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Abstract: In this paper, we developed truck fuel consumption models for the particular assistance of
professionals in charge of road project valuation in terms of predicting fuel used by trucks, which is
an important topic on vehicle operating costs to be considered in the benefit–cost analysis of road
projects. On the other hand, fuel consumption has a direct impact on emissions to the atmosphere,
and thus future research can be conducted regarding estimations about emissions by trucks. In this
research, we identified the effect of overall vehicle weight on truck fuel consumption in a free-flow
regime. The methodology includes the design of experiments and factorial design as statistical
techniques to obtain data, as well as linear and non-linear regressions to obtain models for two types
of trucks: rigid (three axles) and articulated (six axles). Notably, there is no evidence of research
previously conducted on the latter. We used statistical methods for the selection of trucks, equipment,
road segments, and other aspects, obtaining good control in tests verifying the appropriate values
for factors according to the planned ones. The results satisfy the expectations of the research, and
it was demonstrated that the vehicle weight and roadway slope were significantly more important
than speed alone, which was typically considered the main variable in other studies. On the other
hand, longitudinal slopes higher than 5% were found to not be suitable for freight road corridors.
It is recommended that 6-axle trucks instead of 3-axle trucks be used for a 16 t amount of cargo
transported on a plain road (longitudinal slope under 3%). The HDM-4 model did not represent fuel
consumption adequately for the current vehicle fleet operating on roads. Fuel consumption models
must be updated, for instance, every 10 years, such that they can adapt to vehicle technological
advances and the energetic improvement of fuels, including the proportion of biofuels and gas.

Keywords: freight transportation; truck fuel consumption; vehicle weight; road slope; truck speed;
experiment design

1. Introduction

Road freight transportation represents the main alternative for mobilization of goods
in many countries [1]. As such, an optimal road infrastructure is important in keeping the
cost of transportation as low as possible in order to maintain an economic and competitive
edge [2]. Fuel consumption has been studied since the advent of motor vehicles in the
twentieth century. Interest on the topic has increased in recent years due to fuel costs as well
as the economic and environmental impacts generated through its use, specifically in light
of global warming phenomena and emissions, as well as due to it being a non-renewable
resource [3–6]. In accordance with this, emission and fuel consumption typically increase
with the increment of vehicle average speed [7], as can be seen in Figure 1 for CO2 emissions
and for two types of vehicles (light-duty gasoline and heavy-duty diesel).
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Figure 1. CO2 emission prediction values under different average speed-bins, adapted from [7].

From Figure 1, it is noted that emission and fuel consumption of heavy-duty diesel
vehicles is greater than of the light-duty gasoline vehicles, and that for the lower average
speeds, there is a higher increasing for emission and fuel consumption rates, while those
rates rise slowly when average speed increases.

Figure 2 shows CO2 emissions and fuel consumption predicted according to vehicle
speed for heavy-duty vehicles, and it can be seen that for lower and higher speeds, those
emissions and fuel consumption increasing rates are greater than for intermediate speeds.
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Figure 2. CO2 emission and fuel consumption prediction values under different average speed-bins
for heavy-duty vehicles. Proper elaboration using information from [7].
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In this paper, we considered fuel consumption in trucks that use diesel fuel, which
is a non-renewable fossil fuel. Its consumption and behavior under different operating
conditions should be rightly known, due to the important role of fuel in determining
transportation costs. Truck-type vehicles were studied, as their fuel consumption is higher
than that of other vehicle types, making them important due to the associated impact on
transportation costs, and as they have great impacts at both the economy level (as they
mobilize freight for all of society) and, in a special way, at the country level (whose economy
is dependent on road transport of its goods) they thus represent an important and essential
link for the economic and social development of any country [8]. However, although many
studies have focused on fuel consumption [3,9,10], some factors that affect it have not been
studied with proper rigor [8,10,11], especially for trucks, as noted in this paper. As an
example, the congestion due to continuous stops and starts and greater variability in speed
could increase the fuel consumption by at least 25%, but this is very variable according
to vehicle type, road condition, and congestion severity. On the other hand, aggressive
driving impacts fuel consumption between 5% and 30% [12,13].

Other factors are as follows: fuel quality, vehicle maintenance, the amount of cargo
carried by the truck (or, more broadly, the total weight of the vehicle), and the slope of the
road at high values, all being aspects of great importance in fuel consumption, and they are
also very normal conditions in cargo transportation since trucks are not always used with
the same amount of cargo, or total weight, and many regions of countries have roads with
variable longitudinal slope adopting high values due to topographic conditions [8,14].

This research addresses some of these gaps mentioned before, measuring and mod-
elling the influence of two variables on fuel consumption: the overall truck weight and
longitudinal slopes (especially when it takes high values). The amount of freight being car-
ried by a vehicle is important, as it affects the power required by the vehicle and, thus, fuel
consumption [7,10,14,15]. In the same way, fuel consumption depends by road longitudinal
slope due the incremental requirement of power engine if the slope increase [14–20].

The scope considers two types of trucks: rigid and articulated (with three and
six axles, respectively). A literature review yielded very little prior research on these
variables regarding trucks with three axles, and there was no evidence of studies on the
subject for the second type of truck (six axles), providing a situation in which to enable
additional contributions to knowledge on fuel consumption. Furthermore, the better
determination of fuel consumption allows for better estimates of pollutant emissions
and their effect on the environment.

This research was conducted in a region that has appropriate traffic flow conditions, a
range of longitudinal road slopes, and access to services to control the desired conditions
for driving the trucks. The design of the experiments was used to study the data and
produce model results; in particular, 3K and 2K factorial design techniques were considered
the most appropriate for this study, as is explained later.

The results of this study have many benefits for researchers, who can adopt the
methodology used or the novel models for fuel consumption in future studies, as well
as to road designers, transportation projects valuators, transport carriers, and the gov-
ernment agencies responsible for the development of the construction and operation
of the road network. From a proactive perspective, the findings of this study and the
models developed herein are important to stakeholders, who can now assess their road
projects using a realistic valuation of truck fuel consumption, providing an additional
measure when comparing road design alternatives. This paper includes five sections:
First, this introduction, followed by the theoretical framework for fuel consumption and
related models. Next, the research methodology is presented; the results and analysis
are detailed; and, finally, our conclusions are given.

2. Fuel Consumption by Vehicles

Here, we present a theoretical framework for fuel consumption by vehicles, as well as
models to estimate such consumption and their evolution.
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2.1. Theoretical Framework

The evaluation of a road project includes important variables, such as construction
costs; property costs; value of travel time for users and goods; maintenance costs of the
road; cost of vehicle operation; and other transportation-related costs as externalities, such
as environmental impacts and others. Vehicle operation cost is the largest component in the
total cost of transportation [11] and, further, fuel consumption is one of the most important
components of vehicle operating costs in the salary of drivers. Studies have shown that
fuel consumption, within total operating costs, comprises 33% for light vehicles [3], 50% for
some heavy vehicles [9,21], and from 40 to 60% for trucks [22], while others have estimated
it at 30% for all vehicles in general [4]. This depends on the region of the valuation, as well
as the specific user time and fuel costs. For example, in Venezuela in 2001, fuel consumption
was 4% of the vehicle operating costs, while it was 29% in Spain, 28% in Bolivia, and 24% in
Colombia [23]; on the other hand, in Colombia, it accounted for about 33% of the operating
costs for trucks in 2011 (including tolls, or 38% not including tolls), while at the beginning
of 2021, it was 35% (or 40%, respectively) [24].

The energy sources for vehicles are in transition (for example, to electricity) due to
emissions from fossil fuels and climate change. Some studies have been conducted on
this topic [25], but fossil fuels are expected to be used for several years yet; as such, study
and estimates relating to such fuels are still necessary. Those studies reveal that battery
health affects the performance of battery electric buses. However, there is little attention
to the effects of power matching and seasonality (which significantly affect the battery
performances) on planning for charging infrastructure. The main result from the source is
that there are significant performance differences regarding vehicle scheduling and charging
among different bus fleets in the battery-electric-bus-based transit system, providing strong
evidence about the necessity to consider powering match and the seasonality in the bus
charging infrastructure layout.

In an economical evaluation study, tolls are generally considered an internal transfer
of the system analyzed, and not a cost in themselves.

Decisions about what vehicle should be used for any specific trip or how a vehic-
ular fleet should be composed, in terms of several types of vehicles and according to
the type of trips to be done, must consider fuel costs, routing, travelling distance, and
loading/unloading operations [26]; in this context, the estimation of fuel consumption is
important to carry out, as it can help to obtain better decisions.

Predicting fuel consumption is difficult due to the number of influencing parame-
ters, as well as the technological advances in vehicles and in fuel types [27]; however,
these advances do not necessarily lead to the expected reduction in fuel consumption,
as vehicles require more power for the increased amenities offered [6], including air
conditioning, refrigeration, and load capacity, among others. However, governments
have been striving to increase fuel and vehicle efficiency to reduce fuel consumption in
order to obtain economic and environmental improvements [6,28]. Freight companies
and truckers are willing to pay for these new technologies, as they will recover their
investment over the period of vehicle use [6]. The latter has been validated, considering
that vehicle characteristics are important for fuel consumption [16], and that fuel costs
affect driving patterns and, therefore, fuel consumption [29]; in this sense, eco-driving
and eco-routing appear as good practices [20,30].

The amount of freight being carried by a vehicle is important, as it affects the power
required by the vehicle and, thus, fuel consumption. Almost 30% of trucks on roads travel
empty [31,32], while 20% travel empty in urban areas [33]. In other situations, such as that
studied in Colombia, 12% of the trucks were found to operate overweight [34]. Trucks in
general do not use their capacity to its limits (small load factor). For instance, in Colombia
from 1997 to 2004, freight vehicles showed an average use of 50% by weight, and 74% by
volume [2]. This pre-supposes an oversupply to be analyzed by type of truck and product
transported, as some products (e.g., fuel, refrigerated products, and coal) require special
transportation, implying close to 100% empty returning trips. Empty trips are normal
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in the freight transportation industry, and they occur for various reasons, including load
demand asymmetry between origins and destinations, imports/exports, products without
return freight, and production periods; hence, oversupply cannot be considered a problem
only for the weight average use. Furthermore, current logistics govern flow sizes, and
under-utilization of vehicle space must not necessarily be interpreted as a lack of efficiency
in economic activity.

2.2. Previous Models to Estimate Fuel Consumption

Studies and research in various parts of the world have developed models to predict
fuel consumption under different vehicle types (passenger cars, buses, and light and heavy
trucks, but not 6-axle articulated trucks) and use conditions. The most recent—and most
reliable—models are of the mechanistic type (i.e., they mathematically determine and
model the physics of the phenomenon under study, on the basis of real data and the
behavior of the variables considered; statistical models only consider actual data), which
can be adapted and calibrated to be used in conditions different from those in which they
were developed [6,9,15,35,36].

Assuming default values in models possibly leads to prediction errors and, in the
case of estimating fuel consumption, differences of up to 200% have been obtained with
respect to the real values. The greatest differences are for trucks in congested traffic [10].
This evidence, along with issues such as obsolescence, technology, driver behaviors, and
transportation policies force the calibration of vehicle operation cost and fuel consumption
models to better reflect local conditions [9,21].

Recent research has been centered on studying the effect of aspects such as speed,
road geometry, and pavement type and condition (among others) on fuel consumption.
In addition, the available models have been developed on the basis of averages of results
obtained in different studies [37], using new vehicles [21], and thus do not correspond to
the conditions of specific locations or vehicle fleet age.

A first approach to modelling vehicle operation costs considers, for each compo-
nent (including fuel), the characteristics of the road including an error term, according to
Equation (1) [21]:

c = x × f + e, (1)

where

c = cost or consumption of element, sometimes replaced by log(c) to facilitate obtaining
results in a linear manner;
x = vector of road characteristics;
f = vector of coefficient, usually determined by ordinary least squares;
e = error.

Other studies have proposed that fuel consumption is a function of vehicle speed,
as in Equation (2) [21]. According to this equation, fuel consumption behavior reflects a
“U”-shaped curve, as can be seen in Figure 3, indicating that there is high fuel consumption
at relatively high or low speed, and minimum values at a certain speed [21].

F = a + b/V + c ∗ V2, (2)

where

F = fuel consumption per unit of distance (lt km−1);
V = vehicle speed (km h−1);
a = coefficient to include the effects of road characteristics (geometric and surface roughness)
and vehicle (gross weight and power to weight ratio);
b and c = coefficients regarding geometric road characteristics (especially its longitudinal slope).
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These coefficients are positive and have been defined according to experimental studies.
As per a laboratory study, the proportionality between consumption and vehicle speed

up to a power of three has also been proposed [27] with behavior, as depicted in Figure 3.
A study in Brazil visually considered truck load (empty, half full, and fully loaded)

and defined different expressions for ascending and descending slopes, as well as including
road curvature, in the case of buses [21]. The development of such models has been made
evident with the inclusion of road slope (ascending/descending) and pavement condition
into the International Regularity Index (IRI) [11].

Other mathematical models have specifically been developed for heavy vehicles,
including variables such as speed (with various exponent values) and considering different
slopes (ascending, descending, or null) in linear and non-linear models [3]. The fuel
consumption and exhaust emissions have been shown to have a significant dependence on
the road slope [20].

A widely applicable model is the Highway Development and Management-4
(HDM-4) [9,35,36], due to the extensive research behind its development. It has been
used in nearly 100 countries under various conditions [37]. It is a mechanistic model, en-
abling the easy modelling of several vehicles and road characteristics, as well as changes
through technological improvements [18]. The HDM-4 is the latest version of the HDM
model, developed by the World Bank and others to plan and program investments in
roads through simulating various alternatives over the analysis period [8].

The application of any model must include various factors that affect vehicle operating
costs (VOC), and such models require calibration. For instance, Figure 4 shows vehicle
operation costs for trucks in Canada, measured and predicted with the HDM using default
values [37]. Differences can be observed in the total vehicle operating costs (VOC) and in
the participation of the different components, suggesting that model calibration is necessary
to ensure more accurate prediction results [38]. Another example of the need to calibrate
and adapt models—especially fuel consumption models—is shown in Figure 5, in which
the differences observed in several studies are presented. The only match is the shape of
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the curves indicating high fuel consumption at low and high speeds, as well as minimum
consumption at intermediate speed (as in Figure 3).
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Several studies underlying the HDM-4 fuel consumption model have been con-
ducted in newer vehicles [21] of the 1980s [9,16]. Using such vehicles can influence
fuel consumption until parts break-in and vehicle functioning stabilizes. The further
lack of inclusion of current, technologically advanced vehicles [9] has raised concern
regarding the accuracy of the HDM-4 model. This implies a need for model calibration
and adaptation to the site of application [37].

The HDM-4 does not consider articulated trucks with six axles, which comprise an
important part of the current vehicle fleet for freight transportation [8]. Therefore, this
paper aims to close this gap regarding the knowledge on this topic. The HDM-4 model
establishes that fuel consumption is proportional to the engine’s total power requirement,
which considers three components [18]:

1. Traction power, which is required to counteract forces opposing the movement.
2. Engine drag, which is required to counteract the internal engine drag (or friction).
3. Accessory power, which is required to move vehicle accessories such as fans, power

steering, air conditioning, alternator, and so on.

The way that this proportionality is mathematically expressed, in its simple form, is
presented in Equation (3) [37]:

IFC = MAX (α, εPtot) = MAX (α, εPengaccs + εPtr), (3)

where

IFC = instantaneous fuel consumption (mL s−1);
α = idle fuel consumption (mL s−1);
ε = efficiency factor fuel power (mL kW−1 s−1);
Ptot = total power requirements (kW);
Pengaccs = total engine and accessories power (kW);
Ptr = total traction power requirements (kW).

Fuel consumption measures or associated models (e.g., those developed with multiple
linear regression techniques) are necessary to calibrate the model [37]. As observed, fuel
consumption is influenced by diverse variables that jointly, simultaneously, and perma-
nently change values in vehicle operation. A fuel consumption study is usually performed
independently for each variable, with the others controlled as defined values, which are
then combined; for example, for a single vehicle, speed, freight amount, and so on [8].
Details on fuel consumption models are available in [3,8,9,11,21,36].

There is no validation evidenced for fuel consumption of the proposed models,
using the real amount of freight transported by the truck [21,39,40]. This has been
simplified, in some studies, by visually identifying empty, half-loaded, or fully loaded
vehicle [21,22,39,40]; full load or empty conditions [9,39]; or only using fully loaded
trucks [9]. The load amount or vehicle weight variable was analyzed in the present
research, which can be considered a significant contribution to knowledge in this field.
Furthermore, we considered a truck for which there is no evidence of research having
been conducted: an articulated truck with six axles, classified as C3S3 in Colombia, with
a total maximum weight up to 52 t [8].

The variables considered in this study were vehicle weight (main element, for the
reasons stated above), road slope (no studies considering slope over 6% were found), and
vehicle speed (common in all other known studies and models).

3. Research Methodology

In this section, we describe the methodology used to assess fuel consumption in
trucks. The general methodology of this study consisted of a literature review, followed by
planning and conducting field tests to determine the fuel consumption of trucks, according
to the load and other defined variables. Then, the information was reviewed, refined,
and processed in order to propose models for the estimation of fuel consumption, as well
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as making comparisons with the results obtained by the HDM-4 model. This general
methodology is shown in a flowchart in Figure 6.
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In the experimental part of the research, it was first necessary to identify the equipment
and instrumentation used to obtain the information in the field tasks, the amount of data
and the manner through which to obtain them, the vehicles to be used, and the roads
travelled and days and hours to do them, among other factors, in order to ensure good
conditions for the research. The resources used in this investigation were as follows:

• Equipment for measuring fuel consumption in vehicles in motion: Electronic equip-
ment such as the onboard computer and information capture module (datalink),
coupled to vehicles with an electronic engine (usually for model or year post-2007).
In detail, data about fuel consumption was captured using an On-Board Computer
(OBC) Mix Telematics—FM3306 (brand—reference); this OBC has a global positioning
system (GPS) incorporated; in addition, it is used a datalink with the J1939 protocol,
which can be used in electronic engines as the trucks used have in order to transfer
and storage data about fuel consumption and positioning. An image of this OBC and
Datalink is shown in Figure 7. The OBC is connected by technical authorized people
to the electronic module of the vehicle, and it is stored behind the vehicle console of
instruments, as shown in Figure 8.

• Vehicle location and speed identification: Additional to the on-board computer was
a GPS Garmin—GPSmap® 60CSx (brand—model), which has good accuracy; it was
connected to an external antenna to improve signal reception. In Figure 7, we can see
an image of the GPS and external antenna used.
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The OBC and GPS were used making their clocks synchronized to obtain data and
their processing.

• Trucks used: Rigid-type trucks with three axles, and articulated trucks with six axles
(C3 and C3S3 as the official classification in Colombia, respectively), with engine
powers of 350 HP (10,800 cc) and 400 HP (15,000 cc), respectively (see Figure 9).
These types of trucks were considered essential to the research, considering their
market share, future trends in vehicle fleets, recent model (year), technology, and
good operating condition and maintenance. The trucks used were checked and, if
necessary, technically tuned up before the field test in order to ensure their adequate
functioning. All of these characteristics served to ensure the validity of the research
for several years.

• Road sections for field testing: A double-lane road and a section with high longitudinal
slope (up to 8%) were considered, which allowed for control of vehicle speed and
to have several slopes for analysis. The altitude of the road was 1600 m above sea
level. Altitude was not considered in this research as an analysis variable, but it can
be considered in other studies, as altitude is one of the factors that affects air density
and, therefore, the mixture of fuel with air for combustion [17], thus being possibly
important in fuel consumption. The road sections were identified before the field test
by visual inspection, where their characteristics were those that the research needed;
the next step for each one was to make a technical measurement of the length and
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slope using topographic methods and surveying instruments; at the end, each road
section selected to conduct field tests were those where each one had a constant slope
(no variation into each section). Thus, each road section had a unique slope, a different
slope from the others. Those road sections selected had slopes up to 7% and lengths
ranged from 200 to 400 m. The maximum slope in the research was 7% due to higher
slopes having shorter lengths.

• Vehicle speed control: During the experiment, the trucks arrived at each section at
the speed needed, controlled using cruise control function of the truck when the
truck driver was driving in the segment. Cruise control is a system that can be
switched on to select a speed at which the vehicle will continue and to maintain
it without the use of the accelerator pedal. The driver has to drive to obtain the
desired speed according to the experiment design, then switch on the system and
not use the accelerator pedal again until the speed has to be changed for any reason;
for this, the driver has to be experienced.

• Trucks drivers: Appropriate drivers were selected, and only one driver was used for
each truck for the entire field test. The concept of appropriate drivers was used to
describe drivers who drive a specific truck type in the right way, due to their familiarity
with the truck type.
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To conduct the analysis, we used the statistical methods of experimental design
and factorial design to obtain the required amount of data. These techniques optimize
testing [41] and save costs without degrading research quality [41,42] and the statistical
significance to obtain models. Two types of tests were conducted, according to the results
expected. The fuel consumption model in Figures 3 and 5 show curved behavior for
speeds up to 45 km h−1, while for higher speeds, the behavior tends to become linear.
Therefore, for high slopes and lower speed, a greater number of levels was considered for
the parameters, in order to identify the curvature effect [41,42], using a 3K factorial design;
for low slopes that enable higher speeds, the number of levels for the parameters was lower,
as the curvature effect was not considered to be important, and 2K factorial was used. The
variation factors and levels used in the experiment are shown in Table 1.

Table 1. Factors and levels selected for experimental design.

Factor Value
Levels

3K Design 2K Design

Fuel Diesel (ACPM) 1 1
Type of pavement Flexible with asphalt 1 1
Pavement condition Dry and low IRI (<4) 1 1
Traffic flow type Free flow 1 1
Truck Rigid and articulated 2 2
Longitudinal slope (%) Positive, 7% maximum 3 2
Load weight (t) Up to legal capacity 3 2
Speed (km h−1) Maximum posted 3 2
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A free flow pattern was selected for two reasons: This is the expected and normal flow
pattern in inter-city roads, and this pattern allows the vehicle to be driven at the desired
speed, which was one of the factors to be analyzed.

Factorial is the number of combinations of factors (or parameters) and their variation
levels; it increases with amount of them, especially with levels. To design the factorial,
it is necessary to know factors and their variation levels; factors are the variables of the
experiment and levels are values to be considered for each factor in the experiment.

In a mathematical way, the factorial is defined as ∏ LevelFactors (∏ is the symbol for
product operator).

There were four factors with one variation level (invariable operating conditions
during testing: fuel type, type of pavement, pavement condition, and traffic flow type);
one factor (truck) with two levels; and three factors with three or two levels of variation
(longitudinal slope of road, weight, and speed of trucks). Then, the factorial design for each
case was as follows:

Factorial for 3K = ∏ LevelFactors = 14 × 21 × 33 = 54;
Factorial for 2K = ∏ LevelFactors = 14 × 24 = 16.
For each truck, there were 27 data points in the 3K factorial design, and 8 data points

in the 2K factorial design. Each datum corresponds to a consumption value, according to
the experiment conditions. Three replicas were defined for each test, which was considered
sufficient to control means and errors. Thus, 81 data points were required for each truck:
27 defined for each factorial design 3K; while the 2K design required 24 data points (8 for
each replica).

The level values for the defined factors are presented in Table 2. The road slopes were
defined according to the geometric alignment of the road using the ascending way—these
slopes were 0.6%, 2.0%, 5.2%, and 7.0% (2.0% were tested for both 2K and 3K factorial
designs), and the vehicle weights considered full capacity, medium, or empty. To obtain
the maximum operating speed, the trucks were tested at their maximum capacity weight
on the higher-sloped road; moreover, low speeds used in tests were selected, considering
that we must have at least two more values for them, according to the methodology used
in the research, other speeds of trucks observed on the road, and the capability to maintain
them at a controlled level.

Table 2. Factors and level values in the experimental design.

Truck Type Factor
Design 3K Design 2K

Levels Values Levels Values

3 and 6 axles (C3 and C3S3) Road slope (%) 3 7.0–5.2–2.0 2 2.0–0.6

3 axles (C3)
Total vehicle weight (t) 3 27.99–17.18–11.72 2 27.99–11.72

Vehicle speed (km h−1) 3 45–35–25 2 70–50

6 axles (C3S3)
Total vehicle weight (t) 3 51.95–26.28–19.09 2 51.95–19.09

Vehicle speed (km h−1) 3 35–30–25 2 60–40

Having identified the road stretches, vehicles, and instrumentation, the tests were
carried out following the procedure shown in Figure 10 for each truck. In the process
shown in Figure 10, it should be understood that truck weight was measured using a
calibrated weighing machine before the start of any tour; at the beginning of and during
each tour, the free flow traffic condition was checked through communication by cell phone
with people on the road who reported on traffic conditions. Future studies may apply
another methodology, such as the use of an artificial neural network using historical data
to predict traffic flow [43]. During each tour, the fuel consumption was captured by the
on-board computer on all road sections and longitudinal slopes considered (0.6%, 2.0%,
5.2%, and 7.0%), and the speed data were captured by both the on-board computer and
GPS and stored in those devices. After each tour, the speed data were checked to see if
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they were equal in the on-board computer and GPS, and if they were expected according to
experiment design; if not, the tour had to be conducted again.
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At the end of each tour, and having right data, the truck had to change its speed to
start a new tour, according to the experimental design for the research. When all speeds
had been tested for any weight, the amount of freight had to be modified, in accordance
with the experimental design; after which, we restarted the field test at the new weight.

At the end of the field work, the data needed to be organized and processed for data
analysis regarding fuel consumption, which was the object of this research.

The OBC and GPS were used with their clocks synchronized to obtain data and their
processing, and thus when the vehicle was in one of the road sections selected according to
GPS data, the fuel consumption data were obtained from the registered OBC data at the
same time (clock). Figure 11 shows screenshots from GPS and OBC processing data in one
of the road sections selected.
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4. Results and Analysis

The Minitab® software is considered suitable for statistical analysis, such as the factorial
experiment design type [41]. Thus, this program was used for the statistical analysis of
results, in order to validate the data, identify relationships between the factors studied, and
obtain mathematical models that correlates them, as well as determine the validity of the
models. Linear and non-linear regressions were carried out for data analysis and to obtain
the models considering factor interactions.

Methodological analysis of factorial designs was conducted through analysis of
variance (ANOVA) in order to identify the factors and significant interactions. All vari-
ables (factors) and their interactions were considered at the beginning of the statistical
analysis, where the continuous ANOVA analysis indicated which of them were signifi-
cantly important to be included in the final models. Table 3 shows the fuel consumption
models determined (Equations (4)–(7)), their application range, and their validating
statistics with a confidence level of 95% for variables and their interactions. We consid-
ered p-values less than 0.05 to ensure model validity (the p-values obtained included
0.04, 0.009, 0.008, 0.001, and less).

The fuel consumption behavior obtained from the determined models was according
other studies conducted on the topic of fuel consumption that show a “U” shape [16,21],
suggesting that there is a speed in which the fuel consumption is lower; thus, for high
slopes, the speed is 35 km h−1 for a 6-axle truck and 45 km h−1 for a 3-axle truck.

According to the models and their analysis, we reached the following general observations.
The results indicated that fuel consumption rose when road slope increased, as

expected, but this increasing was not proportional. This effect was larger under high-
vehicle-weight conditions. Fuel consumption was similar at high slopes (>5%) for
low-weight vehicles, as obtained using all models proposed in this paper. Increased fuel
consumption due to overall vehicle weight was demonstrated, as accentuated under
high longitudinal slope conditions. For example, for a six-axle truck on a 7% longitudinal
slope, the ratio of the fuel consumption for a fully loaded (52 t) compared to an empty
vehicle (19 t) was 2.92 (consumption at 52 t/consumption at 19 t), while the weight
ratio was 2.74 (52 t/19 t). For a 5% slope, the fuel consumption ratio was 2.73, and, for
a 2% slope, it was 2.29. Therefore, the consumption ratio was higher than the weight
ratio. Results like these can be seen in Table 4, which provides the relative comparison
between weight and consumption for different slopes of the road, according to the
models obtained for the articulated truck.
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Table 3. Obtained fuel consumption models.

Vehicle Type
Mathematical Model

Fuel Consumption

C3

C = −8.00992W + 105.635S − 3.64516V + 15.2035W × S − 20.5096S2 − 0.0270028W2 × S2 (4)
Range factors: W: 11.7–28 t; S: 2–7%; V: 25–45 km h−1

Regression coefficients: R2 = 0.9987; R2adj = 0.9986; R2pro = 0.9985

C = 14.595W + 38.8019S + 2.47673V − 0.207869W × V − 1.24498S × V + 0.135391W × S × V (5)
Range factors: W: 11.7–28 t; S: 0.6–2%; V: 50–70 km h−1

Regression coefficients: R2 = 0.9998; R2adj = 0.9997; R2pro = 0.9997

C3S3

C = −49.3166W + 30.2423V + 20.6906W×S + 0.355453W2 − 24.9639S2 − 0.514948V2 − 0.021823W2 × S2 (6)
Range factors: W: 19–52 t; S: 2–7%; V: 25–35 km h−1

Regression coefficients: R2 = 0.9988; R2adj = 0.9987; R2pro = 0.9986

C = 11.6719W − 1.79316V + 2.9518 W × S + 0.0931592W × V − 0.136448W2 (7)
Range factors: W: 19–52 t; S: 0.6–2%; V: 40–60 km h−1

Regression coefficients: R2 = 0.9994; R2adj = 0.9993; R2pro = 0.9991

The “p” values are zero for all variables in all equations, except in Equation (7), where “p” for V is 0.008.
C = consumption (mL km−1), W = weight (t), S = slope (%), and V = speed (km h−1). R2adj = R2 adjusted,
R2pro = R2 prognosticated.

Table 4. Relative comparison of consumption by weight—truck C3S3—3K factorial.

Weight (t) Weight Ratio
Consumption Ratio According to Road Slope (S)

S = 7% S = 5% S = 2%

19 to 26 1.37 (26 t/19 t) 1.57 1.41 1.10
26 to 52 2.00 (52 t/26 t) 1.85 1.93 2.08
19 to 52 2.74 (52 t/19 t) 2.92 2.73 2.29

The results presented in Table 4 suggest that, at a slope of 5%, the fuel consumption
ratio closely matched the vehicle weight ratio. At higher slopes, fuel consumption was
proportionally higher, generating inefficiencies in transportation from the perspective of
fuel consumption. Results such as this reveal that longitudinal slopes higher than 5% are
not appropriate in terms of designing a highway if it will be used by high number of trucks
(freight corridors).

On the other hand, it was highlighted that the joint effect of weight and slope had a
greater effect for high slopes compared to low ones, and that speed affected larger trucks to a
greater extent, revealing a non-linear effect. Furthermore, interactions between the variable
(factors) vehicle weight, speed, and road slope studied in this research had a significant
influence on fuel consumption. The results satisfy the expectations of the research, and
some of them demonstrate that the vehicle weight and longitudinal highway slope were
significantly more important than speed alone, which was typically considered the main
variable in other studies.

Appling analysis using the statistic named Eta-squared as a measure of effect
size, it is possible identify that truck weight and road slope significantly impacted fuel
consumption, more than vehicle speed. Table 5 shows the Eta-squared for each truck
and experiment conducted.

Table 5. Eta-squared.

Variable
Truck C3S3 Truck C3

3K 2K 3K 2K

Weight (W) 0.4448 0.8061 0.4284 0.5150

Slope (S) 0.4631 0.1552 0.5121 0.3726

Speed (V) 0.0002 0.0063 0.0063 0.0004
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The results of Table 5 show that weight explained more than 42.8% (54.9% as mean)
and slope more than 15.5% (37.6% as mean) of the variation among the fuel consumption,
while speed only explained 0.3% as mean. On the other hand, weight and slope had large
effects (Eta-squared more than 14%) and speed had a small effect (Eta-squared less than
1%) in terms of the variation on fuel consumption. This result is according to previous ones
in which the weight and slope were more important than speed to explain and estimate
fuel consumption.

Further analysis, including rigid trucks, enabled us to conclude that using trucks at
their maximum load capacity is convenient, even for high slopes, as consumption per unit
weight of load transported is lower when compared to other load levels.

Another analysis showed that for a plain highway (longitudinal slopes up 3%) for
a cargo amount up to 16 t, which can be transported by 3-axle or 6-axle trucks, it is
recommended that 6-axle trucks be used due to their fuel consumption being more efficient
(lower values of mL km−1 t−1)—this is due to better relationships between vehicle weight
and machine power (weight/power) for 6-axle as opposed to 3-axle trucks.

Comparing the results of fuel consumption using the HDM-4 model, we observed
that this model over-estimated fuel consumption, but not in a constant manner, instead
depending on weight, with great variability according to road slope. No factor uniquely
correlating them was found; thus, various correction factors to the values found in the
HDM-4 were defined for a better representation of the actual conditions studied; for
example, for the articulated truck, this factor ranged from 0.83 to 0.37, while, for the rigid
truck, it was between 0.88 and 0.50. A study in the United Kingdom showed that the
HDM-4 model predicts fuel consumption with errors up 211% for heavy trucks; this value
is equivalent to a factor of 0.47 [14], and in a general way it is up to 200% [10].

5. Conclusions

In this research, we presented models that enable the prediction of fuel consumption
for certain road and vehicle operation conditions. Their results are reflected in different
mathematical models that consider the defined variables (truck weight, road slope, and
vehicle speed) and were characterized as being highly reliable, due to their confidence
level of 95%, as well as their excellent adjustment to real data, as validated statistically. The
behavior of these models was according to previous studies, having a “U” shape, meaning
that there is a speed to minimize the fuel consumption.

Furthermore, this research included one truck type that has not been previously
researched in terms of fuel consumption, that is, an articulated truck with six axles. This is
highlighted as a key contribution to the literature, due to the growing use of this type of
truck for freight transportation.

The models obtained enabled identification of the use to be given to trucks, or for the
selection of a specific truck type, according to the load amount to be transported and the
slope of the road. They permit better control of truck use, economic relationships between
stakeholders in the freight transportation field, and evaluating road projects with more
certainty regarding this cost component.

Vehicle weight, as a key variable affecting fuel consumption, has not been studied
extensively or rigorously; therefore, this research closes a certain gap regarding this topic, as
trucks do not always transport the same load. Additionally, the effect of high-longitudinal
road slope values has not been previously studied, being another aspect considered in this
research. We found that the effects of vehicle weight and longitudinal slopes affected fuel
consumption more than vehicle speed on its own.

The results demonstrated that increasing vehicle weight affects in particular the fuel
consumption for slopes exceeding 5%. Therefore, it is not recommended that freight
transportation corridors include longitudinal slopes in excess of 5%, due to the dispropor-
tionately high fuel consumption. In the other hand, for a cargo amount up to 16 t, it is
recommended that a 6-axle truck instead of a 3-axle truck be used if the cargo will be trans-
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ported on a plain highway (longitudinal slope under 3%) due the normal weight/power
for these trucks.

The fuel consumption model developed in this paper enables a better evaluation of
infrastructure such as tunnels and viaducts (bridges) on freight corridors. It is convenient
to use trucks at their maximum freight capacity (in weight), according to the legal limits
established regarding the maximum weight allowed for each vehicle.

The HDM-4 model does not represent fuel consumption adequately for the current
vehicle fleet operating on roads. Therefore, fuel consumption models must be updated, for
instance, every 10 years, such that they can adapt to vehicle changes due to technological
advances and to the energetic improvement of fuels, including the increasing proportion of
biofuels and gas.

Finally, we can state with conformity that the results obtained through modelling
cannot be taken as valid until they are verified under real conditions. Therefore, adaptation,
calibration, and model adjustment based on the prevalent study conditions in a determined
place or time is necessary.

It is recommended that knowledge be expanded within the topic of this research
by conducting other studies considering various aspects such as other vehicle types, the
effect of variables considered constant in this research (e.g., altitude of road section), speed
changes or “noise acceleration”, road curvature, driving style, and fuel type.
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