 8.46%. The study used
only the type of day (foggy, clear, rainy, and cloudy) as input. RSM was employed to create
a predictive model by Kazemian et al. [15] for a photovoltaic system. The correlations
between the characteristics above outputs, such as thermal, electrical energy, entropy, and
exergy, were determined by means of their interactions in system performance. In another
study, solar irradiation data from a township named Kermanshah in Iran was used to
predict solar radiation using three methodologies: ANFIS, ANN, and RSM. The results
were compared among themselves. The finding was that the prediction efficacy of RSM
was marginally superior compared to the neural network [16].

In a more extensive study by Mellit et al. [17], a year’s data was used to anticipate the
electricity generated by a 50 W PV plant. ANN was used for model training and prediction.
This study was intended to predict only day power generation with an error range of
4.38% to 31.01%. Deep learning neural networks (NNs) are also suggested for prediction
and modeling. Because of the potential to maintain prior time-series data employing
the memory architecture, the long short-term memory (LSTM) technique was used to
predict PV power generation [18]. When applied to 21 examined PV plants, LSTM and
auto-encoders proved more efficient in power prediction than multi-layer perceptron and
physical prediction approaches [19]. A hybrid approach of fuzzy decision and neural
networks was employed to model-predict the photovoltaic-based power generation at two
different sites in Mexico [20]. The study conducted at Hermosillo and Mexico City in the
Sonora State of Mexico proved that the ANFIS method provides more accurate results than
the conventional statistical methods.
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A case study was undertaken by Nguyen et al. [21] to predict the energy production
from a large solar plant using LSTM. The uncertainty factors and weather forecasts were
considered to anticipate power production. The study recommended ideal settings for
the LSTM model to model-predict the power output of a giant solar power facility in
Vietnam, which has four 100-unit nodes in hidden layers. The research also developed a
realistic approach for projecting the short-term production of a large-scale PV facility using
meteorological prediction data from any commercial supplier. Various types of neural
networks were examined to model-predict the fault diagnosis system in PV installations
by Khelil et al. [22]. Five types of neural networks were analyzed: probabilistic ANN,
back-propagation ANN, two radial basis functions, and generalized regression ANN.
Precision, selectivity, sensitivity, and speed were all factors in the comparison. The results
demonstrate that the probabilistic ANN was the best contender for the assigned task.

A study by Nespoli et al. [23] emphasized that solar radiation measurement was
crucial to predict power generation, since the generation depends on the incident solar
radiation at the solar PV plant site. Daily solar radiation is estimated using the three ANN
models for solar power capacity estimation. A comparative evaluation of these models
was implemented based on the performance indexes. Nikodinoska et al. [24] reported
that the model’s prediction accuracy could be improved by utilizing a larger number of
weather parameters as inputs. Integrating the solar grid with the primary grid is also a
key concern. A smart grid’s power energy management is critical for energy circulation,
system security, and market economics. One of the most vital issues is the precise and
constant forecasting of wind speed for the effective operation and management of wind
power output connected to the smart grid. Deep learning methods such as Elman neural
networks and extreme learning machines can effectively predict short-term wind speed
prediction challenges [25,26]. A summary of notable studies and their outcomes is shown
in Table 1.

1.2. Research Gap

Most of the above research is concerned with the prediction of solar radiation, predic-
tion of power output, and employing one or two AI approaches in tandem. A comparison of
different AI-based model-prediction tools has not been tried in combination with PV plant
performance modeling, evaluation, and metrics. To the best of the researchers’ information,
the use of three years of real-time PV plant data (power generation and performance ratio)
together with the associated highly nonlinear complicated data has not been studied in the
existing literature.

1.3. Objective of the Study

This research uses three AI techniques to predict the performance of a PV power
plant and compare it with the actual data. The novelty is that three years of actual solar
generation data is compared with the performance models of RSM, ANN, and ANFIS.
Three significant meteorological parameters (monthly tilted irradiation (MTI), wind speed,
and air temperatures) are the input parameters for the above AI techniques. The most
critical performance indices like power generation and performance ratio are compared
as outputs. The validation using the necessary statistical tools like R, R2, NSCE, MAPE,
RMSE, KGE, Theil’s U2, and Taylor’s Diagram makes the work unique compared to related
research work. Specifically, the objective of the study is

1. To model solar PV plants’ energy yield and performance ratio (PR) using various
AI techniques;

2. To compare the AI predicted value with the actual plant performance;
3. To validate the performance model with Taylor’s diagram and statistical tools.
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Table 1. A summary of AI/ML-based model prediction of solar power generation.

Reference AI/ML
Techniques Input Predicted Main Outcomes

Rodriguez
et al. [3] ANN and SVM

Wind speed,
ambient

temperature,
and solar

irradiation past
data

10 min ahead,
Solar irradiation

The model error was
lower than 4% on

82.95% of the
examined days.

Gensler et al.
[19]

Deep belief,
LSTM,

autoencoder

Solar power data
with three hours
resolution and
solar farm size

Solar power
LSTM showed

superior prediction
efficiency to ANN

Sharadga
et al. [27]

Time series
analysis with

LSTM

Weather and
solar irradiance
data of 3640 h

PV power

Time series-based
prediction is valid
for one hour ahead
only in the absence
of current weather

data.

Mandal et al.
[28]

Wavelet
transform and

ANN

Actual power
generation in

time series

Power
generation one

hour ahead

ANN was superior
to wavelet
transform.

Fentis et al.
[29]

Empirical mode
decomposition,

least square SVR,
and hybrid
approach

Weather data Next day power

Hybrid models were
superior in

prediction except on
rough weather days.

Ma et al. [30]

Improve
sine-cosine

approach and
gated recurrent

unit (GRU)

PV data PV power
Optimized GRU

could provide the
best results.

Yang et al.
[31]

Auto encoder
and wavelet

transform

Weather and
power

generation data
PV power

Up to 90.17%
prediction accuracy

achieved.

Agga et al.
[32]

LSTM and
Convolutional
neural network

Consumed
power, weather
data, and power

production

PV power

The LSTM-CNN
hybrid approach
provided results

superior to
single-type ML.

2. Artificial Intelligence Tools: An Overview of RSM, ANN, and ANFIS
2.1. Response Surface Methodology (RSM)

RSM is an amalgamation of statistical and mathematical approaches employed for:

I. Designing a series of trials for accurate response prediction;
II. Ensuring the selected design fits the data’s hypothesized (empirical) model;
III. Determining whether optimal settings for the model’s control parameters results in a

threshold response within a domain of interest.

Building a mathematical model of RSM allows one to determine the independent
variable that, when changed, results in the responsible variable having an optimal value.
RSM uses two models: the first order model, also known as multiple linear regression, and
the second-order model, also known as the pure quadratic method [33]. Although RSM-
based experimental design is practical in many domains of energy research, it may not be
directly related to the system under investigation. A simple mathematical approximation
of the response is generated based on the facts. Simpler designs and models are generally
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simpler to grasp, enhancing their value in real-world situations. The depth and complexity
of the successful model are determined by the design chosen. Optimization designs may
represent more complex behavior by including higher-order model components, while
factorial designs could be used to evaluate linear and interaction effects [13,34].

The RSM modeling is dependent on the actual behavior of a response in such a
way that:

y = f (θ1, θ2 , . . . . . . .θk) + ε (1)

wherein, y represents the estimated response being a function of (θ1, θ2 , . . . . . . .θk) variables
combined with a source of variability ε. Variable values are coded such that their impacts
may be compared within the design range:

xi =
(θi − θmin)

δθ/2
− 1 (2)

where, δθ denotes the range of variables, θmin denotes the value of the lowest variable,
and θi the value of the variable under consideration while xi represents the coded value.
A quadratic or cubic value is generally used to approximate y. Suppose the n × 1 vector
of response is denoted with y while n × p coded value matrix is denoted with X, and c
represents the model coefficient for p × 1 vector. The data matrix can be represented in the
following form as Equation (3):

y = Xc + e (3)

The data matrix so defined is called a design matrix. This design matrix can determine
the model vector to reduce the error (residual) in model prediction.

2.2. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) have been helpful in various model prediction
applications. The activity of live neural networks is the foundation of ANNs. As a result,
they have been claimed to learn in the same manner as humans. An ANN structure
generally consists of one input, a few hidden layers, and one output layer [35]. Each layer’s
neurons process incoming signals and output results, with their connections weighted. A
robust training strategy allows an ANN to readily adapt to any collection of input-output
patterns and construct a model function with the least amount of error feasible. The neural
network design includes hidden layer connection patterns, activation function choices, and,
most significantly, neurons in the hidden layers [36,37]. A typical architecture of ANN is
shown in Figure 1.
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According to Rao et al. [38] and Ajbar et al. [39], ANN models have the
following characteristics:

To develop new information, locate knowledge that is difficult to obtain, primarily
through non-linear correlations between variables;

To increase forecast accuracy, a wide range of variables are used;
Using solid procedures and information systems as vital instruments to document

activities and data from variables to reproduce high-quality findings. ANN prioritizes
flexibility and dynamic adaptability over exact or highly accurate results in model im-
plementations. The common practice in ANN modeling is to offer various study kinds
and scopes, analyze prediction factors, and exhibit multiple parts of training techniques,
algorithms, and data demands [40].

Neural networks are capable of processing ambiguous or partial input. A neural
network’s settings may be changed to accommodate changing situations and needs. ANNs
are good at identifying patterns (in images). On the other hand, the conclusion of a neural
network involves some ambiguity, which is not always ideal. A neural network must go
through a “learning” phase before it can be employed. The data quality in the learning
phase significantly impacts the result.

2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Fuzzy logic and ANN are the two components that make up the ANFIS, a hybrid AI
technique. The capacity for training and the spatial structure of ANNs are integrated with
the decision-making process of fuzzy logic in an application known as ANFIS. Like artificial
neural networks, the ANFIS learns by examining examples from a data collection used for
training it [41]. As a result, the optimum ANFIS structure for tackling the relevant issue is
discovered. The developed structure is put through its paces to observe how it reacts to a
new sample dataset. Lower error levels illustrate the ANFIS model’s applicability [42,43]. A
representation diagram of ANFIS architecture is shown in Figure 2. The ANFIS architecture
is typically comprised of five phases that run every stage of the algorithm’s fuzzy logic
and NN.

Determine Membership Functions (MFs)
MFs are indicators of the “resemblance” or “levels of membership” of a value. This is

often represented as sinusoidal curves with a range of values.
Firing Strength of the Fuzzy Rule
The step 1 input is now transmitted to the node layer and amplified through the power

of an automated fuzzy rule. Consider it similar to calculating a “weight” depending on the
computerized rule and the data concerned.

Normalize the Calculation of Firing Strength
The third step uses step 2 to change the quality of the firing intensity from the previous

node to the aggregate of all firing intensities (See Figure 2). Consider the algorithm
contrasting the intensity of a single node’s outcome rule to the intensity of remaining nodes
and their underpinning rules. If a node has greater strength, it is most likely the “best
viable” rule arrangement for the dataset and will be prioritized for the next step.

Integrate Premises (Self-governing Variables) and Outcomes (Dependent Variable)
In the fourth step, the weighted values are blended with the original inputs from the

learning data set to generate an outcome depending on the relevant data (Figure 2).
Prediction and Final Outcome
The last phase oversees all input signals and their implementation to testing data to

produce a projected result. De-fuzzing and translating the data to understandable values
are also part of this stage.
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3. Methodology
3.1. Description of the 2 MWp Solar Plant

2 MW Kuzhalmannam Solar PV Project (Figure 3) is the first Independent Power
Producer (IPP) Project developed by the Agency for New and Renewable Energy Research
& Technology (ANERT) in the owned site of ANERT at Kuzhalmannam Palakkad district,
Kerala, India. The PV Project has completed more than four years of successful operation.
So far, it has generated more than 12 million units of electricity for the primary grid since
its commissioning on 9 December 2016. The date of Commercial Operation (CoD) of the
project is declared as 19 December 2016. ANERT is currently earning monthly revenue
from the PV power plant for power generation and contribution sharing with the main
grid. The dedicated PV-based power plant also has a Solar Resource Assessment (SRRA)
facility, which gathers meteorological data such as relative humidity, solar radiation, wind
speed, rain, air pressure, etc. Based on energy-generating data from 2018 and 2019, an
energy study of this solar PV power plant indicated that the PV plant has a daily average
output of 7422.17 kilowatt-hours (kWh) with a mean Performance ratio (PR) of 73.39 [44].
The weather data from the SRRA station and the operational data of the solar PV plant
from SCADA were utilized to model the solar PV plant’s generation for different climate
seasons [45]. The technical description of the PV power plant is summarized as shown
in Table 2.
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Figure 3. Google map, photograph, and Dedicated SRRA station of ANERT 2 MW PV Plant at
Kuzhalmannam site, Kerala, India.

Table 2. Technical description of the PV plant.

1 Capacity of the PV Power Plant 2MWp

2 Solar PV Module Renesola (JC260M—24/Bb)
3 Inverter Hitachi (HIVERTER—1000 kW)—2Nos
4 No. of Solar Modules 7704
5 No. of PV Modules in a string 24
6 No. of Strings in the PV Array 321

3.2. Data Collection and Instrumentation

The Supervisory Control and Data Acquisition (SCADA) system, which connects
with all inverters and String Monitoring Units, is integrated with the Kuzhalmannam
2 MW solar PV power plant (SMU). The PV Power Plant features an embedded/integrated
SCADA system that collects solar irradiance, energy production, wind speed, ambient
temperature, and module temperature at regular intervals. The integrated SCADA system
also records voltage, current, and power at the output of each inverter and stores the vital
operational data of the SPV power plant. The monitoring guidelines of IEC Standard
61724 are followed when recording data (Padmavathi & Daniel, 2013). The data files are
saved regularly and can be retrieved as needed. The SCADA system can transfer data
between the central computer and remote terminal units. The local utility maintains a
smart meter at the connecting point for metering and invoicing and accounts for energy
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export and import to the grid. The specification of the temperature, sunlight irradiation,
and wind speed sensors are shown in Table 3. Solar PV power plant generation data for
three years from 2018 to 2020 have been collected from the actual site for modeling and
analyzing the performance based on AI tools ANN, ANFIS, and RSM. The 2MW PV Plant
Data has been collected through the SCADA output utilizing the following instruments
installed at the site as part of the performance assessment of the PV plant:

• Pyranometer
• Anemometer
• Temperature Sensor

Table 3. Technical details of the sensors and SCADA system.

Sensors Make Model

SCADA RTU Phoenix Germany
Cell-based pyranometer Ingenieurbüro Mencke & Tegtmeyer GmbH, Si-V-10TC-T.
Temperature Sensor: - Hukseflux DR02/Serial No9233
3-Cup Anemometer Met-one 014A-L

A simple flowchart depicting the research methodology adopted in the present work
is shown in Figure 4.
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3.3. Parameter Selection and Modeling

The following input parameters were selected for the study:
Solar radiation: Global Tilted Irradiation is the significant input parameter chosen for

the study [46]. The Monthly Tilted Irradiation (MTI) for the study period of 2018, 2019, and
2020 are collected
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Wind Speed: Wind speed affects PV plant productivity because it affects the heat
transfer from the PV modules, which increases PV process efficiency [5].

Temperature: Outside air temperature affects PV power plant efficiency since air tem-
perature is proportional to the temperature of the module [47].

The following responses are generated as part of the study:
Energy Yield: Energy Yield is the AC output power generated in kWh/MWh from the

PV power plant. Cumulative Energy Generation during the month [48]:

EAC,m = ∑d=N
d=1 Eac, m (4)

Performance Ratio (PR): PR is the ratio of the observed generation with the generation
supposedly produced by the PV plant based on its DC nameplate ratings at STC during the
period. Performance Ratio (PR) can be calculated by the following equation [49,50]:

PR =
∑i ENaci

∑i

{
PSTC ×

(GPOAi
GSTC

)} (5)

where
∑i ENaci = Energy Generation
PSTC = Power Output of the PV Plant
PSTC = Global Tilted Irradiation
GSTC = Global Horizontal Irradiation at the Ground Level

3.4. Data Pre-Processing

Examining data before modeling is essential in determining data quality [51]. Figure 5a
depicts a correlation heatmap, while Figure 5b depicts the data correlation in the form of a
correlation matrix. These two illustrate the Pearson correlation coefficient between input
and targets. Pearson correlation results demonstrate a robust correlation (0.9116) between
MTI and power generation. This shows that MTI is the most significant influencer for
power generation, followed by air temperature (0.4448). Like the performance ratio, the
air temperature is the most prominent influencer (0.1747). Figure 5b shows the correlation
between the various factors and data distribution. The data analysis during pre-processing
shows a substantial correlation among different parameters under consideration.

3.5. Statistical Modeling Appraisal of Predictive Model

The predictive models developed using ANN, RSM, and ANFIS were appraised using
statistical methods for their predictive ability. The established statistical indices such as
Pearson’s R, coefficient of determination (R2), Nash-Sutcliffe model efficiency (NSCE),
root-mean-squared error (RMSE), Mean abs. % error (MAPE), and Kling-Gupta model
efficiency (KGE) were used to assess the models. The expression for these statistical indices
is shown in Equations (6)–(11) [52,53].
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‘R’ depicts the correlation between the forecasted and observed values (Equation (6)).
R2 squared is the square of this coefficient, representing the proportion of total variance the
regression line can account for, denoted by Equation (9).

R =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x )2
√

∑n
i=1( yi − y)2

(6)

R2 = 1−
(

∑n
i=1(xi − yi)

2

∑n
i=1( yi)

2

)
(7)

‘NSCE’ is a normalized statistic that calculates the relative size of residual variation
(“noise”) vs. observed data variance. The NSE value reflects how closely the observed vs.
simulated data plot matches the 1:1 line. The NSCE value closer to unity indicates a perfect
fit.

NSCE =

∣∣∣∣∣1−
{

∑n
i=1(xi − yi)

2

∑n
i=1(yi − y)2

}∣∣∣∣∣ (8)

The ‘RMSE’ and ‘MAPE’ were employed to estimate the prediction error. One of the
most often used methods for measuring prediction quality is ‘RMSE’. It uses Euclidean
distance to demonstrate how much forecasts differ from observed actual values. ‘MAPE’
is another popular tool for evaluating prediction accuracy. It represents the forecast’s
percentage error in proportion to the real data.

RMSE =

√√√√[
∑n

i=1(yi − xi)
2
]

n
(9)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ xi − yi
xi

∣∣∣∣× 100 (10)

KGE has been used to measure prediction efficiency in a more balanced way compared
to NSCE. It combines three main elements i.e., bias, variance, and coefficient of vacation.

KGE = 1−
√
(β− 1)2 + (α− 1)2 + (R− 1)2 (11)

wherein ‘n’ represents total elements, ‘i’ denotes the term under consideration, ‘xi’ repre-
sents the observed value, ‘yi’ denotes model-projected value, ‘x′ is the average of observed
values, y is average of predicted values, ‘β’ denotes bias error, ‘α’ denotes error in flow
variability, and correlation is shown with ‘R’.

Theil’s statistics
Theil’s statistics were used in this work to assess the predictive models’ uncertainty.

For prediction models, Theil suggested two statistical metrics. The first is Theil’s U1,
which is used to determine the accuracy of predictions. However, Theil’s U2 (also known
as Theil’s U) is a more often used statistical metric for estimating the predictive model’s
forecast quality. Theil’s U2 is an assortment of mean residuals and error differences between
measured and predicted values [54]. It offers a varied range of standardized measures
combined with a lower weight (near to 0), suggesting a higher level of prediction quality.
Theil’s U2 was measured with the following expression:

[U2]Theil =


√

∑n
i=1(yi − xi)

2√
∑n

i=1 xi
2

 (12)
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Taylor’s diagram
The degree of correlation between model-projected and observed data can be sum-

marized using the Taylor diagram [55]. In this graph, a single data point on a 2-D graph
represents the coefficient correlation, root-mean-square (RMS) variance between the two
data fields and the proportion of standard deviations between the two data fields. When
these data are combined, they provide a quick summary of the degree of sequence consis-
tency, allowing one to judge whether a model resembles the natural mechanism. The graph
helps to evaluate the relative benefits of competing models and track overall performance
as a model evolves [4,56].

4. Results and Discussion

Three established techniques-based machine learning modeling systems were used in
the present work for predictive power generation and performance ratio modeling. The
data for the modeling was obtained from an operational 2 MWp solar PV plant installed in
Kerala, India. The information was collected month-wise and was highly nonlinear due
to unpredictable weather in that area. Three major control factors (inputs) were chosen:
monthly tilted irradiation, wind speed, and air temperature.

4.1. RSM-Based Modeling

In the first phase, the three-year data was used for model prediction using RSM. The
RSM modeling process comprises the following steps:

(i) Defining the control factors (input) and response variables (output);
(ii) Preparation of design matrix;
(iii) Analysis of variations (ANOVA);
(iv) Development of the mathematical function of the model;
(v) Model prediction;
(vi) Statistical analysis of data.

In the present problem, the monthly tilted irradiation (MTI) in kWh/m2, WS in m/s,
and the temperature of air temperature (AT) in ◦C were chosen as input (control factors).
In contrast, power generation (PG) in kWh and performance ratio (PR) were designated
as outputs. The proposed design matrix was loaded with month-wise performance data
from a 2 MWp solar plant installed at Kuzalmanan, Kerala, India. The design matrix is
presented in Table 4.

4.1.1. RSM Model for Power Generation

The design matrix listed in Table 4, containing three control factors and two response
variables, was used for RSM-based model development. The ANOVA of the data was
carried out to recognize substantial values amongst input data with resulting responses.
Also, the statistical variables like R2, Adjusted R2, the F-test, and the probability index must
be evaluated to find if the proposed model is well-suited to the test results. The higher the
F-value and the lower the P-value, the more relevant the matching term in the proposed
response correlation is; hence, a test value of ‘P’ lower than 0.05 is deemed substantial [57].
The outcomes of ANOVA are listed in Table 5.

The F-value of the model is 45.69, indicat the model is statistically substantial. B2,
A2B, AB2, B2C, C3 are important model terms in this scenario. The model terms are not
necessary if the value is more significant than 0.1000. The prediction model in the form
of mathematical equations was generated. The developed model in a cubic equation is
presented as Equation (13).

Power generation = −1.33 × 107 + 41293.79*MTI + 9.11 × 105*WS + 1.047 ×
106*AT − 18753.13*MTI*WS + 1439.10*MTI*AT + 44481.45*WS*AT −

285.73*MTI2 − 58701.22*WS2 − 38884.27*AT2 + 22.26*MTI2*WS +
4.69*MTI2*AT + 2768.79*MTI*WS2 − 46.27*MTI*AT2 − 9699*WS2*AT +

0.209*MTI3 − 16595.39*WS3 + 491.80*AT3

(13)
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where MTI represents monthly tilted irradiation, WS represents wind speed, and AT repre-
sents air temperature. The model was used for prediction at all experimental run settings.
The observed and predicted power generation values are illustrated as a comparative graph
in Figure 6a. The RSM-based modeling of power generation was successful in generating
easy mathematical equations. High R and coefficient of determination values as 0.9986
and 0.9773 were achieved during regression, indicating a high degree of correlation. The
MAPE was 2.24%, while the RMSE was 6133.93 (on account of large data values). The
mean absolute percentage error (MAPE) was only 2.24%, while Kling-Gupta’s efficiency
was 0.9847. The Nash-Sutcliffe efficiency (NSCE) is as high as 0.9774.

Table 4. Design array for RSM modeling.

Exp Run MTI
(kWh) Wind Speed (m/s) Air Temp (◦C) Generation (kWh) PR

(%)

1 172.18 1.2 26.3 264,040 76.56
2 175.73 1.4 27.4 279,878 79.51
3 187.83 1.5 29 285,350 75.85
4 161.78 1.59 29.3 254,941 78.67
5 158.89 2.19 29.2 252,734 79.41
6 114.4 2.5 26.9 185,389 80.9
7 129.92 2.69 26.8 190,458 73.19
8 117.28 2.59 26.6 178,908 76.16
9 141.38 2.29 26.4 213,426 75.37

10 153.5 1.59 26.8 236,512 76.92
11 144.44 1.19 26.3 217,386 75.14
12 159.26 1.4 26.2 247,649 77.63
13 190.8 3.01 26.88 267,262 69.93
14 181.53 2.35 28.53 260,593 71.67
15 205.95 2.14 29.9 295,842 71.72
16 184.77 2.25 30.42 258,129 69.75
17 173.65 2.98 30.16 252,834 72.69
18 136.68 2.76 27.87 207,927 75.95
19 125.34 2.56 26.25 186,007 74.09
20 107.98 2.63 25.51 142,496 65.88
21 129.55 2.25 26.57 206,299 79.5
22 168.87 1.76 26.66 211,321 62.47
23 185.72 2.17 27.53 209,165 56.23
24 169.06 3.01 26.88 211,726 62.53
25 176.08 2.24 33.33 260,220 74.01
26 182.28 2.67 34.35 275,427 75.02
27 185.38 2.13 35.63 288,285 78.11
28 177.9 1.32 35.55 260,518 73.02
29 142.29 1.31 30.61 214,991 69.01
30 106.5 1.68 28.07 154,650 70.03
31 101.37 1.79 26.9 146,224 71.01
32 106.64 1.79 27.18 159,928 73.04
33 164.4 1.34 31.95 243,071 74.01
34 155.31 1.22 31.86 231,826 75.02
35 147.3 1.87 32.5 228,378 77.12
36 151.59 1.76 32.71 237,949 78.01

Theil’s U2 was 0.1653, indicating minimal uncertainty of the prediction model. Low
errors and good prediction effectiveness establish a robust prognostic model. The interac-
tion of various inputs and their effects are shown as 3-D response surfaces and 2-D contour
diagrams in Figure 6b. It is observed that at lower MTI, power generation initially increases
with an increase in wind speed but then decreases. The trend is reversed at the higher MTI
range as the power generation first decreases but again increases at higher wind speed, but
the rate of change is slightly subdued in the higher MTI range. On the other hand, the air
temperature positively affects the entire range of operations.
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4.1.2. RSM Model for Performance Ratio

The predictive model of PR was also developed using the performance data of three
consecutive years obtained from a 2 MWp solar plant. The design matrix and the outcomes
of ANOVA are listed below (Table 6):

Table 5. ANOVA of power generation data.

Cause Addition of
Squares df Square

Mean Value (F) Probability
Value

Model (A) 5.845 × 1010 17 3.438 × 109 45.69 <0.0001 Significant
MTI (B) 2.027 × 108 1 2.027 × 108 2.69 0.1181

Wind Speed (C) 4.836 × 107 1 4.836 × 107 0.64 0.4332
Air Temp (D) 2.275 × 108 1 2.275 × 108 3.02 0.0991

AB 1.885 × 108 1 1.885 × 108 2.51 0.1309
AC 1.060 × 106 1 1.060 × 106 0.014 0.9069
BC 3.286 × 108 1 3.286 × 108 4.37 0.0511
A2 3.564 × 106 1 3.564 × 106 0.047 0.8302
B2 1.027 × 109 1 1.027 × 109 13.65 0.0017
C2 1.411 × 107 1 1.411 × 107 0.19 0.6701

A2B 4.981 × 108 1 4.981 × 108 6.62 0.0192
A2C 8.010 × 107 1 8.010 × 107 1.06 0.3159
AB2 3.169 × 109 1 3.169 × 109 42.11 <0.0001
AC2 1.382 × 108 1 1.382 × 108 1.84 0.1921
B2C 1.083 × 109 1 1.083 × 109 14.40 0.0013
A3 1.064 × 108 1 1.064 × 108 1.41 0.2498
B3 7.399 × 107 1 7.399 × 107 0.98 0.3346
C3 5.268 × 108 1 5.268 × 108 7.00 0.0164

Residual 1.355 × 109 18 7.525 × 107

Cor Total 5.980 × 1010 35

The F-value of the model as 11.86 indicates that the model is statistically substantial.
A, C, BC, B2, A2B, A2C, AB2, AC2, B2C, A3, B3, C3 are important PR models. The model
terms are not important if the value is larger than 0.1000. The prediction model as a mathe-
matical equation was generated. The established model in the cubic equation is presented
as Equation (14).

Sqrt(PR) = −248.88 + 0.755*MTI + 18.66*WS + 20.22*AT − 0.37*MTI*WS +
0.0299*MTI*AT + 0.83*WS*AT − 5.54 × 10−3*MTI2 − 0.92*WS2 − 0.757*AT2 +

4.17 × 10−4*MTI2*WS +9.47 × 10−5*MTI2*AT + 0.057*MTI*WS2 − 9.55 ×
10−4*MTI*AT2 − 0.18215*WS2*AT +3.86 × 10−6*MTI3 − 0.465*WS3 + 9.69 ×

10−3*AT3

(14)

MTI represents monthly tilted irradiation, WS represents wind speed, and AT repre-
sents air temperature.

All experimental run settings were utilized for model-based forecasts. Table 6 shows
the predicted results of PR. In Figure 7a, a comparison graph depicts the observed and
projected levels of PR. The RSM-based modeling of PR resulted in simple mathematical
equations. During regression, high R and R2 values as high as 0.9346 and 0.8735 were
obtained, suggesting a high degree of correlation. The MAPE and RMSE were low at 2.05%
and 1.85, respectively. The superior values of KGE and NSCE were 0.9175 and 0.8738,
respectively. The prediction uncertainty of the RSM-based model was evaluated with
Theil’s U2, 0.3343. The low errors and high predictive efficiency establish the model as an
efficient predictive model for PR. The developed model is shown in 3-D response surfaces
and 2-D contour diagrams. It also helps understand the interactions of various inputs and
their effects on the output, as illustrated in Figure 7b. It was noted that the PR augments on
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a higher MTI rate while the PR peaks at the mid-range of wind speed. A combination of
high air temperature and high wind speed improves the PR.

4.2. ANN-Based Modeling

ANN was used for the model prediction of power generation and performance ratio
of a 2 MWp solar plant. The performance data collected for three consecutive years was
used in model development. The proposed neural network utilized in the present study is
shown in Figure 8a. The model’s proposed architecture is shown in Figure 8b. ANN has the
inherent ability to model multi-input and multi-output problems. The input parameters in
this study were MTI (kWh/m2), WS (m/s), and AT (oC), while the output parameters were
PG (kWh) and PR (%). The output parameters in this study were predicted by employing a
feed-forward NN. The present work uses a multilayer feed-forward NN comprising one
input layer with three neurons, and one hidden layer with ten neurons, while the output
layer has two neurons representing two outputs. During training, the count of neurons in
the hidden layer was estimated through trial and error, and the count of neurons with the
lowest mean squared error (MSE) was chosen.

The data were arbitrarily partitioned into three parts; the most considerable (70%)
portion was used for model training, and 15% was used for authentication and testing. The
Levenberg-Marquardt (trainlm) function was employed in training as it has the combined
advantage of the Gauss-Newton method and the steepest descent technique; it has the
rapidity of the Gauss-Newton technique and the steadiness of the most vertical descent
method. The trainlm procedure converges significantly quicker than the first-order gradient
approach because it uses the estimated second-order derivative. The model’s performance
was measured using the MSE scale, with the constraint that the model’s performance
should be as near to zero as possible.

The outcome of regression coefficients (R) during authentication and testing are illus-
trated in Figure 8c. The R was observed to be 0.9997 during training, 0.9941 during valida-
tion, and 0.9954 during testing. The developed model was subsequently used for model
prediction. The comparative graph training depicting measured and model-predicted
power generation is illustrated in Figure 8d. Also, the comparative evaluation of measured
and ANN forecasted performance ratios is shown in Figure 8e. R for the power generation
model was 0.9679, and R2 was 0.9369, suggesting a high correlation between observed and
ANN-predicted data. Similarly, in the case of the PR model, the R and R2 values were
0.9963 and 0.9337, correspondingly. The MAPE, NSCE, and KGE for electricity generation
are 3.77 percent, 0.9128 percent, and 0.9096 percent, respectively. In PR, the MAPE, NSCE,
and KGE are 1.5 percent, 0.9317, and 0.9638, respectively. Theil’s U2 was utilized to calcu-
late the prediction uncertainty of the model. The power generation model yielded a result
of 0.325, while the performance ratio yielded a result of 0.245. These statistical indices
exhibiting low error and high predictive efficiency establish the developed ANN model as
a robust prognostic model [58].

4.3. ANFIS-Based Modeling

The present work used three inputs with one output variable to build a multiple-input
single-outcome (MISO) fuzzy model for predicting power production from a solar-based
PV plant. The suggested ANFIS model’s architecture for the present study is illustrated
in Figure 9. It comprises five stages: fuzzification, the product, the rule/normalization,
defuzzification, and global output summing. The first order Sugeno model was employed
for this study, which contains three input variables using Sugeno’s and Takagi’s fuzzy
IF-THEN rules. The suggested input selection approach is based on the concept that the
ANFIS model with the lowest RMSE (root mean squared error) after an epoch of training
has a higher potential for reaching a lower RMSE when given additional training epochs.
This assumption is heuristically sound.



Sustainability 2023, 15, 439 17 of 28

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 31 
 

AC2 1.382 × 108 1 1.382 × 108 1.84 0.1921  

B2C 1.083 × 109 1 1.083 × 109 14.40 0.0013  

A3 1.064 × 108 1 1.064 × 108 1.41 0.2498  

B3 7.399 × 107 1 7.399 × 107 0.98 0.3346  

C3 5.268 × 108 1 5.268 × 108 7.00 0.0164  

Residual 1.355 × 109 18 7.525 × 107    

Cor Total 5.980 × 1010 35     

The F-value of the model is 45.69, indicat the model is statistically substantial. B2, 

A2B, AB2, B2C, C3 are important model terms in this scenario. The model terms are not 

necessary if the value is more significant than 0.1000. The prediction model in the form of 

mathematical equations was generated. The developed model in a cubic equation is pre-

sented as Equation (13). 

Power generation = −1.33 × 107 + 41293.79*MTI + 9.11 × 105*WS + 1.047 × 

106*AT − 18753.13*MTI*WS + 1439.10*MTI*AT + 44481.45*WS*AT − 

285.73*MTI2 − 58701.22*WS2 − 38884.27*AT2 + 22.26*MTI2*WS + 

4.69*MTI2*AT + 2768.79*MTI*WS2 − 46.27*MTI*AT2 − 9699*WS2*AT + 

0.209*MTI3 − 16595.39*WS3 + 491.80*AT3 

(13) 

where MTI represents monthly tilted irradiation, WS represents wind speed, and AT rep-

resents air temperature. The model was used for prediction at all experimental run set-

tings. The observed and predicted power generation values are illustrated as a compara-

tive graph in Figure 6a. The RSM-based modeling of power generation was successful in 

generating easy mathematical equations. High R and coefficient of determination values 

as 0.9986 and 0.9773 were achieved during regression, indicating a high degree of corre-

lation. The MAPE was 2.24%, while the RMSE was 6133.93 (on account of large data val-

ues). The mean absolute percentage error (MAPE) was only 2.24%, while Kling-Gupta’s 

efficiency was 0.9847. The Nash-Sutcliffe efficiency (NSCE) is as high as 0.9774. 

at the higher MTI range as the power generation first decreases but again increases 

at higher wind speed, but the rate of change is slightly subdued in the higher MTI range. 

On the other hand, the air temperature positively affects the entire range of operations. 

 

(a) 

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 31 
 

 

(b) 

Figure 6. (a) Measured vs. RSM predicted power generation. (b) 3-D Response surface diagrams 

and 2-D contours for power generation. 

  

Figure 6. (a) Measured vs. RSM predicted power generation. (b) 3-D Response surface diagrams and
2-D contours for power generation.



Sustainability 2023, 15, 439 18 of 28

Table 6. ANOVA of performance ratio data.

Cause
Addition

of
Squares

df Square
Mean Value (F) Probability

Value

Model 3.08 13 0.24 11.86 <0.0001 Significant
MTI (A) 0.59 1 0.59 29.26 <0.0001

Wind
Speed (B) 0.01 1 0.01 0.895 0.0011

Air Temp
(C) 0.12 1 0.12 6.11 0.0217

AB 0.065 1 0.065 3.23 0.0861
BC 0.17 1 0.17 8.65 0.0075
B2 0.49 1 0.49 24.36 <0.0001

A2B 0.31 1 0.31 15.43 0.0007
A2C 0.40 1 0.40 20.02 0.0002
AB2 1.46 1 1.46 72.82 <0.0001
AC2 0.47 1 0.47 23.31 <0.0001
B2C 0.37 1 0.37 18.71 0.0003
A3 0.19 1 0.19 9.41 0.0056
B3 0.21 1 0.21 10.25 0.0041
C3 0.68 1 0.68 34.09 <0.0001

Residual 0.44 22 0.020

Cor Total 3.52 35

All of the nodes in the first layer were adaptive and had a troika of input variables.
This base layer contains a node function for each node. The product layer (second layer)
has no adaptive nodes. It combines all inward signals to assess each membership function’s
weight (MF). Each node’s output corresponds to the weight of the rule’s firing strength.
Each node in the third layer (the normalization or layer) evaluates each rule for activation
level to perform the preconditioned matching of the fuzzy rules. To acquire the output,
the defuzzification layer (fourth layer) is utilized to de-fuzzify MFs. This study used the
centroid defuzzification approach to determine the region’s centroid beneath the MFs.
This layer’s (product layer’s) nodes are all adaptable. The fifth layer is non-adaptive,
containing a single node since it is the sum of total outcomes for inwards signals from the
defuzzification layer [41].

4.3.1. ANFIS Model for Power Generation

The performance data collected from the solar plant was used for model development
using the ANFIS approach. It was utilized to establish the relationship between MTI, WS,
and AT with performance parameters, viz., power generation. The complete experimental
dataset was explicitly divided into two parts training and validation datasets. Hence, 70%
of the overall testing results were randomly selected for training, while the remaining
data was used to investigate the performance of the ANFIS-based model created. For the
creation of the designated ANFIS model, MATLAB 2016 is used. The grid partitioning
approach constructed the Sugeno-based FIS structure to link the input components and
output responses based on particular framed rules [7]. The neuro-fuzzy algorithm was
optimally trained using the hybrid learning technique. The proposed ANFIS multi-input
single-output (MISO) model for power generation is illustrated in Figure 10a.
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This step was used to obtain the expected output from the fuzzy rules. A comparative
graph between measured and ANFIS-predicted power generation is shown in Figure 10b.
The ANFIS model was evaluated using statistical indices for its predictive efficiency and
possible errors. During regression, R besides R2 values were high at 0.9950 and 0.9901,
suggesting a higher level of correlation. The MAPE and RMSE were low at 2.09% and
5492.81, respectively. The high value of RMSE is attributed to handling large-value numbers
in modeling. The predictive efficiency of the model was estimated with KGE and NSCE;
they were 0.9828 and 0.956, respectively. The uncertainty in ANFIS based model was
evaluated using Theil’s U2, and it was on the lower side of 0.1506. The high predictive
efficiency and low errors proved the model robust and efficient for power generation.

4.3.2. ANFIS Model for Performance Ratio

The solar plant’s performance data was utilized to construct an ANFIS-based model
using a hybrid technique of fuzzy and neural networks. MTI, WS, and AT were chosen as
input parameters, while PR was selected as an output parameter. Figure 11a shows that a
MISO neuro-fuzzy model was utilized to simulate PR. The comparative graph between
measured and ANFIS-predicted power generation is shown in Figure 11b.
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Figure 10. (a) Proposed ANFIS-based MISO model for power generation; (b) measured vs. ANFIS-
predicted power generation.

The predictive model developed using ANFIS was evaluated using statistical indices
for its predictive efficiency and prediction errors. The results of the statistical evaluation are
listed in Table 7. A good value of R and R2 as 0.9915 & 0.9830 indicates a good association
quality. On the error front, the MAPE and RMSE were low at 0.8% and 0.6898, respec-
tively. The model’s predictive efficiency was measured with KGE and NSCE, which were
0.9917 and 0.9837, respectively. The uncertainty in ANFIS based model was estimated
using Theil’s U2, which was 0.1259. The excellent predictive efficiency and negligible errors
establish the ANFIS-based model as an efficient model for PR.
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Table 7. Statistical measures and uncertainty of models.

Statistical Measures Uncertainty

Model Parameter R R2 NSCE MAPE RMSE KGE Theil’s U2

RSM PG 0.9886 0.9773 0.9774 2.24% 6133.93 0.9847 0.0775
PR 0.9346 0.8735 0.8738 2.05% 1.85 0.9157 0.3343

ANN PG 0.9679 0.9369 0.9128 3.77% 12070 0.9096 0.325
PR 0.9663 0.9337 0.9317 1.5% 1.37 0.9638 0.245

ANFIS PG 0.9950 0.9901 0.9828 2.09% 5492.81 0.956 0.1506
PR 0.9915 0.9830 0.9837 0.8% 0.6898 0.9917 0.1259

4.4. Comparison of RSM, ANN, and ANFIS Based on Statistical Indices and Taylor’s Diagram

The predictive power generation and PR model developed using RSM, ANN, and
ANFIS successfully forecasted the output at a high degree of correlation. However, their
efficiency and ability to predict were not equal in the present study. The models were
evaluated using different statistical indices, viz., R, R2, MAPE, RMSE, NSCE, and KGE.
The models were also assessed for their predictive uncertainty (Table 7). The outcomes of
the model evaluation are listed in Table 8.
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Table 8. Measured and modeled predicted outputs.

Run Power Generation Performance Ratio

Measured RSM
Projected

ANN
Projected

ANFIS
Projected Measured RSM

Projected
ANN

Projected
ANFIS

Projected

1 264,040 268,999.85 258,690.66 262,389.45 76.56 78.86 75.40 76.40
2 279,878 268,737.76 271,301.79 277,675.12 79.51 76.87 78.03 80.11
3 285,350 286,448.79 272,906.56 281,425.23 75.85 76.91 76.07 74.95
4 254,941 260,449.07 249,141.90 248,125.14 78.67 80.27 80.16 78.11
5 252,734 247,538.97 221,498.85 242,731.12 79.41 78.64 79.73 79.73
6 185,389 191,020.14 195,114.58 191,456.25 80.9 80.88 79.81 79.81
7 190,458 189,552.19 187,585.12 188,258.14 73.19 73.02 73.79 73.45
8 178,908 182,638.26 189,566.97 181,254.25 76.16 76.60 75.81 76.01
9 213,426 208,280.49 203,618.02 208,451.23 75.37 74.77 73.52 74.89

10 236,512 234,612.11 236,925.85 236,924.14 76.92 75.93 77.75 77.75
11 217,386 226,956.31 202,186.02 212,654.12 75.14 76.63 76.03 75.78
12 247,649 234,294.17 230,916.53 241,258.25 77.63 72.98 74.90 77.23
13 267,262 264,699.25 259,783.10 262,352.25 69.93 69.35 67.98 68.98
14 260,593 247,628.92 246,724.10 256,365.36 71.67 68.44 70.01 71.11
15 295,842 292,765.99 287,306.79 291,451.23 71.72 70.42 72.23 72.22
16 258129 267,584.56 253,687.53 254,121.14 69.75 72.61 70.76 70.14
17 252,834 257,048.45 249,292.15 249,292.25 72.69 73.70 72.71 72.71
18 207,927 200,982.90 206,448.00 206,448.22 75.95 73.19 78.91 76.74
19 186,007 186,477.82 182,471.71 182,471.70 74.09 74.62 71.40 73.88
20 142,496 139,068.59 146,395.66 148,254.12 65.88 66.60 64.84 64.84
21 206,299 211,228.75 193,999.53 199,958.14 79.5 81.11 78.81 79.15
22 211,321 219,053.64 208,922.82 209,451.18 62.47 64.51 63.10 63.25
23 209,165 221,633.31 231,547.55 215,241.36 56.23 58.55 57.01 57.01
24 211,726 214,778.04 205,136.23 204,122.27 62.53 63.18 62.11 62.10
25 260,220 255,905.39 223,359.37 246,258.59 74.01 72.31 75.00 74.99
26 275,427 274,808.32 274,636.35 271,452.19 75.02 75.49 75.67 75.36
27 288,285 287,625.75 283,623.35 283,629.35 78.11 77.99 79.39 79.58
28 260,518 262,246.26 238,492.83 249,384.82 73.02 73.54 74.45 73.51
29 214,991 211,683.89 211,505.89 210,505.89 69.01 72.12 70.11 69.25
30 154,650 154,947.97 153,295.72 153,295.72 70.03 70.51 70.42 70.29
31 146,224 140,470.72 144,062.04 144,054.03 71.01 68.73 71.76 71.59
32 159,928 163,652.79 156,887.80 155,776.25 73.04 73.90 71.65 71.65
33 243,071 248,212.30 244,663.38 246,667.49 74.01 74.49 77.36 75.11
34 231,826 226,389.14 228,111.21 228,002.49 75.02 71.41 75.31 75.31
35 228,378 235,331.56 221,384.07 223,457.19 77.12 78.99 77.68 77.58
36 237,949 233,986.57 227,423.32 230,654.98 78.01 76.19 78.14 78.11

The Taylor diagrams for performance ratio and power generation are illustrated in
Figure 12. The ANFIS model performs better than the ANN and RSM models in predicting
performance ratio. The ANFIS model point is closer to the baseline than ANN and RSM
models. Similarly, in the case of power generation, the ANFIS model performs better than
ANN and RSM models. Hence, it can be concluded that ANFIS based predictive model
is the most suitable among these three models (ANFIS, ANN, and RSM) for performance
mapping and model prediction of solar power plants.

Among the various AI techniques, the prediction by ANFIS matches very closely,
matching the PV plant’s actual performance as proven by the different statistical models.
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5. Conclusions

This study investigates the feasibility of applying AI techniques to construct a predic-
tion model for the yearly energy output and performance ratio of a solar PV facility. To that
end, AI approaches such as RSM, ANFIS, and ANN were examined. The investigation was
conducted on an actual functioning 2 MWp grid-connected solar Photovoltaic plant erected
at the Kuzalmannan location in Kerala, India. Meteorological data such as solar irradiance,
temperature, wind speed, and matching PV production were collected for model training,
testing, and validation over three years. To determine the most accurate prediction model,
statistical indices such as Pearson’s R, coefficient of determination (R2), Nash-Sutcliffe effi-
ciency (NSCE), root-mean-squared error (RMSE), mean absolute-percentage error (MAPE),
Kling-Gupta efficiency (KGE), and Taylor’s diagram were used. The following are the main
outcomes of the present study:

The remarkable advantage of AI-based techniques in handling extensive solar plant
design and performance optimization data is demonstrated.

Compared with different AI techniques, the results show that ANFIS is the most
accurate prediction model, with the highest value of R2 at 0.9901, NSCE at 0.9828, and KGE
at 0.956. The uncertainty in ANFIS-based model prediction was only 0.1506, indicating a
robust predictive model.

The ANN-based prediction was marginally inferior to ANFIS as R2 was 0.9369, NSCE
was 0.9128, and KGE was 0.9096. The uncertainty in ANFIS-based model prediction was
0.325, indicating a comparable prediction model.

The RSM and ANOVA facilitated the development of correlation expression for per-
formance ratio and power generation. Taylor’s diagrams were employed to compare the
model’s output visually.

Since solar generation is intermittent, forecasting solar performance is very important.
Precise solar generation forecasting using AI tools can provide helpful information for
load dispatch centers and power scheduling from other sources for electrical utilities or
electricity generation applications. It is hoped that the data-driven models will be attractive
to solar PV plant developers and policymakers.
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However, advanced study and validation are needed for PV plants installed in different
climate zones. Future work could be oriented toward the development of an advanced
machine learning algorithm for solar power prediction. It might be of even more value if
machine learning could predict the performance degradation over the plant life.
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