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Abstract: Drought is one of the most important abiotic stress factors affecting crop yields and
qualities worldwide. One drought-sensitive plant is the cucumber, which has a high transpiration
rate. Grafting is recognized as a promising approach to increasing tolerance to abiotic stresses in
cucumber. In this study, it is aimed to determine the rootstock that will prevent negative changes
in some growth, physiological and genetic parameters of cucumber under drought stress and to
determine the mechanism of the system. In drought stress conditions, leaf number values were found
to be 6 on average in non-grafted plants and between 6–13.16 in grafted plants. Average leaf fresh
weight values (7.56–9.84 g) obtained from grafted plants were higher than non-grafted plants (5.7 g).
Leaf chlorophyll content (SPAD) values were found to be between 24.43 in non-grafted plants and
37.83–55.36 in grafted plants under stress conditions. Malondialdehyde (MDA) concentration values
also decreased from 5.66 to 3.23–4.36 in grafted plants. It was determined that the genomic template
stability (GTS) rate was 64.1% in the non-grafted treatment group. DNA polymorphisms detected by
ISSR (inter simple sequence repeat) can be used as a biomarker system for the detection of genotoxic
effects of abiotic stresses, such as drought. These findings suggest that grafting with drought-resistant
rootstocks may improve drought tolerance in drought-sensitive cucumber genotypes.
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1. Introduction

Efforts to develop high-yield varieties of many agricultural products have been com-
pleted or are continuing. However, some cultivars with high yield values under controlled
conditions cannot provide this potential in producer fields. The biggest reason for this is
unsuitable cultivation methods and stress conditions. Drought especially is one of the most
important limiting factors in agricultural production [1]. Water scarcity and drought are
global problems that affect the whole world. Due to global climate change, the uneven
distribution of precipitation and the unconscious use of water resources also increase the
frequency and severity of drought [2]. The increase in the world population and the increas-
ing food requirement necessitate the increase of vegetable cultivation. Vegetable cultivation
has expanded especially in semi-arid and arid regions where recurrent drought and water
scarcity are common [3]. Optimum moisture balance is the most important criterion for
yield and quality in plant breeding, and lack of water and drought cause crop yield and
quality declines [4,5]. Changes in important parameters caused by drought stress cause
yield and quality decreases in plants [6,7]. Drought stress causes structural, physiological
and biochemical changes in plants [8]. As a result of drought, the expansion of plant organs
and cell differentiation decrease, and germination and seedling growth are delayed. For
these reasons, plant growth and biomass decrease in plants exposed to drought stress [9]. In
these conditions, a rapid decrease in leaf expansion rate, shoot growth rate and fresh shoot
weight occurs in the growth and development period [10]. Morphological and anatomical
changes occur in the roots, shoots and leaves of many plants under drought stress, and
the root/stem ratio increases [11,12]. Drought stress also causes negative effects on the
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photosynthesis mechanism [13]. In plants exposed to drought stress, photosynthesis can be
restricted by decreasing carbon dioxide entry into stomata. This may result in decreased
vegetative growth in plants [14]. As the severity of drought stress increases, the nega-
tive change in plants also increases [15]. It is necessary to develop scientific strategies to
minimize yield losses in drought conditions.

Various techniques are used to increase drought tolerance in cultivated plants. Grafting
is widely used by horticulture members to combat diseases and increase tolerance to various
abiotic stresses [16–18]. The selection of genotypes with improved drought tolerance
remains a challenge for plant breeders. Therefore, grafting of drought-sensitive cultivars
on rootstock may be a useful approach to increase crop yield, and due to this advantage,
grafting studies on vegetables have become widespread in recent years. In grafting, two
active plant organisms are grown as a single plant. The rootstock, which forms the lower
part of the plant, is selected from genotypes or varieties with known tolerance to abiotic
stress, and the upper part of the plant, on the other hand, is selected for yield and quality
increase. For this reason, scion varieties with high fruit quality and yield are grafted with
rootstocks that can tolerate abiotic stress. Grafting to tolerant rootstocks can be an effective
solution to reduce yield and quality losses caused by drought stress [19]. The effectiveness
of grafting under stress conditions is determined by rootstock characteristics. In addition,
the performance of grafted plants depends on scion–rootstock compatibility [20]. More
recently, vegetable grafting has been increasing, especially in members of the Cucurbitaceae
and Solanaceae families [21].

Morphological, physiological and genetic data can be examined to determine the
potential of grafting to alleviate abiotic factors, such as drought stress. DNA profiles
can be important biomarkers in stress response detection. PCR-based marker systems
can be used effectively to determine the DNA profiles of individuals exposed to stress
conditions. DNA banding patterns are shown by ethidium bromide staining after agarose
gel electrophoresis, and the appearance of missing bands or new bands can be detected by
comparing DNA profiles in the control and treatment groups. ISSR, a PCR-based system, is
a highly reproducible, inexpensive marker technique and can be used for genetic diversity
studies [22,23] and stress response detection [24,25].

Cucumber (Cucumis sativus L.) is one of the most important species of the Cucur-
bitaceae family. Although the production amount of cucumber is increasing all over the
world, there has been no increase in yield in recent years. Cucumber, which is an important
vegetable species worldwide, shows a high transpiration rate and sensitivity to drought [26].
For this reason, providing optimum yield with less water for cucumber cultivation is one of
the most important objectives of breeding studies. Developing water-saving cucumber va-
rieties or grafting them with suitable rootstocks to reduce water consumption in cucumber
production is an important goal in agricultural research. Various studies have shown that
grafted cucumber to different cucurbit species can increase abiotic stress tolerance [16,27].
In some studies, the effect of grafting on water deficiency stress was determined [28]. How-
ever, information about the responses of grafted cucumber to drought stress is limited. So,
in this study, it was aimed to determine the drought stress response of different rootstocks
in cucumber and to determine the potential of grafting to increase drought stress tolerance.
This study gives the opportunity to understand the drought-tolerance mechanisms in
grafted horticultural crops.

2. Materials and Methods
2.1. Trial Design
2.1.1. Trial Materials and Locations

The experiment was carried out between 15 May and 5 July 2022 in Hatay Mustafa
Kemal University, Faculty of Agriculture, Horticulture Department research greenhouse
(latitude 36.19 N, longitude 36.11 E). In the study, non-grafted plants were used as control,
and cucumber was grafted onto its own roots and other rootstocks. “Cagla” was used as a
scion, and “Kubai”, “Cremna”, “Devrim” and “TZ148” were used as commercial rootstock.
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Cagla F1 used is a mini cucumber variety with very short internodes. This cucumber variety
is early and highly productive and resistant to powdery mildew and Cucumber Mosaic Virus.
TZ148 F1 used as rootstock is a hybrid of Cucurbita maxima × Cucurbita moschata, and this
rootstock is resistant to Fusarium oxsporum fsp melonis, Verticillium, Phomopsis sclerotioides
and root-knot nematodes (Meloidogyne spp). Cremna F1 rootstock is a hybrid of Cucurbita
maxima × Cucurbita moschata and is resistant to Fusarium oxsporum. Kubai F1 and Devrim
F1 rootstocks are hybrids of Cucurbita maxima × Cucurbita moschata.

2.1.2. Experiment Design

Seeds were sown in multipots in a 2:1 mixture of peat (pH: 6.0–6.5) and perlite, and then
suitable seedlings were selected for grafting using the “hole insertion grafting” method [29].
After grafting, the plants were left to recover and acclimate for 7 days in a large container
protected with a double-layer plastic film and shade cloth in the climate chamber [29].
The container was covered for the first three or four days of the acclimatization period to
prevent the grafted plants from wilting due to excessive transpiration. The box was opened
and closed for 3 days so that the grafted plants could acclimate to the environmental
conditions. The grafted plants were then transplanted into a plastic pot with a 1:1 mixture
of sand and silt after washing the roots from the growth medium. The non-stressed group
was watered daily to maintain the soil moisture content at about 40% (field capacity). In
the treatment group, drought stress was applied when the grafted plants reached the 6-leaf
stage. The experiment was terminated at the end of the 10th day when the irrigation was
stopped in the plants to be stressed, and the sampling process was carried out [30,31]. The
experiment was conducted in a completely randomized block design with five replications
and six plants in each replication.

2.2. Measurement Items and Methods
2.2.1. Plant Growth Measurements

After the experiment was completed, the plants were harvested and separated into
leaves, stems and roots. Plant height (cm) was measured using the meter rule. Leaves,
stems and roots were weighed to obtain fresh biomass. Plant materials were dried at 70 ◦C
for 48 h to determine shoot and root dry weight. The total leaf area of a plant was measured
with a leaf area meter (Delta-T Devices Ltd., Cambridge, UK).

2.2.2. Chlorophyll Meter Measurements

Minolta SPAD-502 chlorophyll meter was used to take SPAD readings. During the
growth period, the fourth leaf of six fully expanded cucumber plants of all plants for each
treatment was measured twice for SPAD data.

2.2.3. Photosynthetic Activity

Photosynthetic parameters of all grafted groups were determined using a Mini PPM
100 fluorimeter (EARS, Wageningen, the Netherlands) with modulation of 7.2 kHz at 455 nm.
The photosynthetic activity of plant groups was evaluated by comparing photosynthetically
active radiation PAR (µmol/m2/s).

2.2.4. Relative Water Content (RWC)

To determine the proportional water content of the leaf samples taken from the plants
at the end of the stress, the fresh weights were taken, the leaves were kept in pure water for
5 h and the turgor weights were determined at the end of this period. Dry weight values
were determined after the leaf samples whose weights were determined were dried in
an oven at 65 ◦C for 72 h. The fresh and dry weights obtained were proportioned with
the help of the following formula [32], and the relative water content of the leaves (%)
was calculated.

RWC = (FW − DW)/(TuW − DW) × 100

FW: fresh weight; DW: dry weight; TuW: turgor weight
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2.2.5. Malondialdehyde (MDA) Concentration

The technique of Heath and Packerto was used to determine the amount of MDA [33].
For this purpose, the plant leaf (0.2 g) was pulverized in 1% trichloroacetic acid (TCA) and
centrifuged (10,000× g and 5 min). Then, 4 mL of thiobarbituric acid containing 20% TCA
was added and the liquid was incubated in a water bath at 95 ◦C for 30 min and centrifuged
(10,000× g and 10 min). MDA content was determined as nanomole/gram fresh weight by
measuring at a wavelength of 532 nm in a spectrophotometer.

2.2.6. Molecular Analysis

Ten DNA samples were bulked for each application. Genomic DNA was extracted from
plants following the protocol of the cetyltriethylammnonium bromide (CTAB) method [34].
Polymerase chain reaction optimized 15 mL reactions contained 50 ng template DNA,
10 nmol dNTPs, 10 nmol ISSR primer, 5 U Taq DNA polymerase and 1.5 mL of 10X
polymerase chain reaction (PCR) buffer (50 mM KCl, 10 mM Tris-HCl, 2.5 mM MgCl2
and pH 8.3). Typical amplification parameters were used, and PCR products (5 mL) were
resolved on 1.5% agarose gels at 110 W for 4 h. Bands were scored as 1, 0 and 9 (for
missing data). These data were analyzed, and similarity indexes between individuals were
determined [35]. GTS was calculated as follows: GTS = (1 − a/n) × 100 where a was the
average number of ISSR polymorphic profiles detected in each sample treated and the
number of total bands found in the control. The average polymorphism was calculated
for each experimental group exposed to drought. For comparing the sensitivity of each
parameter, changes occurring in these values were calculated as a percentage of its control.

2.3. Statistical Analysis

Statistical analysis of experimental data was performed using SPSS. A two-factor
analysis of variance was performed to examine the effects of grafting and drought and
their interactions on the analyzed variables. Tukey’s HSD test was used to determine
the significant difference between the means (p < 0.01). The mean ± standard error was
used to present to explain statistical analysis results. Molecular data were analyzed using
NTSYS (Numerical Taxonomy Multivariate Analysis System, NTSYS-pc version 2.1, Exeter
Software, Setauket, NY, USA) package program [36].

3. Results
3.1. Plant Growth Measurements
3.1.1. Plant Height Values

Plant height values were examined, and the average value was determined as 32.05 cm.
In non-grafted, self-grafted and grafted Cagla cultivars, the plant height values decreased in
the drought-treated groups compared to the control group. Among the control groups, the
highest value was obtained in the grafting combination of TZ148–Cagla (62 ± 0.58 cm), and
the lowest value was obtained in the grafting combination of Devrim–Cagla (22 ± 0.58 cm).
Among the drought treatment groups, the highest value was obtained in the Cremna–Cagla
grafting combination (36 ± 0.58 cm), and the lowest value was obtained in the self-grafted
plants (18 ± 0.58 cm). Plant height values obtained from Cremna–Cagla and TZ148–Cagla
grafting combinations were higher than the non-grafted group (Figure 1).

3.1.2. Stem Diameter Values

The stem diameter average value was determined as 3.73 mm. In the TZ148–Cagla
grafting combination, the stem diameter value in the treatment group decreased compared
to the control plants, and there was no statistically significant difference between the
other combinations. In the control plants, the highest value was found in the self-grafted
plants (4.18 ± 0.36 mm), and the lowest value was found in the TZ148–Cagla grafting
combination. In the drought treatment group, the highest value was obtained in the self-
grafted plants (4.57 ± 0.08 mm), and the lowest value was obtained in the TZ148–Cagla
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grafting combination (2.03 ± 0.47 mm). There were no grafting combinations with a higher
stem diameter than the non-grafted treatment group (Figure 2).
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Figure 2. Effect of different rootstocks on stem diameter. Different letters indicate significant differ-
ences between treatments (p < 0.01).

3.1.3. Leaf Number Values

The leaf number average value was determined as 12.04 plant−1 in all plants. Leaf
number values under drought stress decreased in some grafting combinations (TZ148–
Cagla, Devrim–Cagla, Cremna–Cagla) and non-grafted plants compared to the control
plants. Among the control plants, the highest value was obtained in the Cremna–Cagla
grafting combination (18.68 ± 0.88), and the lowest value was obtained in the self-grafted
plants (9.22 ± 0.67). Among the drought treatment groups, the highest value was obtained
in the Kubai–Cagla grafting combination (13.16 ± 0.33), and the lowest value was obtained
in the non-grafted plants (5.32 ± 0.33). The Kubai–Cagla grafting combination obtained a
higher leaf number than non-grafted plants (Figure 3).
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3.1.4. Leaf Fresh and Dry Weight Values

The leaf fresh weight average value was determined as 9.92 g plant−1. Leaf fresh
weight values of the treatment group decreased compared to the control plants in grafted,
self-grafted and non-grafted plants. Among the control groups, the highest value was ob-
tained in the TZ148–Cagla grafting combination (14.68 ± 0.01 g), and the lowest value was
obtained in the Devrim–Cagla grafting combination (8.6± 0.06 g). Among the drought treat-
ment groups, the highest value was obtained in the Cremna–Cagla grafting combination
(9.84 ± 0.01 g), and the lowest value was obtained in the non-grafted plants (5.7 ± 0.06 g).
Leaf fresh weight values obtained from all grafting treatments were higher than the non-
grafted treatment group (Figure 4). The leaf dry weight average value was determined as
2.25 g plant−1. Leaf dry weight values decreased compared to the control plants except for
the Devrim–Cagla grafting combination under drought stress. Among the control groups,
the highest value was obtained in the TZ148–Cagla grafting combination (3.85 ± 0.01 g),
and the lowest value was obtained from the self-grafted plants (1.55 ± 0.052 g). Among
the drought treatment groups, the highest value was obtained in the Kubai–Cagla grafting
combination (2.22 ± 0.01 g), and the lowest value was obtained in the self-grafted plants
(1.55 ± 0.052 g). It was determined that the dry weight value of the leaves increased in
grafting combinations compared to the non-grafted plants (Figure 5).
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3.1.5. Stem Fresh and Dry Weight Values

The stem fresh weight average value was determined as 3.7 g plant−1. In all groups
of non-grafted, self-grafted and grafted plants, stem fresh weight values decreased com-
pared to the control plants. Among the control groups, the highest value was obtained
in the Kubai–Cagla grafting combination (7.38 ± 0.01 g), and the lowest value was ob-
tained from the Devrim–Cagla grafting combination (2.43 ± 0.01 g). Among the drought
treatment groups, the highest value was obtained in the Cremna–Cagla grafting com-
bination (2.69 ± 0.01 g), and the lowest value was obtained from the self-grafted plants
(1.61 ± 0.01 g). Values obtained from grafting combinations of Cremna–Cagla and TZ148–
Cagla were found to be higher than the stem fresh weight values obtained from the
non-grafted plants (Figure 6). The stem dry weight average value was determined as
0.31 g plant−1. Stem dry weight values decreased in all groups of non-grafted, self-grafted
and grafted Cagla cultivars compared to the control plants. Among the control groups,
the highest value was obtained in the Kubai–Cagla grafting combinations (0.63 ± 0.01 g),
and the lowest value was obtained in the self-grafting plants (0.15 ± 0.002 g). Among the
drought treatment groups, the highest value was obtained in the Cremna–Cagla grafting
combinations (0.39 ± 0.01 g), and the lowest value was obtained from the self-grafted
plants (0.06 ± 0.01 g). The stem dry weights in grafting combinations of TZ148–Cagla and
Cremna–Cagla were higher than in non-grafted plants (Figure 7).
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3.1.6. Root Fresh and Dry Weight Values

The root fresh weight average value was determined as 2.36 g plant−1. Root fresh
weight values increased in all groups of non-grafted, self-grafted and grafted plants com-
pared to the control plants. Among the control plants, the highest value was obtained in
the Kubai–Cagla grafting combination (6.04 ± 0.01 g) while the lowest value was obtained
in the non-grafted plants (2.3 ± 0.01 g). Among the drought treatment groups, the highest
value was obtained in the Cremna–Cagla grafting combination (1.23 ± 0.01 g), and the
lowest value was obtained from the non-grafted plants (0.4 ± 0.03 g). Root fresh weight
values obtained from all grafting combinations were higher than the non-grafted plants
in the treatment group (Figure 8). The root dry weight average value was determined
as 0.24 g plant−1. Root dry weight values decreased in all groups of non-grafted, self-
grafted and grafted plants compared to the control plants. Among the control groups,
the highest value was obtained in the Kubai–Cagla grafting combination (0.65 ± 0.01 g),
and the lowest value was obtained in the self-grafted plants (0.20 ± 0.03 g). Among the
drought treatment groups, the highest value was obtained in the Kubai—Cagla grafting
combination (0.26 ± 0.01 g), and the lowest value was obtained from the non-grafted plants
(0.04 ± 0.001 g). In the treatment group, root dry weight values obtained from all grafting
combinations were higher than the non-grafted plants (Figure 9).
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3.1.7. Leaf Area Values

The leaf area average value was determined as 34.19 cm2. Leaf area values of non-
grafted, self-grafted and grafted plants decreased compared to the control group except
for the Devrim–Cagla grafting combination. Among the control groups, the highest value
was obtained in the self-grafted plants (65.83 ± 10.93 cm2), and the lowest value was
obtained from the Devrim–Cagla grafting combination (23.4 ± 0.81 cm2). Among the
drought treatment groups, the highest value was obtained in the Cremna–Cagla grafting
combination (34.53 ± 1.23 cm2), and the lowest value was obtained in Devrim–Cagla
grafting combination (13.93 ± 0.59 cm2). There was no statistically significant difference
between the grafted, self-grafted and non-grafted plants in the treatment group (Figure 10).
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3.2. Chlorophyll Meter Measurements and Photosynthetic Activity

SPAD average value was determined as 57.62. It was determined that the SPAD values
in all treatment groups decreased compared to the control plants. Among the control
groups, the highest value was obtained in the non-grafted plants (75.15 ± 2.76), and the
lowest value was obtained from the self-grafted plants (56.26 ± 4.73). Among the drought
treatment groups, the highest value was obtained from the Cremna–Cagla rootstock–scion
grafting combination (55.36 ± 3.51), and the lowest value was obtained from the non-
grafted plants (24.43 ± 1.50). The SPAD values obtained in different rootstock–scion
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grafting combinations were found to be higher than the non-grafted plants in the treatment
group (Figure 11). The PAR average value was determined as 39.74 µmol/m2/s. The PAR
values obtained in the non-grafted, self-grafted and Kubai–Cagla grafting combinations
were significantly higher than the others. Among the control groups, the highest value
was obtained in the Kubai–Cagla grafting combination (57.83 ± 5.91) while the lowest
value was obtained from the Cremna–Cagla grafting combination (35.5 ± 6.33). Among the
drought treatment groups, the highest value was obtained from the Devrim–Cagla grafting
combination (42.83 ± 6.54), and the lowest value was obtained from the self-grafted plants
(22.25 ± 3.25). The PAR values were higher in the grafting plants in which “Devrim” was
used as the rootstock compared to the non-grafted group (Figure 12).
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3.3. Relative Water Content (RWC)

The relative water content average value was determined as 76.14. It was determined
that relative water content values decreased in all treatment groups except for the self-
grafted compared to the control group. Among the control groups, the highest value was
obtained in the non-grafted plants (87.61 ± 0.26), and the lowest value was obtained from
the Kubai–Cagla grafting combination (70.98± 0.25). Among the drought treatment groups,
the highest value was obtained in the self-grafted plants (80.16 ± 1.14), and the lowest
value was obtained from the TZ148–Cagla grafting combination (58.04 ± 0.09). The relative
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water content values determined in the grafting combinations using Devrim, Cremna and
Kubai rootstocks were found to be higher than the non-grafted plants under drought stress
conditions (Figure 13).
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3.4. Malondialdehyde (MDA) Concentration

The MDA mean value was determined as 3.39 in all plants. It was determined that
MDA values increased in plants of non-grafted, self-grafted, TZ148–Cagla and Kubai–Cagla.
Among the control groups, the highest value was obtained in the Kubai–Cagla grafting
combination (2.83 ± 0.18), and the lowest value was obtained from the Cremna–Cagla
grafting combination (1.96± 0.12). Among the drought treatment groups, the highest value
was obtained in the non-grafted plants (5.66 ± 0.39), and the lowest value was obtained
from the Cremna–Cagla grafting combination (3.23 ± 0.38). MDA values were found to be
lower in some grafting combinations in which Cremna and Devrim were used as rootstock
compared to the non-grafted group (Figure 14).
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3.5. Correlation Analyses

Different levels of correlation were determined between the investigated parameters.
The highest correlation efficiency was determined between root fresh weight and stem
fresh weight (0.94). In addition, a high correlation was determined between root fresh
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weight and root dry weight (0.91). In addition, a high correlation was found between leaf
fresh weight and leaf dry weight (0.88), root dry weight and shoot fresh weight (0.87), stem
dry weight and stem fresh weight (0.87), plant height and leaf fresh weight (0.85), shoot
fresh weight and leaf fresh weight (0.84), plant height and leaf dry weight (0.83), SPAD and
MDA (−0.82) and leaf dry weight and shoot fresh weight (0.81). The lowest correlation was
determined between stem diameter and other parameters. It was determined that MDA
data showed a negative correlation with other parameters (Table 1).

Table 1. Pearson’s correlation analysis between the morpho-physiological properties of grafted and
non-grafted cucumber.

SPAD PAR PH SD NL LFW SFW RFW LDW SDW RDW LA RWC MDA

SPAD 1
PAR - 1
PH 0.63 - 1
SD - - - 1
NL 0.68 - 0.46 - 1
LFW 0.72 0.34 0.85 - 0.69 1
SFW 0.69 - 0.79 - 0.57 0.84 1
RFW 0.76 - 0.65 - 0.60 0.76 0.94 1
LDW 0.53 0.43 0.83 - 0.62 0.88 0.81 0.69 1
SDW 0.56 - 0.78 - 0.44 0.67 0.87 0.75 0.72 1
RDW 0.59 - 0.60 - 0.58 0.77 0.87 0.91 0.76 0.64 1
LA 0.41 - - - - 0.38 0.38 0.43 - - - 1
RWC 0.43 - - 0.60 0.47 0.33 - 0.38 - - - 0.41 1
MDA −0.82 −0.37 −0.48 - −0.63 −0.66 −0.60 −0.68 −0.46 −0.40 −0.50 −0.52 −0.54 1

PH: plant height; SD: stem diameter; NL: number of leaves; LFW: leaf fresh weight; SFW: stem fresh weight; RFW:
root fresh weight; LDW: leaf dry weight; SDW: stem dry weight; RDW: root dry weight; LA: leaf area).

3.6. Molecular Analyses

The results of ISSR markers revealed 117 amplified fragments, 77 of them were poly-
morphic from using 15 primers (Table 2). When the similarity coefficients were examined,
it was determined that the closest groups were the non-grafted plants and the self-grafted
plants with a similarity coefficient of 0.951. The farthest from each other were the non-
grafted plants in the control and non-grafted plants in the treatment groups (Table 3).
Two main clusters were detected in the UPGMA dendrogram, and the similarity coeffi-
cient between the two clusters was 0.79. In the first cluster, non-grafted, TZ148–Cagla,
Cremna–Cagla plants in control conditions were included. In the second cluster, non-
grafted, self-grafted, Devrim–Cagla and Kubai-Cagla plants in drought conditions were
included. Non-grafted and self-grafted plants clustered closest to each other (Figure 15).
When the non-grafted control plants were evaluated as the control group, it was determined
that the GTS rates were 64.1% in the non-grafted treatment group. This rate increased in the
self-grafted and other rootstock-grafted treatment groups. The rate of GTS was determined
as 68.4% in the self-grafted treatment group, 71.8% in the Kubai–Cagla treatment group,
76.9% in the Cremna–Cagla treatment group, 78.6% in the Devrim–Cagla treatment group
and 83.8% in the TZ148–Cagla treatment group.

In this study, which was designed using non-grafted, self-grafted and four different
squash rootstocks, genomic stability analysis was performed with 14 different morpho-
logical and physiological parameters. According to the results, more positive results were
obtained in the grafted group than in the non-grafted group under drought stress. In
addition, it was determined that the activities of different rootstocks also changed. It can
be said that the values measured in eight parameters in the use of TZ148 rootstock, eight
in the use of Devrim rootstock, 10 in the use of Cremna rootstock and even in the use of
Kubai rootstock provide stress tolerance compared to the non-grafted group.
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Table 2. Primer name, primer sequence, number of total bands, polymorphic bands and percentage
of polymorphism as detected by ISSR.

Primer Name Primer Sequence 3′-5′
Number of Bands

% Rate of Polymorphism
Polymorphic Total

ISSR-1 AGA CAC ACA CAC ACA CAT 2 4 50

ISSR-11 ACA CAC ACA CAC ACA CGG 5 9 56

ISSR-12 AGA GAG AGA GAG AGA GCT 5 7 71

ISSR-6 GCC TCC TCC TCC TCC TCC 3 7 43

ISSR-7 AGA TCC TCC TCC TCC TCC 0 4 0

ISSR-9 CAC ACA CAC ACA CAC ATG 8 10 80

UBC-808 AGA GAG AGA GAG AGA GC 2 4 50

UBC-810 GAG AGA GAG AGA GAG AT 11 11 100

UBC-811 GAG AGA GAG AGA GAG AC 8 10 80

UBC-815 CTC TCT CTC TCT CTC TG 4 11 36

UBC-818 CAC ACA CAC ACA CAC AG 6 9 67

UBC-825 ACA CAC ACA CAC ACA CT 4 7 57

UBC-841 GAG AGA GAG AGA GAG ACT C 1 4 25

UBC-845 CTC TCT CTC TCT CTC TTG 12 13 92

UBC-846 CAC ACA CAC ACA CAC AAT 6 7 86

Total 77 117 990

Average 5.13 7.8 66

Table 3. Genetic distance matrix based on Dice coefficient.

1 2 3 4 5 6 7

1 1.000
2 0.738 1.000
3 0.773 0.951 1.000
4 0.881 0.782 0.794 1.000
5 0.850 0.839 0.836 0.857 1.000
6 0.792 0.815 0.812 0.806 0.887 1.000
7 0.857 0.742 0.754 0.861 0.826 0.780 1.000

(1: non-grafted control, 2: non-grafted treatment, 3: self-grafted treatment, 4: TZ148–Cagla treatment, 5: Devrim–
Cagla treatment, 6: Kubai–Cagla treatment, 7: Cremna–Cagla treatment).
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plant parameters are also moderately or severely affected by drought stress. Parameters 
showing photosynthetic activity are an important stress indicator and change because of 
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weights, leaf fresh–dry weights and leaf area values may also be adversely affected in 
plants under drought stress. Grafting has been preferred in many plant species to avoid 
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Figure 15. The UPGMA dendrogram computed using genetic distance matrix based on ISSR data.
(1: non-grafted control, 2: non-grafted treatment, 3: self-grafted treatment, 4: TZ148–Cagla treatment,
5: Devrim–Cagla treatment, 6: Kubai–Cagla treatment, 7: Cremna–Cagla treatment).
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4. Discussion

Abiotic stress factors cause yield and quality losses in vegetable cultivation. Drought,
which is one abiotic stress factor, is one of the stress factors that most severely affects
plant growth, yield and quality [7]. Drought stress causes structural, physiological and
biochemical changes in plants [8]. By measuring these parameters, the effects of drought
on plants can be determined. Plants may be more or less sensitive to drought stress. Some
plant parameters are also moderately or severely affected by drought stress. Parameters
showing photosynthetic activity are an important stress indicator and change because
of drought stress [37]. In addition, plant height, root fresh–dry weights, stem fresh–dry
weights, leaf fresh–dry weights and leaf area values may also be adversely affected in
plants under drought stress. Grafting has been preferred in many plant species to avoid
drought stress [38,39]. In some studies, it has been determined that drought tolerance can
increase with grafting [28,40,41].

In this study, it was determined that drought causes negative effects on cucumber
cultivation. Similarly, in previous studies, it is stated that drought causes negative effects
on plants [42–44]. In this study, it was determined that grafting increased the drought resis-
tance of cucumber. Similarly, in some previous studies, it was determined that grafting can
increase drought resistance in plants [45,46]. In addition, statistically significant differences
were found between different rootstock–scion graftings in this study. Rootstock–scion
grafting choices may also be important in increasing abiotic stress tolerance.

In this study, it was determined that grafting improved plant height under drought-
stress conditions. The findings are similar to previous studies [45]. In this study, lower
plant height values were obtained in some of the grafting combinations than in non-grafted
plants. This situation reveals the importance of grafting and rootstock selection. Previous
studies have shown grafting under drought stress improved leaf area [26,45]. Similar
results were obtained in this study as well. The number of leaves and leaf area values
increased in some grafting combinations under drought stress conditions while in some
grafting combinations, they were similar to non-grafted plants. Drought reduced relative
water content compared to optimally irrigated plants [47]. Similar results were obtained in
this study, and it was determined that grafting produced more effective results in terms of
relative water content.

Decreased plant growth is one of the negative effects of drought stress in plant cul-
tivation [48]. Plant biomass decreases significantly in response to drought stress [49].
Drought stress significantly affects plant growth and development and reduces vegetative
growth compared to optimally irrigated plants [47]. Similar results were obtained in the
non-grafted plants in this study. A study determined that grafting under drought stress
improved plant growth and plant height [45]. Another study indicated that the biomass
accumulation of cucumber plants grafted on Luffa sp. increased under drought stress [26].
In this study, it was determined that the use of rootstock in cucumber had positive results
in terms of growth parameters. In a study on watermelon, it was determined that grafting
with squash rootstocks with wide and deep root systems caused an increase in drought
tolerance [50]. In another study, a significant decrease in root growth was determined in
drought-stressed tomatoes, and it was determined that this effect changed with different
grafting combinations [51]. It can be said that the most important feature of the rootstocks
used in this study in increasing drought resistance is their strong root systems, and this is
understood from the root parameters. In this study, it was determined that the fresh–dry
weight values of root and leaf samples in grafting combinations were higher than non-
grafted and self-grafted plants. In addition, some grafting combinations caused a decrease
in stem fresh-dry weight values compared to non-grafted plants. This situation shows that
grafting causes an increase in root, stem and leaf masses but also shows that appropriate
rootstock selection can be important. Although a high level of correlation was found
between root and stem fresh weight values, their responses to rootstocks were different.

Environmental stress can significantly affect the chlorophyll content and activities of
key enzymes in photosynthesis [52]. Drought-induced chlorophyll loss in various crops is a
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frequent event [42,43,53]. In some previous studies, it was determined that photosynthetic
parameters were negatively affected by water deficiency and drought [10,47,54–57]. Simi-
larly, in this study, photosynthetic parameters decreased significantly in non-grafted plants
under drought conditions. Grafting in vegetables can prevent the decrease of photosyn-
thetic parameters under abiotic stress conditions. In some studies, it was determined that
grafting increased the chlorophyll content and photosynthetic system in some plants under
water deficiency conditions [28,41,58]. In this study, there was an increase in SPAD and PAR
values in the pumpkin rootstock grafted plants. All grafting combinations had a positive
effect on photosynthetic parameters, but the differences were determined according to the
rootstock variety. A high level of negative correlation was found between SPAD and MDA.
This shows that MDA may have a negative effect on photosynthetic parameters.

Drought stress causes oxidative damage in plants by inducing reactive oxygen radi-
cals (ROS) [59]. Prolonged stress and increased production of ROS in plants can lead to
destructive processes, such as lipid peroxidation [60]. MDA, the product of membrane
lipid peroxidation, increases under water-deficient conditions and is known as a good
indicator of drought stress [61]. In some studies, it has been determined that drought
stress significantly increases MDA in plants [62]. Similarly, in this study, MDA increase
was determined under drought stress condition. Grafting practices caused a significant
decrease in MDA data, and this shows that rootstocks may be important in protecting
plants from ROS.

It is important to understand the molecular mechanisms associated with drought
response in plants [63]. PCR-based techniques for the analysis of DNA damage have
provided informative results [64]. In a previous study, it was determined that SCoT and
CDDP techniques could be used to predict the physiological and agronomic behavior
of grafting [38]. In this study, it has been determined that ISSR primers can be used to
determine the band profile change of grafted cucumber plants under drought conditions.
The similarity coefficient of the grafted plants was higher than that of the non-grafted
control group. It was determined that grafting increased gene stability in cucumber under
drought conditions. In terms of GTS ratio, the grafting with the highest preservation of
DNA profiles was determined as TZ148–Cagla > Devrim–Cagla > Cremna–Cagla > Kubai–
Cagla > self-grafted. In previous studies, changes in GTS have been detected in PCR-based
marker profiles [24,65,66]. Our results showed that DNA polymorphisms detected by ISSR
can be used as a biomarker system for the detection of genotoxic effects of environmental
pollutants, such as drought.

5. Conclusions

The results of this study reveal that with the selection of suitable rootstocks, drought
stress can be tolerated, and some parameters can be improved. In our study, it was
determined that the effectiveness of different rootstocks used in grafting also varied among
themselves. Grafting of cucumber to suitable rootstocks improved morphological and
physiological characteristics both under normal and drought stress conditions. Rootstock
use had a tolerance-enhancing function in plant growth parameters, photosynthetic activity
and non-antioxidant enzyme activity in cucumber varieties under stress conditions. In
this study, it has been determined that the use of rootstock in cucumber cultivation is
advantageous against drought, which is one of the most important stress factors. These
results suggest that cucumber grafting on rootstocks was effective to improve cucumber
growth performance and induce tolerance against drought stress. These findings may
offer a solution to the major agricultural challenges posed by global warming and water
scarcity. Grafting to reduce drought stress can of course lead to increased costs. However,
considering the economic consequences of drought stress, it can be considered that these
costs will remain lower.
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