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Abstract: The pyrolysis temperature strongly affects the properties of the peanut shell biochar, and
influences its adsorption behavior and mechanisms for contaminant removal in aqueous solutions. In
this study, peanut shells were pyrolyzed at 400 ◦C and 700 ◦C to prepare two biochars (PSBC400 and
PSBC700), which were then characterized using scanning electron microscopy/X-ray energy spectrum
analysis, Brunauer–Emmett–Teller, elemental analysis, X-ray fluorescence, X-ray diffraction, Fourier
transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adsorption behavior of
typical tetracycline (TC) onto the biochars was investigated, and the potential adsorption mechanisms
explored. The results show that compared with PSBC400, PSBC700 has a larger specific surface area
and pore volume and contains higher levels of carbon and ash, but shows lower O, N, and H content.
The hydrophilicity and polarity of PSBC700 is lower, but its aromaticity is higher. Furthermore,
the mineral content of PSBC400 is higher than for PSBC700. The functional groups differ between
PSBC400 and PSBC700, especially those containing C and O. The Elovich and two-compartment
adsorption kinetic models are a good fit to the TC adsorption processes on both biochars, but the
Langmuir adsorption isotherm model provides better results. The theoretical maximum adsorption
capacities of TC onto PSBC700 and PSBC400 are 33.4346 mg·g−1 and 26.4185 mg·g−1, respectively.
The main adsorption mechanisms of TC onto PSBC400 are hydrogen bonding and complexation,
and are closely related to the functional groups and minerals found in PSBC400. In contrast, the
main adsorption mechanisms of TC onto PSBC700 are pore filling and the π–π interaction, and are
mainly determined by the surface area and graphited carbon structure of PSBC700. In summary,
effective biochar can be manufactured from peanut shell biomass and can be used to remove TC from
aqueous solutions.

Keywords: peanut shells; biochar; pyrolysis temperature; tetracycline; adsorption mechanisms

1. Introduction

With the rapid development of industrial medicine, a large number of antibiotics
have been developed to treat various infectious diseases. Widespread use, and abuse,
of antibiotics has resulted in the direct discharge of large quantities of waste antibiotics
into the aquatic environment [1]. These antibiotics pose a serious threat to organisms
because of their potential toxicity and potential to cause disease resistance [2]. Tetracycline
(TC) is one of the most widely used antibiotics to cure several infectious diseases, and
is frequently detected at high concentrations in aquatic environments where it may pose
environmental hazards [3]. Therefore, the removal of TC from aquatic environments
requires urgent attention.

Currently, TC is removed from the aquatic environment using membrane treatment,
adsorption, advanced oxidation, electrochemical, and photocatalytic degradation tech-
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niques [4]. However, adsorption remains a very important method for removing TC
from natural waters and has the advantages of high efficiency, simplicity, environmen-
tally friendliness, scalability, and ease of operation [5]. Selecting an optimal adsorbent
is key to the successful application of the adsorption method. Activated carbon, resin,
molecular sieves, and polymer materials are common adsorbents, but their high costs
prevent their widespread application [6]. There is a need to find widely available, low cost,
and environmentally friendly substitute biomass-based adsorption materials. Biochar is a
promising cost-effective alternative adsorbent and has attracted much attention recently
due to its large specific surface area, porous structure, and surface functional groups and
minerals [7–13]. The properties of biochars rely heavily on the nature of the feedstock and
the means of pyrolysis, especially the pyrolytic temperature [14,15].

China is currently the largest peanut-producing country in the world, with an annual
production of about 3.14 million tons, and peanut shells have become an abundant biomass
resource [16,17]. Peanut shells can be used as a substrate, fertilizer, fuel, animal feed, and
in the preparation of activated carbon [18]. Preparation of biochar provides a new way to
utilize this resource. Peanut shell biochar, or modified peanut shell biochar, has been used
as an adsorbent for the removal of pollutants from wastewater, including pesticides, [19],
antibiotics [20,21], heavy metals [22,23], dyes [24], nitrogen, and phosphorus [25], clearly
demonstrating its effectiveness

Previous studies show that the pyrolysis temperature significantly affects the physic-
ochemical properties of the biochar produced, further influencing the adsorption mecha-
nisms of pollutants [26]. Pyrolysis temperature expressly affects the chemical composition,
functional groups, pore structure, and crystallographic structure of a biochar and these
changes can affect the binding properties of contaminants to the biochar [26–29]. For exam-
ple, Dai et al. studied the adsorption of TC in aqueous solution by biochar derived from
waste Auricularia auricula dregs under different pyrolysis temperatures [30]. Kim et al.
investigated the adsorptive removal of TC from aqueous solution by maple-leaf-derived
biochar prepared at different temperatures [31]. Zhang et al. investigated the character-
istics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis
temperatures [32]. Choi et al. performed the adsorption behavior of tetracycline onto
Spirulina sp. (microalgae)-derived biochars produced at different temperatures [33]. The
above research confirmed that the specific surface area, pore structure, surface functional
groups, and microstructure of the biochars derived from various pyrolysis were different,
then influencing their adsorption performance towards TC. However, very few studies
have reported specifically on the effects of pyrolysis temperature on the physicochemical
properties of peanut shell biochar. In addition, the influence of pyrolysis temperature on
the adsorption mechanism of TC by peanut shell biochar is still unclear.

In this work, peanut shells were converted to biochars under pyrolysis temperatures of
400 ◦C and 700 ◦C (PSBC400 and PSBC700, respectively). The biochars obtained were char-
acterized using scanning electron microscopy/X-ray energy spectrum analysis (SEM/EDS),
Brunauer–Emmett–Teller (BET), elemental analysis (EA), X-ray fluorescence (XRF), X-ray
diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron
spectroscopy (XPS). The adsorption behaviors of TC onto the two biochars were investi-
gated, including their adsorption kinetics and isotherms. Finally, the potential adsorption
mechanisms of TC onto biochar were investigated. The results provide a reference for
the utilization of peanut shells as biochar feedstock, and technical support for their use in
removing TC from aquatic environments.

2. Materials and Methods
2.1. Materials

Peanut shells were collected from a factory in the suburb of Hefei, Anhui Province,
China. The peanut shells were soaked in tap water to wash dust and impurities from the
surface, then repeatedly washed with deionized water, dried at 80 ◦C in an oven, and then
powdered for further use.
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Tetracycline (TC, C22H24N2O8) was purchased from the Shanghai Yuanye Biological
Co., Ltd., Shanghai, China. The other chemical reagents used were analytically pure and
were obtained from the Sinopharm Chemical Reagent Company Ltd., Shanghai, China.

2.2. Biochar Preparation

Two batches of powdered peanut shell were placed into quartz boats, and then into
a tubular muffle furnace (OTF-1200X, Hefei Kejing Mater. Technology Company., Ltd.,
Hefei, China) for pyrolysis. The pyrolysis temperatures were set at 400 ◦C and 700 ◦C for
each batch, with a heating rate of 5 ◦C·min−1. Once the desired temperature was reached,
the samples were kept at the target temperature for 2 h. The whole pyrolysis process was
conducted in an N2 atmosphere with a flow rate of 100 mL·min−1. The pyrolyzed solid
was removed after the tubular furnace had cooled to room temperature. The two solids
obtained were ball milled for 2 min to produce uniform samples.

2.3. Batch Adsorption Experiment
2.3.1. Adsorption Kinetics

Two 250 mL samples of 50 mg·L−1 TC solution were placed into 250 mL conical
flasks, and 0.02 g of each biochar was added. The flasks were placed into an oscillator at a
temperature of 25 ◦C, and an oscillation speed of 180 r·min−1. The samples were collected at
intervals from 0–600 min. The samples were filtered through 0.45µm filters, and measured
using a UV–visible spectrophotometer at 358 nm (UV-5100B, Metash, Shanghai, China).

The amount of TC absorbed onto the biochar (qt, mg·g−1) after an adsorption pro-
cess contact time, t, was calculated as shown in Equation (1). Pseudo-first-order (PFO)
(Equation (2), pseudo-second-order (PSO) (Equation (3)), Elovich (Equation (4)), and two-
compartment (Equation (5)) models were used to fit the adsorption kinetics process [34,35].

qt =
(C 0− Ct)V

m
(1)

qt= qe(1 − exp(−k 1 t)) (2)

qt =
q2

ek2t
1 + qek2t

(3)

qt = (1/β) ln(αβ)+(1/β) ln(t) (4)

qt= qe[1 − (F faste
−kfastt+Fslowe−kslowt)] (5)

where: C0 and Ct are the initial concentration and contact time of TC in the solution
(mg·L−1), respectively; V is the volume of TC solution (L); m is the mass of biochar
(g); qt and qe are the adsorption capacity of TC at time t and at equilibrium (mg·g−1),
respectively; t is adsorption time (min); k1 and k2 are the PFO and PSO rate constants
(min−1, g·mg−1·min−1), respectively; α is the initial adsorption coefficient (g·mg−1·min−1);
β is the desorption rate constant (g·mg−1); Ffast is the proportion of the fast adsorption
stage; Fslow is the proportion of the slow adsorption stage (where the sum of Ffast and
Fslow is equal to 1); and kfast and kslow are the rate constants of the fast and slow reactions
(min−1), respectively.

2.3.2. Adsorption Isotherms

A series of 20 mL TC solutions with a concentration of 10–50 mg·L−1 were placed
in brown glass bottles. A 0.02 g biochar sample was added to the solution to keep a
solid/liquid ratio of 1 g·L−1. The bottles were placed into an oscillator at a temperature
of 25 ◦C, and an oscillation speed of 180 r·min−1. After oscillation, the mixtures were
centrifuged at 5000 rpm (3913× g) for 10 min, filtered through a 0.45 µm filter, and the
absorbance of the solutions was analyzed to calculate the TC concentrations.

At the equilibrium time, the amount of TC absorbed onto the biochar (qe, mg·g−1) was
calculated as shown in Equation (6). Langmuir (Equation (7)) and Freundlich (Equation
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(8)) models were used to fit the adsorption process [36]. The Langmuir model explains
the ideal monolayer adsorption onto a homogeneous surface, while the Freundlich model
expresses the non-ideal multilayer adsorption onto a non-homogeneous surface [37].

qe =
(C 0 − Ce)V

m
(6)

qe =
qmaxkLCe

1 + kLCe
(7)

qe= KfC1/n
e (8)

where kL is Langmuir constant (L·g−1); qmax is the maximum adsorption capacity (mg·g−1);
Kf is the Freundlich constant (mg·g−1)/(mg·L−1)n; and 1/n is a constant reflecting adsorp-
tion affinity.

2.4. Biochar Characterization

The surface morphology and elemental composition of the two biochars were exam-
ined using SEM (S-4800, Hitachi, Japan) and EDS (X–Max, Oxford Instruments, UK). The
pore structure and specific surface area (SSA) of the biochars were characterized using a
Micromeritics TriStar II 3020 with an N2 adsorption–desorption isotherm at 77.3 K. The C,
H, and N contents were determined using an elemental analyzer (Elemental analyzer, Vario,
Germany). Ash content was determined by calcination at 700 ◦C for 2 h, and the O content
was obtained by difference subtraction (O = 100% − (C – N + H + S + Ash)). Chemical
analyses of biochars were determined by X–ray fluorescence (XRF–1800, Shimadzu, Japan)
using calibration carried out by the manufacturer for the analysis of basic materials. The
surface functional groups of the biochars were analyzed using Fourier transform infrared
spectroscopy (Nicolette is 50, Thermo Fisher, Waltham, MA, USA). The phase structures of
the biochars were analyzed using XRD with Cu Ka radiation source within the scanning
angle range of 5◦–80◦ at a scanning rate of 2◦ min−1 (Bruker D8 Advance, Germany). The
functional groups present on the surfaces of the biochar particles and the elemental com-
position of the top surface layers (3–5 nm) were measured using a Thermo-VG Scientific
ESCALAB 250 Xi spectrometer (Thermo Scientific, Waltham, MA, USA).

3. Results and Discussion
3.1. Biochar Characterization

Figure 1 shows the SEM/EDS images of the two biochars. No obvious pore structure
is found in PSBC400, which retains the surface morphology of pristine peanut shells. The
main elements include C, O, Ca, Si, Mg, and Al, as both organic and mineral components.
In PSBC700, some fragments and pore structures are visible since the high pyrolysis tem-
perature results in organic matter decomposition and gas release [38]. Both biochars consist
largely of C and O, with the C content accounting for more than 90% of the total mass.

The N2 adsorption–desorption curve and pore size distribution of the biochars are
shown in Figure 2. It is shown that PSBC400 and PSBC700 present pseudo-type-IV curve
with a H3 hysteresis loop, which shows mesoporous structure, with pore sizes of 2–10 nm.
The pore structure parameters of both biochars are shown in Table 1. The surface area
and pore volume of PSBC700 are 193.6540 m2·g−1 and 0.128353 cm3·g−1, and are 26.0 and
8.8 times greater than PSBC400, respectively. The average pore size of PSBC700 is much
smaller than PSBC400, which is more conducive to the diffusion adsorption of pollutants.
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Table 1. Pore structure parameters of biochars.

Parameters Unit PSBC400 PSBC700

Surface area (SBET) m2·g−1 7.4290 193.6540
Total volume (VTotal) cm3·g−1 0.014633 0.128353
Average pore size (L0) nm 7.8791 2.6512

The elemental and ash contents of the biochars and their calculated atomic ratios are
shown in Table 2. PSBC700 has a higher C and ash content, but lower N, H, and O content
than PSBC400, especially the H and C content. The lower O and H contents of PSBC700 are
probably due to dehydration, dehydrogenation, and deoxygenation reactions caused by
the higher pyrolysis temperature [39]. The atomic ratios of H/C, O/C, and (O + N)/C are
recognized indices for aromaticity, hydrophily, and polarity, respectively [40]. The smaller
the H/C atomic ratio, the higher the aromaticity of a biochar. The higher the (N + O)/C
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atomic ratio, the higher the polarity [41]. In this study, bulk aromaticity of the biochars
increases, while hydrophily and polarity decrease with increased pyrolysis temperature, as
indicated by the decreasing H/C, O/C, and (O + N)/C ratios.

Table 2. Element, ash content, and atomic ratios of biochars.

Biochar C N H O Ash H/C O/C (N+O)/C

PSBC400 67.624 1.918 4.208 18.095 8.155 0.062 0.268 0.296
PSBC700 80.334 1.561 1.910 7.049 9.146 0.024 0.088 0.107

The chemical compositions of the biochars were determined using XRF and are shown
in Table 3. Compared with PSBC400, the higher pyrolysis temperature of PSBC700 increases
the C content and decreases the N content. The relative content of Si, K, Ca, Al, Fe, Na,
and S in PSBC400 is greater than in PSBC700. Conversely, the Mg and P content of
PSBC400 is less than in PSBC700. In general, the mineral content of biochar increases
with increasing pyrolysis temperature because the organic biomass constituents, including
cellulose, hemicelluloses, and lignin are, to a large extent, converted and released in the
form of volatiles and gases while the much less volatile mineral compounds, such as Mg,
Ca, and P, remain, and, therefore, become concentrated in the biochar [42]. In addition, the
minerals in high temperature biochars may also increasingly crystallize and become less
soluble, especially above 500 ◦C, and are, therefore, less effective as adsorption binding
sites for pollutants [42].

Table 3. Main chemical compositions in biochars based on XRF (%).

Components PSBC400 PSBC700

C 72.9068 82.6192
N 15.7178 7.6861

SiO2 3.7452 2.8873
K2O 2.0381 1.6741
CaO 1.4887 1.3506
MgO 0.9 1.0132
Al2O3 0.7953 0.6823
P2O5 0.7263 1.1234
SO3 0.6038 0.4692

Fe2O3 0.4717 0.2418
Na2O 0.2812 0.112
TiO2 0.0834 0.0359

Cr2O3 0.0797 0.0197
Cl 0.0594 0.0282

MnO 0.0374 0.025
NiO 0.0288 0.0101

Co2O3 0.0214 —
CuO 0.0151 0.0075

The XRD patterns of the biochars are shown in Figure 3a. Typical diffraction peaks of
SiO2 are observed in these peanut shell biochars. Increased pyrolysis temperature results
in a weakened intensity of the SiO2 diffraction peak, which may be ascribed to the decrease
in SiO2 content or the formation of Si/C. A wide diffraction peak at about 23◦ is observed
in the biochars, indicating the presence of amorphous carbon structures. The diffraction
peak at 44◦ (100 planes) in PSBC700 corresponds to crystalline graphite carbon, indicating
that high temperature pyrolysis is beneficial for the formation of graphite structure in
the biochar [43].
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The FTIR spectra of the biochars are presented in Figure 3b. PSBC400 and PSBC700 con-
tain many functional groups, such as −OH, −CH3, aromatic C=C/C=O, O-H bending, C-O
stretching, and Si-O [21,38]. Increased pyrolysis temperature leads to shifts in some groups,
such as 1617 cm−1→ 1630 cm−1, 1108 cm−1→ 1121 cm−1 for aromatic C=C/C=O and C-O
stretching, respectively. The change in functional groups is attributed to the dehydration,
dehydrogenation, and deoxygenation reactions at the elevated temperatures [39,44,45].

The XPS results of the two biochars are shown in Figure 3c. The elements C, N, and O
are detected on the biochar surfaces. Furthermore, other minerals, including Si, Ca, K, Mg,
and P, are also found on the biochar surfaces. Compared with PSBC400, the C content is
higher in PSBC700, but the O and N content is lower, consistent with the elemental analysis
results. Furthermore, mineral element contents, such as Ca, K, and Si, also change slightly.

Peak fitting of the C1s, N1s, and O1s of the biochars are shown in Figure 4. The C1s
spectrum of PSBC400 shows characteristic peaks at 284.80 and 286.28 eV, corresponding
to C-C/C-H and C-O-C [16], respectively. However, the C1s peaks for PSBC700 occur at
284.77 eV (for C-C/C-H), 285.49 eV (for C-O-C), and 287.91 eV (for O-C=O). The types
of N found in PSBC400 and PSBC700 include pyridinic-N and pyrrolic-N [46]. The O1s
photoelectron spectrum of PSBC400 can be resolved into two signals, which are attributed
to C=O (531.78 eV) and C-O (533.37 eV) [47,48]. The chemical composition of the O1s
XPS spectra of PSBC700 shows two different peaks at ∼531.46 and ∼532.86 eV for C=O
and −OH, respectively [49]. The pyrolysis temperature, therefore, significantly affects
the carbon structure and oxygen-containing functional groups in the biochars produced.
The changes in carbon structure is consistent with the XRD analysis, while the changes in
functional groups are the same as in the FTIR analysis.
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3.2. Adsorption Behavior of TC on Biochars
3.2.1. Adsorption Kinetics

The adsorption kinetics of TC onto the biochars are presented in Figure 5. The ad-
sorption of TC onto the biochars first increases and then stabilizes with increasing contact
time [40]. The TC removal rates by PSBC400 and PSBC700 at 5 and 30 min are 59% and 75%,
and 77% and 81%, respectively. Hence, the majority of the removal of TC by the biochars
occurs during the initial stage of the adsorption process [50].
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The parameters of TC adsorption by the biochars, fitted by the various kinetics models,
are shown in Table 4. The PSO model provides a better description of the TC adsorp-
tion process than the PFO model. The correlation coefficient (R2) of the PSO model is
greater than that of the PFO model, and the obtained adsorption capacity of the PSO
model is closer to the practical adsorption amount. Generally, the PSO model provides
a good fit to all the experimental data, implying that chemical interactions are involved
in the adsorption process, and that strong interactions involving valence forces sharing
or exchanging electrons occurs between TC and the biochar [51]. In addition, the PSO
model also explains the external liquid film diffusion, surface adsorption, and intra-particle
diffusion processes coexisting during adsorption, and fully and accurately describes the
adsorption process [52].
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Table 4. Fitting parameters of adsorption kinetics of TC onto biochars.

Biochar
Pseudo-First-Order Model Pseudo-Second-Order Model

qe/(mg·g−1) k1/min−1 R2 qe/(mg·g−1) k2/g (mg·min−1) R2

PSBC400 5.03558 0.15985 0.88435 5.33639 0.04938 0.9565
PSBC700 9.05284 0.29732 0.88186 9.53403 0.0496 0.9386

Biochar
Elovich model Two-compartment model

a β R2 qe/(mg·g−1) Ffast Fslow kfast kslow R2

PSBC400 290.43196 2.2472 0.9909 5.7517 0.7235 0.2765 0.3217 0.0055 0.9800
PSBC700 6677.55413 1.51165 0.99215 10.2061 0.7504 0.2496 0.7690 0.00799 0.9866

The Elovich equation has been used to predict a number of transport-limited reaction
mechanisms, including bulk and surface diffusion [53,54]. In this study, the Elovich equa-
tion provides the best fit to the experimental data (R2 > 0.99), suggesting that TC adsorption
onto the biochars is predominantly mediated by chemical interactions taking place at the
strongly heterogeneous biochar surfaces [55,56].

The two-compartment first-order model divides the adsorption process into two parts,
namely, the fast adsorption stage and the slow adsorption stage [37]. In this study, the
good fit of the two-compartment model (R2: 0.9800 and 0.9866, for PSBC400 and PSBC700,
respectively) confirms the two-stage nature of the adsorption of TC onto the two biochars,
as described in Section 3.2.1. Specifically, TC is rapidly absorbed by PSBC400 and PSBC700
within 15 min, reaching 72.35% and 75.04% of the total adsorption capacity, respectively. The
adsorption process slows in the following 585 min, during which time only an additional
27.65% and 24.96% of the total adsorption capacity is achieved by PSBC400 and PSBC700,
respectively. In addition, the kfast values for PSBC400 and PSBC700 are larger than those
of kslow. Based on the analysis of characterization, the fast adsorption stage of PSBC400
relates to its functional groups and minerals. However, the fast adsorption stage of PSBC700
is due to its larger surface area and graphitic aromatic structure.

3.2.2. Adsorption Isotherms

Adsorption isotherms can describe the equilibrium distribution of TC molecules
between the adsorbent and the solution. Figure 6 shows the adsorption isotherms of
TC on the two biochars. When the equilibrium concentration increases, the equilibrium
adsorption capacity (qe) for TC first increases sharply, then increases slightly, and finally
reaches the equilibrium point, as expected.

The parameters obtained from the adsorption isotherm models are shown in Table 5.
The theoretical maximum adsorption capacity of TC onto PSBC400 and PSBC700 reaches
26.4185 mg·g−1 and 33.4346 mg·g−1, respectively. The affinity between PSBC700 and TC is
greater than that between PSBC400 and TC because of its high kL value. Based on the KF
and n values, PSBC700 shows a greater ability to adsorb TC than PSBC400. Compared with
the pristine biochar of other feedstock in Table S1, the adsorption capacity of TC on peanut
shell biochar is larger and more apparent. However, compared with the modified biochars
in Table S2, the adsorption amount of peanut shell biochar for TC is relatively low due to
the deficiency of abundant adsorption sites.

Table 5. Fitting parameters of adsorption isotherms of TC onto biochars.

Biochar
Langmuir Freundlich

qmax/(mg·g−1) kL/(L·mg−1) R2 KF n R2

PSBC400 26.4185 0.03916 0.99057 2.63807 2.09028 0.97974
PSBC700 33.4346 0.05743 0.97443 4.4245 2.27244 0.92564
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3.3. Adsorption Mechanism Analysis

(1) Pore-filling effect

The specific surface area and pore structure of a biochar play a key role in the adsorp-
tion of TC, principally determined by the pore-filling mechanism. Generally, a large surface
area and well-developed pore structure in biochars result in a high adsorption capacity
for TC [26,57]. In this study, PSBC700 is better at absorbing TC than PSBC400 because
of its larger specific surface area and pore volume. The average pore size of PSBC 700 is
2.6512 nm, which is larger than the molecular size of TC (1.41 nm × 0.46 nm × 0.82 nm).
Other studies also show that the pore-filling effect is responsible for the adsorption of
TC onto the adsorbents [57,58]. The pore-filling effect is clearly shown to be a possible
adsorption mechanism in this study.

(2) π–π interaction

The graphitized structure of a biochar also plays a major role in the adsorption of TC.
The π–π interaction can occur between the graphitized structure (π-electron donor) of a
biochar and the aromatic ring (π-electron acceptor) of TC molecules [59]. In this study,
the H/C value and XRD analyses show that PSBC700 contains more graphitized carbon
structures than PSBC400, suggesting that the π–π EDA interactions play a vital role in
the TC adsorption process. Previous studies also show that π–π interactions are a key
contributor to higher biochar TC adsorption capacity [36,60].

(3) Hydrogen bonding

In the adsorption process, hydrogen bonds usually play one of the most important
roles. The surface O/N-containing functional groups of a biochar also play an important
role in the adsorption of TC. Hydrogen bonds can be formed between the -OH (H-donor)
on the adsorbent surface and the H acceptor (O atoms, N atoms, or aromatic rings of
TC) [61]. The FTIR and XPS analyses show that PSBC400 has more functional groups than
PSBC700, because some functional groups are retained at the lower pyrolysis temperature.
Therefore, hydrogen bonding is an important interaction mechanism between PSBC400
and TC due to its high density of oxygen-containing groups. Other studies also show that
a biochar can adsorb TC through hydrogen bonding, involving the −OH, C=O, and C-N
functional groups [62].



Sustainability 2023, 15, 874 11 of 15

(4) Surface complexation

Mineral components in a biochar can also bind with TC, mainly through surface
complexation [63]. Based on the XRD, XRF, and XPS analyses, the amounts of Si, K, Ca,
Al, and Fe in PSBC400 are greater than in PSBC700. Additionally, there are fewer mineral
crystals in PSBC400 due to its lower pyrolysis temperature. Poor development of mineral
crystals could provide more active sites onto which a pollutant can bind. Therefore, the
minerals in PSBC400 play a crucial role in the adsorption of TC. Previous studies also show
that minerals (such as Ca2+ and Mg2+) on a biochar can efficiently adsorb TC through
surface complexation [33,64] (Ca2+ + H2TC− 
 CaH2TC+; Ca2+ + HTC2− 
 CaHTC0;
Mg2+ + H2TC− 
 MgH2TC+; Mg2+ + HTC2−
 MgHTC0).

In summary, pyrolysis temperature significantly changes the dominant mechanism by
which TC is adsorbed onto the two biochars. Specifically, the main mechanisms by which
TC is adsorbed onto PSBC400 include hydrogen bonding and surface complexation, which
are highly dependent on the functional groups (such as hydroxyl, carboxyl, amino, etc.)
and minerals in a biochar. In contrast, pore filling and the π–π interaction may contribute
to the possible mechanisms governing TC adsorption onto PSBC700 due to its surface
area and graphited carbon structure. A summary schematic illustration of the adsorption
mechanisms of TC onto the two peanut shell biochars is presented in Figure 7.
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4. Conclusions

Compared with PSBC400, PSBC700 shows a larger surface area and pore volume, and
has higher carbon and ash contents, but lower amounts of O, N, and H. The hydrophilicity
and polarity of PSBC700 is lower, but the aromaticity is higher. However, the mineral
content of PSBC400 is greater than PSBC700. The functional groups in PSBC400 and
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PSBC700 are different, especially the C- and O-related groups. The Elovich and the two-
compartment adsorption kinetic models provide a good fit to the observed adsorption
process of TC onto the two biochars. The Langmuir adsorption isotherm model provides a
better description of the adsorption process of TC onto the two biochars. The theoretical
maximum adsorption capacity of TC onto PSBC400 and PSBC700 reaches 26.4185 mg·g−1

and 33.4346 mg·g−1, respectively. The main adsorption mechanisms of TC onto PSBC400
are hydrogen bonding and complexation, and are related to its functional groups and
minerals. In contrast, the main adsorption mechanisms of TC onto PSBC700 are pore
filling and the π–π interaction, which are determined by its surface area and graphited
carbon structure.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su15010874/s1, Table S1: Comparison of the adsorption capacity of
TC on other pristine biochars [65]; Table S2: Comparison of the adsorption capacity of TC on other
modified biochars.
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