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Abstract: Land surface temperature (LST) estimation at the river sub-basin level is crucial for devel-
oping land use planning at the basin scale and beyond. The main goal of this study was to analyze
LST variations in response to land use mode (LUM) changes in the Mefou River sub-basin (Southern
Cameroon) using geospatial techniques. To achieve this goal, we used Landsat 7 Enhanced Thematic
Mapper Plus (2000 and 2010) and Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor
(TIRS) data for 2020. We also used air surface temperature data from the Climatic Research Unit
(CRU) to validate the LST. Our results reveal that between 2000 and 2020, the Mefou watershed
recorded significant changes in LUMs, which were mainly manifested by an increase in impervious
areas (IAs) (buildings and roads (+10%); bare soils and farmlands (+204.9%)) and forest reduction
(−31.2). This decrease in the forest was also reflected by a reduction in NDVI values, the maximum
of which went from 0.47 in 2000 to 0.39 in 2020. Contrary to the forest area and the NDVI values,
the LSTs of the investigated basin increased over the period studied. There is a strong negative
correlation between LST and NDVI. In general, high LSTs correspond to low NDVI values. For
the years 2000, 2010 and 2020, the links between these two variables are materialized by respective
correlation coefficients of −0.66, −0.74 and −0.85. This study could contribute to understanding the
impact of LUM changes on the local climate, and could further provide assistance to policymakers in
regard to land use planning and climate change mitigation strategies.

Keywords: land surface temperature; land use modes; normalized difference vegetation index; Mefou

1. Introduction

The combined effect of rapid population growth and the overexploitation of natural
resources increases the problem of LUM changes [1–3]. Changes in LUM have been shown
to significantly influence climate systems in general [4–8], and local climate in particular [9].

The exploitation of natural resources and increases in human activities have con-
tributed to increases in the LST, which in turn worsen the dynamics of LUMs [4,10]. LST
is determined by the types of land elements and the rate of radiated energy emitted from
the ground surface [11]. LST represents the cumulative effects of LUM changes, rainfall
variations, and socio-economic development [12]. Anthropogenic activities have a large
share of responsibility in the deterioration of the environment. For example, the study
by Gemes et al. [13] revealed that environmental degradation has been a major environ-
mental problem since agricultural activities began [13]. In developing countries such as
Cameroon, overgrazing, deforestation and unplanned human settlements are some major
environmental issues that significantly affect sustainable development.

Substantial research works have been conducted by several authors [4,7], indicating
the effects of LUM changes on LST. Feng et al. [4] showed that LST has been increasing
and warming areas have been expanding since 1996, especially in the Su–Xi–Chang urban
agglomeration. The mean LST in Su–Xi–Chang has increased from less than 30 ◦C in 1996
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to greater than 31 ◦C in 2004, rising to about 33 ◦C in 2016. The projection suggests that
LST will reach about 35 ◦C in 2026. Their results also suggest that mean LST increased
by 2 ◦C per decade in this highly urbanized area between 1996 and 2026. In the study
of Wang et al. [7], the LST response to LUM changes was comparatively evaluated using
micrometeorological observations from a cropland site, a mixed forest site, a shrubland
site, and adjacent bare land sites in the Heihe River Basin, Northwest China. The surface
temperature changes were divided into contributions from changes in radiative forcing,
heat resistance, evapotranspiration, soil heat flux, and air temperature based on the intrin-
sic biophysical mechanism (IBM) and the two-resistance mechanism (TRM). The results
indicate that the IBM attribution method is more applicable than the TRM method in these
arid ecosystems; the influence of different types of vegetation cover on the surface temper-
ature exhibits temporal variance in the diurnal and seasonal time scales. The dominant
biophysical components in the daytime of the growing season are evaporative cooling in
the cropland paired sites and heat resistance change in the mixed forest paired sites, but
these two components are both at a moderate level in the shrubland paired sites.

Although a significant number of studies have been conducted globally, knowledge
related to LST in Central Africa is limited [14].

Previously, many studies [15,16] have been conducted on the impact of LUM changes
on the environment in general, and on LST in particular. The majority of early studies
focused on the urban center while marginalizing the rural area. Moreover, the effects
of LUM changes on the LST at the sub-basin level are still unknown and require more
studies. Tracking LST in response to LUM changes is crucial for informing policymakers of
mitigation strategies. A clear understanding and knowledge of the impact of LUM changes
on LST can be of great importance for environmental planning and management. The
availability of reliable and up-to-date information on LUM changes in relation to LST is
crucial for sustainable land use planning in general and microclimate change mitigation in
particular. In addition, the dissemination of information on the impact of LUM changes on
LST at the sub-basin level can be helpful for conservation decision-making bodies. Thus,
the present study aims to quantify LST variation in response to LUM changes. The objective
of this study is to evaluate the effects of LUM changes on LST in the Mefou River sub-basin
for the period of 2000–2020.

2. Materials and Methods
2.1. Study Area

The study focuses on the Mefou watershed (428 km2). This basin is located in South
Cameroon, within the Central African sub-region, between latitudes 3◦43′ N and 3◦58′ N
and longitudes 11◦21′ E and 11◦35′ E (Figure 1). It belongs to the sub-equatorial domain,
with abundant annual precipitation (around 1600 mm/year) spread over four seasons of un-
equal importance. Two of them are dry (summer and winter) and two are rainy (spring and
autumn). The studied basins are dissected by deep gullies cut into hills with convex slopes
and wide marshy valleys. Their geological substratum is made up of a granito–gneissic
base on which ferralitic soils (on the summits and slopes) and hydromorphic soils (in
the shallows) develop. The vegetation in the area is a dense semi-deciduous forest with
Sterculiaceae and Ulmaceae, and is subject to anthropogenic pressure [17].

2.2. Data Sources

This study used Landsat 7 Enhanced Thematic Mapper Plus (2000 and 2010) and
Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) data from 2020.
These Landsat images were obtained from the United States Geological Survey (https://
www.usgs.gov/products/data-and-tools/realtime-data/remote-land-sensing-and Land-
sat; accessed on 12 July 2022) during the dry season (January and December) and are
cloud-free (Table 1). All data were projected to UTM (Zone 32) and WGS 84 data. The study
area lies within the 185 Path and 57 Row reference system. The acquired data were used
for LUM classification. The data and their sources are presented in Table 1.

https://www.usgs.gov/products/data-and-tools/realtime-data/remote-land-sensing-and
https://www.usgs.gov/products/data-and-tools/realtime-data/remote-land-sensing-and


Sustainability 2023, 15, 864 3 of 15Sustainability 2022, 14, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. Location map of Mefou watershed at Nsimalen outlet. 

2.2. Data Sources 
This study used Landsat 7 Enhanced Thematic Mapper Plus (2000 and 2010) and Landsat 

8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) data from 2020. These Land-
sat images were obtained from the United States Geological Survey (https://www.usgs.gov/ 
products/data-and-tools/realtime-data/remote-land-sensing-and Landsat; accessed on 12 July 
2022) during the dry season (January and December) and are cloud-free (Table 1). All data 
were projected to UTM (Zone 32) and WGS 84 data. The study area lies within the 185 Path 
and 57 Row reference system. The acquired data were used for LUM classification. The 
data and their sources are presented in Table 1. 

Table 1. Remote sensing images. 

Images Path Row Pixel Size Acquisition Date Sources 
Landsat ETM+ of 2000 185 57 30 × 30 January 2000 U.S. Geological Survey 
Landsat ETM + of 2010 185 57 30 × 30 December 2010 U.S. Geological Survey 

Landsat OLI/TIRS of 2020 185 57 30 × 30 January 2020 U.S. Geological Survey 

The maximum and minimum air temperature data used in this study are from the CRU 
(Climate Research Unit) of the University of East Anglia in the United Kingdom. These data 
have been available since 1901 via the site https://climexp.knmi.nl/selectfield_obs2.cgi?id= 
2833fad3fef1bedc6761d5cba64775f0/, accessed on 12 July 2022, in NetCDF format with 
monthly time steps at a spatial resolution of 0.25° × 0.25°. Precipitation and temperature 
data from the CRU have been used to validate CMIP models in the Logone basin, which 
is a sub-basin of the Lake Chad basin [18]. 

2.3. Land Use/Land Cover Classification 
Landsat images were classified using supervised maximum likelihood classification 

and Sentinel Application Platform (SNAP) software, which is made available to the general 
public for free by the European Space Agency (ESA) via the site https://step.esa.int/main/ 

Figure 1. Location map of Mefou watershed at Nsimalen outlet.

Table 1. Remote sensing images.

Images Path Row Pixel Size Acquisition Date Sources

Landsat ETM+ of 2000 185 57 30 × 30 January 2000 U.S. Geological Survey
Landsat ETM + of 2010 185 57 30 × 30 December 2010 U.S. Geological Survey

Landsat OLI/TIRS of 2020 185 57 30 × 30 January 2020 U.S. Geological Survey

The maximum and minimum air temperature data used in this study are from the
CRU (Climate Research Unit) of the University of East Anglia in the United Kingdom.
These data have been available since 1901 via the site https://climexp.knmi.nl/selectfield_
obs2.cgi?id=2833fad3fef1bedc6761d5cba64775f0/, accessed on 12 July 2022, in NetCDF
format with monthly time steps at a spatial resolution of 0.25◦ × 0.25◦. Precipitation and
temperature data from the CRU have been used to validate CMIP models in the Logone
basin, which is a sub-basin of the Lake Chad basin [18].

2.3. Land Use/Land Cover Classification

Landsat images were classified using supervised maximum likelihood classification
and Sentinel Application Platform (SNAP) software, which is made available to the gen-
eral public for free by the European Space Agency (ESA) via the site https://step.esa.int/
main/download/snap-download/, accessed on 12 July 2022. This enabled us to perform
a diachronic analysis of the evolution of land-use in the studied basin. This operation
was preceded by operations of preprocessing and the recognition of objects in the field by
photography and GPS (global positioning system). Satellite image preprocessing refers to
all the processes applied to raw data to correct geometric and radiometric errors that char-
acterize certain satellite images. These errors are generally due to technical problems with
the satellites and interactions between outgoing electromagnetic radiation and atmospheric

https://climexp.knmi.nl/selectfield_obs2.cgi?id=2833fad3fef1bedc6761d5cba64775f0/
https://climexp.knmi.nl/selectfield_obs2.cgi?id=2833fad3fef1bedc6761d5cba64775f0/
https://step.esa.int/main/download/snap-download/
https://step.esa.int/main/download/snap-download/
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aerosols, also called “atmospheric noise”. The atmospheric disturbances are influenced
by various factors that are present on the day of acquisition, including weather, fires, and
other human activities. They affect all the images acquired by passive satellites including
Landsat 4-5-7 and 8. As the downloaded Landsat images were orthorectified, the prepro-
cessing involved atmospheric correction of the images and reprojection into the local system
(WGS_84_UTM_Zone_32N). For this, neo-channels were created to increase the readability
of the data by enhancing certain properties that were less obvious in the original image, thus
showing more clearly the elements of the scene. Three indices are therefore created, namely,
the Normalized Difference Vegetation Index (NDVI, Equation (1)), the Brightness Index (BI,
Equation (2)), and the Normalized Difference Water Index (NDWI, Equation (3)) [19,20].
These indices highlight vegetated surfaces and sterile (non-chlorophyllin) elements such as
urban areas and water bodies, respectively. The formulae used in creating these indices are
as follows:

NDVI =
NIR− R
NIR + R

(1)

BI =
(

R2 + NIR2
)0.5

(2)

NDWI =
NIR−MWIR
NIR + MWIR

(3)

where NIR is the ground reflectance of the surface in the near-infrared channel; R is the
ground reflectance of the surface in the red channel; and MWIR is the ground reflectance
of the surface in the mid-wave infrared channel. The use of Google Earth, as well as the
spaces sampled from the GPS, made it possible to identify with certainty the impervious
areas (buildings, savannas, bare soils, and crops), water bodies (large rivers, lakes and
ponds) and forest (secondary, degraded, non-degraded and swampy) of each mosaic.
Before the classification, the separability of the spectral signatures of the sampled objects to
avoid interclass confusion was assessed by calculating the “transformed divergence” index.
The value of this index is between 0 and 2. A value > 1.8 indicates a good separability
between two given classes. The different classes used in this study show good separability
between them, irrespective of the image considered, with indices > 1.9. The validation of
the classifications obtained was carried out using the confusion matrix, making it possible
to obtain treatment details to validate the choice of training plots. After validating the
land use/land cover maps, the statistical and spatial differences of each class between the
studied periods were evaluated.

2.4. LST Retrieval

LST is influenced by topography, landscape composition, land cover, urbanization,
and global change [4,21]. It is affected by albedo, vegetation cover, and soil moisture [22].
The ETM + and TIRS thermal band calibration constants in this study are presented in
Table 2. LST has been calculated [22] in many steps using Landsat ETM+ and the Landsat
8 Operational Land Imager.

Table 2. ETM + and TIRS thermal band calibration constants.

Constant 1-K1 Watts/(m2∗ster∗µm) Constant 2-K2 Kelvin

Landsat 7 666.09 1282.71
Landsat 8 774.8853 1321.0789

2.4.1. Step I: Conversion of the Digital Number (DN) into Spectral Radiance (L)

In the present study, digital numbers were converted to at-sensor radiance values
prior to calculating brightness temperature. The ETM + DN values range between 0 and
255 (Equation (4)).
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Lγ =
LMAXγ− LMINγ

QCALMAX−QCALMIN
× (DN−QCALMIN) + LMINγ (4)

where QCAL is the quantized calibrated pixel value in digital number (DN), LMINγ is the
spectral radiance that is scaled to QCALMIN in (Wm2ster−1µm−1), LMAXγ is the spectral
radiance that is scaled to QCALMAX in (Wm2ster−1µm−1), QCALMIN is the minimum
quantized calibrated pixel value corresponding to LMINγ in DN, and QCALMAX is the
maximum quantized calibrated pixel value corresponding to LMAXγ in DN = 255.

At first, digital numbers were converted from the Landsat 8 Operational Land Imager
to spectral radiance, then brightness temperature was extracted from thermal remote
sensing data (TRSD) [10]. In the Landsat 8 data from the radiance multiplier (ML) and
radiance add (AL), the thermal infrared (TIR) band was converted into spectral radiance Lγ
using the approach provided by Chander and Markhan [23] and used by Chibuike et al. [22],
as indicated in (Equation (5)).

Lγ = (ML ∗Qcal) + AL (5)

where Lγ is the top of the atmosphere spectral radiance (Wm2ster−1µm−1), ML is the band-
specific multiplicative rescaling factor from the metadata (RADIANCE_MULT_ BAND_x,
where x is the band number), AL is the band-specific additive rescaling factor from the
metadata (RADIANCE_ ADD_BAND_x, where x is the band number) and Qcal is the
quantized and calibrated standard product pixel values (DN).

2.4.2. Step II: Conversion to Brightness Temperature

Brightness temperature and average atmospheric temperature were used to calculate
LST based on land surface emissivity (Chibuike et al. [22]). The specific formula for the
mono-window algorithm for retrieving LST was used (Chibuike et al. [22]). The black
body temperature was obtained from the spectral radiance using Plank’s inverse function.
Spectral radiance values for bands 6 and 10 were converted to radiant surface temper-
ature under assumptions of uniform emissivity using pre-launch calibration constants
(Chibuike et al. [22]). The Landsat satellite images were converted from spectral radiance
to a more physically useful variable. The conversion formula is presented in (Equation (6)).

T =
K2

ln
(

K1
Lγ + 1

) (6)

where T is effective at satellite temperature in Kelvin, K2 is the calibration constant 2, K1 is
the calibration constant 1, and Lγ is the spectral radiance in Wm2ster−1 µm−1.

2.4.3. Step III: Land Surface Emissivity Estimation

The land surface emissivity estimation was performed (Chibuike et al. [22]) and
computed using Equation (7).

ź = 0.005 ∗ Pv + 0.986 (7)

where Pv is the vegetation proportion obtained (Carlson and Ripley [24]) using Equation (8).

PV =

[
NDVI−NDVImin

NDVImax−NDVImin

]2
(8)

In this study, the calculated radiant surface temperature was corrected for emissivity
(Chibuike et al. [22]) using Equation (9).

LST =
TB

1
(

γ TB
P

)
ln ź

(9)



Sustainability 2023, 15, 864 6 of 15

where LST is land surface temperature (in Kelvin), TB is the radiant surface temperature
(in Kelvin), γ is the wavelength of emitted radiance (10.8 µm), P is h∗c/σ(1.438∗10−1 mK),
h is Planck’s constant (6.26∗1010–34 Js), c is the velocity of light (2.998∗108 m/s), σ is Stefan
Boltzmann’s constant (1.38∗10−23 J K−1), and ź is land surface emissivity.

Finally, the LST results from Landsat ETM+ and OLI/TIRS in Kelvin degrees were
converted into Celsius degrees by subtracting 273.15. (Equation (6)).

2.5. Analysis of Annual Maximum and Minimum Air Temperatures

The Mann–Kendall test at the 95% significance level was used to analyze the mean
annual maximum and minimum air temperatures. This test is based on the test statistic
“S”, defined as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj− xi) (10)

where xj represents the sequential data values, n is the length of the data set, and sgn = (θ)
if θ > 1, 0 if θ = 0, and −1 if θ < 0. There is no significant trend in the series analyzed when
the calculated p-value is above the chosen significance level.

3. Results and Discussion
3.1. Changes in Land Use Modes

A diachronic analysis of the classifications carried out from the processing of Landsat
satellite images from three dates (2000, 2010 and 2020) shows a significant change in land
use modes in the Mefou watershed (Figure 2). These changes are essentially reflected
in an increase in IAs to the detriment of the forest towards the northwest of the basin
(Figure 3). Between 2000 and 2020, buildings and bare soils increased by +10% and +204.9%,
respectively (Table 3). Most of these changes occurred between 2000 and 2010. Over this
interval, buildings and bare soils increased by +7.6% and +101.8%, respectively. Their
increases between 2010 and 2020 were less. They are +2.3% and +51.1%, respectively
(Table 3). In the case of forests and water bodies, the decreases noted are −31.2% and
−14.6%, respectively (Table 3). Concerning the forest, the rates of decrease recorded
between 2000 and 2010 (−16.5%) and between 2010 and 2020 (−17.6%) are very similar. For
water bodies, on the other hand, most of the decline observed over the entire period studied
occurred between 2010 and 2020 (Table 3). Some authors in Central Africa [25–28], West
Africa [29,30] and elsewhere [31,32] have made similar observations relating to changes in
land use modes in these sub-regions.

Table 3. Evolution of the main land use modes in the Mefou watershed during the study period.

Land Use Modes Area Occupied in the Basin (km2) 2000–2010 2010–2020 2000–2020

2000 2010 2020 km2 % km2 % km2 %

Built and roads 118.1 127.1 130 9.0 7.6 2.9 2.3 11.9 10
Forest 273.3 228.1 188 −45.2 −16.5 −40.1 −17.6 −85.3 −31.2
Water 0.8 0.8 0.7 0.0 −2.4 −0.1 −12.5 −0.1 −14.6

Bare soils and farm lands 35.7 72.1 109 36.3 101.8 36.8 51.1 73.2 204.9

3.2. Normalized Difference Vegetation Index (NDVI) Analysis

The spatial analysis of the NDVI results shows that the NDVI values considerably
decreased between 1990 and 2020 in the investigated basin (Figure 4). During the years
2000, 2010 and 2020, the maximum values of NDVI were 0.47, 0.44 and 0.39, respectively
(Figure 4). These figures reflect the reduction in green spaces in the basin. Yang et al. [33]
made a similar observation in their study in China. The results relating to the NDVI values
during the years studied show that the forest which covered the surroundings of Yaounde
city (Mbankomo, Mfou and Nsimalen) in 2000 have been gradually replaced by buildings,
roads, bare soils, and crops (Figure 2).
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The Landsat image analysis indicates that NDVI and LST have a strong relationship.
Low NDVI values correspond to high LSTs. Statistical correlation analysis demonstrates
that NDVI has a strong negative correlation with “r” values of −0.66, −0.74, and −0.85 for
the years 2000, 2010, and 2020 (Figure 5). Some authors [16,34] made similar observations.
According to them, the vegetation land cover class has the potential to cool the environment
and is very effective in climate change mitigation strategies. Vegetation coverage could
decrease the surface and air temperature by providing shade, which saves land surfaces
from the direct heat of sunlight [34,35]. Conversely, built areas, roads, farmland, and bare
soils have high LSTs.
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3.3. LST Variation in Response to LUM Dynamics

LST increased in the Mefou watershed over the interval studied (Figure 6). During
the years 2000, 2010, and 2020, the maximum LSTs values were 34 ◦C, 49 ◦C, and 54 ◦C,
respectively. The minimum LSTs values were 17 ◦C, 18 ◦C, and 45 ◦C (Figure 6). For
the maximum LST, the increases noted between 2000 and 2020 were +20 ◦C. Most of this
increase took place between 2000 and 2010 (+15 ◦C). In the case of minimum LST, the
increase noted between 2000 and 2020 was +28 ◦C. This increase mainly occurred between
2010 and 2020.
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In general, low LST is observed in forested areas and high LST is observed in areas
covered by buildings and bare soils. In 2000, 2010, and 2020, for example, 94%, 91%,
and 98.7% of the lowest LSTs (17–22 ◦C, 18–21 ◦C, and 45–47 ◦C, respectively) were ob-
served in areas covered by forest. During these same years, 81.6%, 87.5%, and 88.4% of
the highest LSTs (28–34 ◦C, 27–49 ◦C, and 51–55 ◦C, respectively) were observed in the
spaces covered by buildings (Table 4). Other studies [36,37] have already shown that the
highest and lowest LSTs are generally observed in bare spaces and spaces covered with
vegetation, respectively.
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Table 4. Statistical links between LST and LUM.

LST Year Area % of LST Class Observed in Each LUM (%)

LST Classes km2 % Built and Roads Forest Water Bare Soils and Farm Lands

2000 17–22 96.6 22.6 5.1 94 0.5 0.4
23–24 161.0 37.6 12.8 83.9 0.2 3.1
25–25 94.2 22.0 41.7 44.3 0 14
26–27 55.7 13.0 73.2 11.1 0 15.6
28–34 20.6 4.8 81.6 3.9 0 14.6

2010 18–21 67.8 15.8 6.5 91.7 0 1.8
23–24 152.6 35.7 7.5 83.1 0.2 9.2
24–24 93.5 21.8 25.2 41.8 0 32.9
25–26 69.9 16.3 64.9 6.9 0 28.2
27–49 44.1 10.3 87.5 0.9 0 11.6

2020 45–47 76.6 17.9 0 98.7 0.9 0.4
48–48 99.2 23.2 1.3 86.7 0 12
49–49 94.2 22.0 17.8 27.3 0 54.9
50–50 101.1 23.6 61.3 1.6 0 37.1
51–55 56.9 13.3 88.4 0 0 11.6

3.4. LST Validation Results with Respect to Air Temperature

Minimum and maximum air temperatures increased in the Mefou watershed between
2000 and 2020. This increase is statistically significant for minimum temperature, with
a p-value below the significance level of 0.05 (Figure 7). This implies that the increase
noted for the minimum temperature is greater than that of the maximum temperature. We
also note that the increase in minimum temperature is greater over the period 2010–2020
(Figure 7).
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There is a strong concordance in the evolution of LST and air temperature in the
Mefou watershed, which suggests that there is a link between them. We note in both
cases an increase in maximum and minimum temperatures, a greater increase in minimum
temperature compared to maximum temperature, and a greater increase in minimum
temperature during the period 2000–2010. A similar finding was reported by Tafesse and
Suryabhagavan [16] around the Adama Zuria district in Ethiopia.

4. Conclusions

The goal of this study was to analyze LST variations in response to LUM dynamics in
the Mefou River sub-basin using geospatial techniques (Southern Cameroon). For this, we
used Landsat satellite images and CRU air temperature data. Between 2000 and 2020, the
Mefou watershed recorded significant changes in LUM, which were mainly manifested by
an increase in IAs (buildings and roads (+10%); bare soils and farmlands (+204.9%)) and
forest reduction (−31.2). This decrease in the forest is also reflected in a reduction in NDVI
values, whose maximum values went from 0.47 in 2000 to 0.39 in 2020. Contrary to the
forest area and the NDVI values, the LST of the investigated basin increased over the period
studied. The maximum and minimum values increased from 34 ◦C to 54 ◦C and from 17 ◦C
to 45 ◦C, respectively. There is a strong negative correlation between LST and NDVI. In
general, high LSTs correspond to low NDVI values. For the years 2000, 2010, and 2020, the
links between these two variables are materialized by the respective correlation coefficients
of −0.66, −0.74, and −0.85. Based on our results, it is recommended to increase the
campaigns of afforestation and reforestation programs to minimize unexpected increases
in LST in the study area and beyond. Further studies should be conducted, incorporating
additional factors for a better understanding of the effects of LUM dynamics on LST for
mitigation strategies.
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