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Abstract: The gob-side entry retaining (GER) technique, as the family member of the pillarless
coal mining system, is becoming popular, mainly attributed to its high resource recovery rate and
significant environmental benefits. Seeking cost-effective backfill material to develop the roadside
backfilling body (RBB) is generally a hot topic for coal operators and scholars. Except for its relatively
high cost, the other shortcoming of the widely used high-water backfill material is also obvious when
used in arid, semi-arid deserts or Gobi mining areas lacking water. The modified high-water backfill
material (MBM) mixed with aeolian sand was recently developed as an alternative to conventional
backfill materials. Some critical parameters affecting both the physical and mechanical properties of
the MBM, including the amount of the aeolian sand and water-to-powder ratio of the high water-
content material, have been experimentally investigated in the present research. Test results showed
that the MBM featured high early strength and bearing capability after a large post-peak deformation.
In particular, the adjustable setting time of the MBM through changing the amount of sand widens
its application in practice. Unlike the high-water backfill material, the MBM is a typical elastoplastic
material; the stress-strain curves consist of pore compression, elastic deformation, yielding, and total
failure. Note that both the peak and residual strength of the MBM increased as the doping amount
of aeolian sand increased, which is probably because of the impacted aeolian sand and the uniform
reticular structure of the ettringite in the MBM. Compared with the high-water backfill material, only
limited cementitious material and water resources are requested to cast the RBB, which provides
more economical and environmental benefits for the application of the GER technique in the arid,
semi-arid deserts or the Gobi mining areas.

Keywords: aeolian sand; water-cement ratio; backfill material; compressive strength; micromorphol-
ogy; gob-side entry retaining

1. Introduction

Concern about many serious eco-environmental problems caused by coal exploitation
is a global problem [1,2]. As a result, much research in recent years has focused on the
development of mining techniques that are environmentally friendly [3]. Under the rapid
development of the mining industry in recent decades, the continuous and irreparable
impacts of contaminated air, degraded soil, polluted water, damaged biodiversity, and
geological disaster of mining operations may increase the risks of mine development [4].
The coal reserves in Northwestern China account for about 70% of China’s total coal re-
sources [5,6]. However, most coal mines are distributed among these arid and semi-arid
regions, where water resources are in short supply, and there is sparse vegetation, a barren
ground surface, and ecological vulnerability [7]. As is well-known, aridity and water
shortage are the major natural disasters in Northwestern China and the primary causes
of ecological vulnerability in this region [8,9]. In recent years, however, large-scale coal
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mining activities in Western China have further aggravated ecological deterioration [10].
Environmental problems caused by general mining processes mainly included: (1) the
influence on people, biota, biodiversity, the atmospheric environment, and surface ecosys-
tems [11–13]; (2) the influence on the soil environment [14], the hydrological system [15],
and severe geological disasters. These effects were combined with each other and caused
more complicated consequences [11]. Therefore, maximally adapting the coal mining
activities to the local ecological environment was an inevitable road towards “green coal
mine construction and green mining in Western China”.

Much research in recent years has been widely applied to control eco-environmental
problems caused by coal exploitation, such as grout injection [16], room mining [17], strip
mining [18], backfill mining [19], and pillarless coal mining [20]. The increased favor for
the backfill mining method was due to several advantages: high extraction rate, effective
control of ground pressure, reduction of ground surface subsidence, and eco-environment
improvement of the mining region [21,22]. The backfill mining methods were divided into
several types based on the backfill material used, such as hydraulic backfilling, gangue
backfilling, and cemented past backfilling [23]. These backfilling methods offered viable
pathways to liberate coal resources under the buildings. However, some drawbacks still
existed, such as a complex backfilling process, slow backfilling speed, high backfilling cost,
and unavailability of backfill materials. Recently, some new backfill materials have been
developed, such as flexible formwork concrete, high-water backfill material, and cement
mortar. Such novel backfill materials somehow reduce the backfilling cost and expand the
application scope of the backfilling technology [24–28], such as roadway backfill mining [3]
and pillarless coal mining [20].

The gob-side entry retaining (GER) technique enables pillarless coal mining by using
a roadside backfilling body (RBB), which can effectively reduce the roadway-driven ratio,
improve the resource recovery rate, and has significant economic and environmental
benefits (Figure 1) [25,27]. Flexible formwork concrete and cement mortar have higher
strengths but lower vertical deformation capacity. Therefore, such backfill materials hardly
meet the requirement for a large deformation capacity of RBB for GER. On the other
hand, high-water backfill materials have the benefits of having high early strength, high
flowability of single slurry, fast setting of mixed slurry, and high bearing capability after a
large post-peak deformation. Besides, such backfill materials were incompressible under
triaxial compression and better adapted to the underground goaf environment, which was
usually cold, damp, and enclosed [29]. Given the above discussion, high-water backfill
materials are believed to be ideal for the RBB.
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However, high-water backfill materials have the following defects if used in mining re-
gions in arid and semi-arid deserts or Gobi mining regions: (1) it consumes a large amount
of water to prepare high-water backfill materials, which aggravates water shortage [30];
(2) despite the high content of water, the high-water backfill material is necessary in large
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quantities [31]; (3) due to the low strength of the backfill body, doping massive cementitious
materials enhances the strength [32]. As is well known, aeolian sand extensively occurs on
the ground surface in Northwestern China. Therefore, it is easily found in nature, is inert
and harmless, and causes no pollution to water bodies and the surrounding environment.
Moreover, aeolian sand provides a sufficient raw material source to prepare backfill materi-
als for coal mines [33]. Therefore, it is necessary to study an alternative to conventional
backfill materials with aeolian sand, which not only liberates coal resources but also limits
high-water backfill materials and water resources in the arid, semi-arid deserts or Gobi
mining areas.

In the present study, we developed a modified high-water backfill material (MBM)
that met the coal exploitation requirements of coal mining in Northwestern China. In the
proposed novel MBM, aeolian sand was the primary aggregate and a high-water backfill
material was the calcium sulphoaluminate (CSA) based cementitious grout material. Some
research has been conducted in past years to understand better the physical and mechanical
characteristics of backfill material and their influencing factors, which showed that the
physical and mechanical properties were affected by external and internal (e.g., binder type,
content, water chemical properties and content, composition, and content of aggregate)
factors. Although the influence of these variables has been extensively documented in the
literature, the reported results were inconsistent due to large differences in the physical,
chemical, and mineralogical properties of cementitious materials and aggregates [23,34–41].
In this study, in order to expand the application scope of the MBM in coal mines located in
the arid and semi-arid deserts or Gobi region, we prepared 16 test samples with a diameter
of 50 mm and a height of 100 mm. Then we studied the effect of the doping amount of
aeolian sand and water−cement ratio on the physical and mechanical characteristics of
MBM (e.g., initial setting time, unconfined compressive strength, and its microstructure).
The main outcomes of this research may contribute to the safe and green exploitation of
underground coal mines in the arid and semi-arid deserts or Gobi.

2. Experimental Scheme
2.1. Test Sample Design

The sample preparation and testing were conducted at Xinjiang University. Firstly,
we prepared 16 test samples with a diameter of 50 mm and a height of 100 mm. Next, the
water−cement ratio and the doping amount of aeolian sand were changed as the main
parameters to discuss the influence of doping aeolian sand on the mechanical properties of
the MBM. Then, the samples constituted three series and ten groups. In each group, there
were two nominally identical samples.

As shown in Table 1, series 1 consisted of six standard short cylinders with three
different water−cement ratios (1.0, 1.5, and 2.0) and the doping amount of aeolian sand
being 0%. Samples in series 2 were differentiated from each other by the cementitious
grout material’s water-cement ratio (1.0, 1.5, and 2.0). The doping amount of aeolian sand
was 60% in each sample. To study the influence of the doping amount of aeolian sand,
we prepared eight test samples for series 3, each having a water−cement ratio of 1.0, but
4 different doping amounts of aeolian sand (0%, 20%, 40%, and 60%).

We named each test sample following a specific convention. The first number repre-
sented the water−cement ratio of the cementitious grout material, the second the doping
amount of aeolian sand, and the last was a Roman numeral that differentiated two nomi-
nally identical samples. Take U-1.5-00-II as an example. U-1.5-00-II represented the second
test sample, with a water−cement ratio of 1.5 in the cementitious grout slurry and the
doping amount of aeolian sand being 0%.
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Table 1. Details of specimens.

Series Group Specimen Water−Cement Ratio (w/c) Sand Content (as)

1
U-1.0-00 U-1.0-00-I,II 1.0 0%
U-1.5-00 U-1.5-00-I,II 1.0 0%
U-2.0-00 U-2.0-00-I,II 1.0 0%

2
U-1.0-60 U-1.0-60-I,II 1.0 60%
U-1.5-60 U-1.5-60-I,II 1.5 60%
U-2.0-60 U-2.0-60-I,II 2.0 60%

3

U-1.0-00 U-1.0-00-I,II 1.0 0%
U-1.0-20 U-1.0-20-I,II 1.0 20%
U-1.0-40 U-1.0-40-I,II 1.0 40%
U-1.0-60 U-1.0-60-I,II 1.0 60%

2.2. Raw Materials

The CSA cementitious grout material was provided by Yangzhou Zhongkuang Con-
struction New Material Technology Co., Ltd. (Yangzhou City, China). The high-water
backfill material was composed of two main ingredients, A and B. It mainly consisted
of sulfate aluminum cement, a suspending agent, and a set retarder. B was a mixture of
lime, gypsum, a suspending agent, and an early strengthener [42]. The initial setting time
was short after combining slurries A and B. Besides, the test sample developed sufficient
strength within a short period. Therefore, such materials have the benefits of not causing
pipeline blockage and have easy pumpability, high early strength, and environmental
friendliness, with extensive application in mine backfilling, leak stoppage, and fire retar-
dancy. The aeolian sand used for experiments came from the Kumtag Desert, one of the
main deserts of northwestern China. We conducted grain size distribution on aeolian
sand according to ASTMC136/C136M [43]. The cumulative grain size distribution curve
(Figure 2) shows that the aeolian sand grain distributions were mainly between 0.075 mm
and 0.25 mm. These grain sizes accounted for about 90% of the total mass, while the
remaining were 0.25 to 1.0 mm.
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Figure 2. Grain size distribution curves of aeolian sand.

2.3. Test Sample Preparation

Next, we prepared the MBM samples (Figure 3). Material slurry A had aeolian sand
mixed at a specific ratio. Material B slurry had added water adequately mixed. Finally,
slurry A was doped with aeolian sand combined with the slurry B doped with aeolian
sand, mixed for 5 min, and was left to stand still. The mixed slurry was poured into a mold
and cured for 24 h before demolding. The test sample was covered with a preservative film
and placed in an enclosed container. The subsequent tests began after 7 d of maintenance.
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2.4. Testing Equipment and Instruments

Our main discussions were on the influence of doping aeolian sand and the water−cement
ratio on the physical and mechanical characteristics (e.g., initial setting time, unconfined
compressive strength, and microstructure). The setting time of MBM should meet the
requirements for the filling process for GER. If the setting time is too short, pipeline
obstruction quickly happens, which will not be conducive to material transport. If the
setting time is too long, MBM might not be easily formed in the goaf, thus failing to achieve
the backfilling purpose. Therefore, the control of the setting time is of high importance.
The Standard Vicat needle test for all test samples was as per GB/T1346-2001 [44]. We
took the average initial setting time from two repeat tests on the same sample. When
used to backfill the space underground, MBM was usually squeezed between the roof
and floor of the coal seam. Therefore, the backfill body was subjected to uniaxial loading.
The uniaxial compression test was crucial for the backfill material. We conducted the
classical loading tests on MBM using the WAW-600D Hydraulic Universal Testing Machine.
As shown in Figure 4, four strain gauges (SGs) were installed at the mid-height of each
sample to measure axial and circumferential strains and the overall axial deformations of
the samples. According to ASTMD7012-2010 [45], we used a loading rate of 1.5 mm/min
for the compression test in all samples under the displacement loading mode. In order to
understand the microscopic characteristics, we observed the morphology of MBM using
the ZEISS LEO-1430 VP scanning electron microscope (Carl Zeiss AG, Jena, Germany).
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3. Experimental Results and Discussion
3.1. Results of Vicat Needle Test

The standard Vicat needle test results are shown in Figure 5. As shown in Figure 5,
doping aeolian sand would affect the initial setting time of MBM. With the doping amount
of aeolian sand fixed at 60%, the initial setting times of the samples with the water−cement
ratio being 1.0, 1.5, and 2.0 were shortened by 50%, 26%, and 30%, respectively, compared
with those not doped with aeolian sand. When the water−cement ratio was fixed at 1.0,
the initial setting time of the samples was 43 min, 53 min, 33 min, and 21 min when the
doping amount of aeolian sand was 0%, 20%, 40%, and 60%, respectively. It is noteworthy
that the initial setting time of the MBM decreased with the increased doping amount of
aeolian sand and decreased with the water−cement ratio. It is logical that adjustment of
the initial setting time by changing the doping amount of aeolian sand met the technical
requirements of the construction of RBB.
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3.2. Failure Modes

The failure modes from the various tests of MBM are in Figure 6. As shown in the
figure (Figure 6a,c), for the pure high-water materials (e.g., U-1.0-00, U-1.5-00 and U-2.0-00)
and at a small doping amount of aeolian sand (e.g., U-1.0-20), failure first occurred at one
end of the sample. Then, the cracks gradually propagated from the middle to the other
end of the sample. Thus, a sharp tensile crack was formed, causing the failure of the entire
sample. As the doping amount of aeolian sand continued to increase (Figure 6b,c), the
sample underwent axial compression and radial expansion due to pressure from above. The
friction at the end of the testing machine resulted in a three-way stress zone in an inverted
cone shape at the top of the testing machine, where an X-shaped crack zone developed.
With sustained axial pressure, a shear fissure intersecting with the axial line appeared in
the lower part of the X-shaped crack zone. This fissure became a macroscopic crack, further
leading to the sample’s shear failure. Interestingly, as the doping amount of aeolian sand
increased, the modified samples gradually transitioned from tensile failure to X-shaped
shear failure. It seems likely that the failure modes of MBM can be affected by sand content.
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3.3. Stress-Strain Curves

Using the WAW-600D Hydraulic Universal Testing Machine, we obtained the stress-
strain curves of every sample. Figure 7 shows the axial stress−axial strain curves of MBM.
Note that MBM is classic elastoplastic. Such material was not only compressible to adapt to
surrounding rock deformation but also had residual strength even after failure. These two
features are highly desirable for the construction of RBB [46].
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As shown in Figure 7c–e, the doping of aeolian sand dramatically altered the char-
acteristics of the stress−strain curve of MBM. The stress−strain curve was divisible into
four stages: pore compression, elastic deformation, yield, and failure. But compared with
pure high-water materials (e.g., U-1.0-00, U-1.5-00 and U-2.0-00), MBM specimens display
distinctive features at these four stages.

(1) Pore compression stage: This stage was more clearly distinct in the pure high-water
materials (e.g., U-1.0-00, U-1.5-00, and U-2.0-00); as the water−cement ratio increased,
the stage of pore compression became even more distinct (Figure 7a,b). But for
MBM specimens, the scene became less precise as the doping amount of aeolian sand
increased (Figure 7c). It would appear that the specimens with a larger water−cement
ratio had a more remarkable pore compression stage. At the same time, the higher
sand content that led to this stage was not significant. It may be because the doped
aeolian sand particles filled the pores between the originally pure high-water material,
reducing the number and space of pores.

(2) Elastic deformation stage: This stage became less distinct and had a shorter duration
for pure high-water materials (Figure 7a) and a low doping amount of aeolian sand
(Figure 7c). However, as the water−cement ratio increased, this stage became less



Sustainability 2023, 15, 569 10 of 15

precise and had a shorter period (Figure 7a,b). In addition, as the doping amount of
aeolian sand increased (Figure 7c–e), this stage became more distinct and had a longer
duration. This phenomenon mainly dominated in the modified material samples
U-1.0-60. It may be assumed that the more considerable amount of aeolian sand doped
into the high-water material, the smaller the pores between aggregate particles. The
friction between the aggregate particles could further increase due to the cementing
effect of the high-water materials. Therefore, the inter-particle dislocation was more
unlikely to happen.

(3) Yield stage: An apparent fracture plane appeared in the samples at this stage, and
the fracture propagated constantly. At a higher doping amount of aeolian sand
(Figure 7b–e), the failure occurred rapidly, resulting in a higher peak and more
significant compressive strength on the curve at this stage. However, for pure high-
water materials and samples doped with a small amount of aeolian sand (Figure 7a,c),
the peak and the compressive strength were smaller on the curve. The above might
be because the friction between the aggregate particles was lower due to the larger
pores between them.

(4) Failure stage: The MBM displayed significantly different features at this stage. The
stress−strain curve showed a more gentle decreasing trend in the pure high-water
materials (Figure 7c–e). However, the stress was still high even at the maximum strain,
indicating a high residual strength (Figure 7a). Apparently, the decrease was steeper
on the stress−strain curve for the MBM (Figure 7b–e). The stress corresponding to
the maximum strain was lower in MBM than in pure high-water materials. Besides,
this stress decreased as the doping amount of aeolian sand increased (Figure 7c). It
would seem that although the post-peak strength decreased slightly, the MBM had
high bearing capability after a large post-peak deformation.

3.4. Consumption of Raw Materials

Figure 8 shows the compressive strengths and material consumption for different
test samples. As shown in Figure 8a, the strength of the samples negatively correlated
with the water−cement ratio when the doping amount of aeolian sand was 0% and 60%.
When the doping amount of aeolian sand was above 40%, the strength of the sample
positively correlated with the doping amount of aeolian sand, compared with the pure
high-water material (e.g., U-1.0-00). Besides, the amounts of cementitious material and
water negatively correlated with the doping amount of aeolian sand (Figure 8b). Compared
with the pure high-water materials (e.g., U-1.0-00, U-1.5-00, and U-2.0-00), the samples
with the water-cement ratio being 1.0, 1.5, and 2.0 and the doping amount of aeolian sand
being 60% had an increase in strength of 45%, 83%, and 111% (Figure 8a), respectively;
the amounts of cementitious material and water consumed decreased by 60% in all these
doped samples. As shown above, the aeolian sand-modified high-water backfill materials
had higher compressive strength. Besides, it consumed smaller amounts of cementitious
materials and water in preparing these materials. It should be possible, therefore, to reduce
cementitious material and water resources requested to cast the RBB, which provided new
insight for the application of the GER technique in the arid and semi-arid deserts or Gobi
mining areas.
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Figure 8. Consumption of raw materials: (a) Uniaxial compressive strength of specimens of dif-
ferent groups; (b) The percentage of water and cementitious material consumed by specimens of
different groups.

4. Micromorphological Analysis

In order to understand the microscopic characteristics, we observed the morphology
of MBM using the ZEISS LEO-1430 VP scanning electron microscope (SEM). Figure 9
shows 6000× SEM images of MBM. As shown in Figure 9, when the doping amount of
aeolian sand was small (Figure 9a,c), the sample particles were slender and elongated,
with a fibrous reticular structure. The fibrous substances were interwoven and overlapped
with each other. Moreover, tight connections resulted, though some small cavities still
existed. When the doping amount of aeolian sand was 20% (Figure 9c), the sample particles
were short and prismatic. This may be the reason for the lower strength of the sample
(e.g., U-1.0-20) compared to the pure high-water material (e.g., U-1.0-00). As shown in
Figure 9b,c, when the doping amount of aeolian sand increased, the sample particles had a
denser fibrous reticulate structure. This was unlikely to form large penetrating cavities. By
contrast, the structure with the lower doping amount of aeolian sand was loose and more
likely to have large penetrating cavities. Therefore, it seems plausible that the materials with
the denser fibrous reticulate structure were stronger than those with the loose structure.
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Herein, as is the sand content, w/c is the water-cement ratio.

5. Conclusions

In this study, we introduced a modified high-water backfill material (MBM) mixed
with aeolian sand. To fully understand both physical and mechanical properties of the
MBM, a total of 16 samples with a diameter of 50 mm and a height of 100 mm were
experimentally tested. Some critical parameters, such as the doping amount of aeolian sand
and the water−cement ratio, have been well concerned. The initial setting time, unconfined
compressive strength as well as the microstructure of the MBM were investigated in-depth.
The main conclusions based on the results and discussions are listed below:

(1) The initial setting time of the MBM decreased with the increased doping amount of
aeolian sand and decreased with the water−cement ratio of the high water backfill
material. It is thus possible to regulate the setting time of the MBM by changing the
doping amount of aeolian sand to meet the technical requirements of the construction
of RBB.
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(2) The typical stress−strain curve of the MBM consists of four portions: pore compres-
sion, elastic deformation, yield, and failure, indicating that the MBM is a typical
elastoplastic material.

(3) The MBM consistent with the high-water backfill material has the benefits of having
high early strength, high flowability of single slurry, fast setting of mixed slurry, and
high bearing capability after a large post-peak deformation.

(4) Both the peak and the residual strength of the MBM increased with the doping
amount of aeolian sand within a specific scope, which may be because the existence
of the aeolian sand impacted the integrity and uniformity of the reticular structure of
ettringite in the MBM.

(5) Compared with the high-water backfill material, only limited cementitious material
and water resources are requested to cast the RBB, which provides new insight for the
application of the GER technique in arid, semi-arid deserts or Gobi mining areas.
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