
Citation: Benarbia, T.; Kyamakya, K.;

Al Machot, F.; Kambale, W.V.

Modeling and Simulation of Shared

Electric Automated and Connected

Mobility Systems with Autonomous

Repositioning: Performance

Evaluation and Deployment.

Sustainability 2023, 15, 881.

https://doi.org/10.3390/su15010881

Academic Editor: Elżbieta
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Abstract: The boom seen in artificial intelligence in recent years has led to a revolution in the
automotive industry. Numerous automakers around the world, such as Tesla, Toyota, Honda, and
BMW, have achieved giant strides in the development of e-autonomous vehicles. Consequently,
shared electric automated vehicle mobility (SEAVM) systems, which are a crucial part of future
innovative transportation solutions, have attracted significant attention from the research community,
particularly from a design perspective. However, the flexibility of shared automated mobility systems
may lead to a self-operating technology issue (unequal distribution of vehicles), since users in these
systems can pick up and drop off electric vehicles wherever they like. With this in mind, this
paper addressed the issues of autonomous repositioning and the assignment of shared autonomous
electric vehicle systems to balance a system’s network and fulfill its demand. Modeling, analysis and
assessment of the system’s performance were carried out using stochastic Petri nets formalism, which
included determining the average time areas were empty/congested and the number of unserved
consumers, and estimating the redistribution service launch moment. Furthermore, many simulation
scenarios were analyzed, including repositioning and without repositioning scenarios, in order to
evaluate the efficiency of the model and to show the potential of using Petri nets as a probabilistic
formalism approach for the modeling of e-automated mobility systems.

Keywords: automated shared mobility; shared electric autonomous vehicle; stochastic Petri nets;
discrete event system; automated vehicles redistribution; autonomous vehicle assignment

1. Introduction

The attention given to shared electric mobility (e-bike, e-scooter, and e-car) is growing
among businesses in many cities across the world. In addition, shared automated mobility
is expected to revolutionize mobility and become an essential part of the future urban trans-
portation system [1]. Many shared mobility businesses have joined the race to implement
autonomous shared mobility in the future, such as Waymo (Google self-driving car), ‘GM’s
Origin, Uber, and Layer in London. Implementing shared electric automated mobility
systems (SEAM) could offer several solutions, including decreasing congestion, decreasing
the relocation cost of shared mobility systems, improving the transition from one mode of
transport to another while promoting sustainable transport and amplify energy savings
through smart driving practices [2]. In addition to potentially enhancing mobility and
safety, the introduction of automated and connected shared mobility into the transportation
network has the potential to significantly alter travel behavior, mode choice, and vehicle
ownership, as well as urban form and transportation infrastructure [3]. Unlike the normal
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shared mobility systems, the SEAV system can work in a flexible and automated way, where
the user does not need to return the vehicle to the charging station when they finish their
trip. The concept of automated mobility has evolved over several generations, and is now
classified and described in five levels, which range from entirely human driving to fully
automated driving (as summarized in Table 1) [4,5]. In fact, level 1 (adaptive cruise control
and lane keeping assist) and level 2 (level 1 plus automated overtaking and park assist)
require active intervention and the driver’s attention.

Table 1. Autonomous vehicle generations.

Generation Operating Mode

Level 0
Neither automation nor assistance

The driver is responsible for all driving.
By controlling their actions on the road and in traffic, the person behind the wheel steers,
brakes, and accelerates the vehicle.

Level 1
Driving assistance

In certain circumstances, the vehicle only controls its speed or direction, never both at
once, and the driver is in charge of all other aspects of driving. They are entirely
responsible for monitoring what is happening on the road and taking over when the
system reaches its limit. Adaptive cruise control is a prime example of this.

Level 2
Partial automation

In some instances, the vehicle has the ability to accelerate, brake, and steer. When driving,
the driver must make tactical decisions, such as changing lanes when necessary, focusing
on potential hazards, and reacting to traffic and signs. A hand on the steering wheel may
also be necessary. Examples include the Volvo Semi-Autopilot, the ProPILOT Assist from
Nissan, the Cadillac Super Cruise System, and the Traffic Jam Assist from Audi.

Level 3
Conditional automation

Most driving-related activities, including keeping an eye on the surrounding area, can be
handled by the vehicle in ideal circumstances. The system will prompt the driver to take
action when it detects an impractical situation, so the person in control must continue to
pay attention and be prepared to recover control of the vehicle at any time. With the new
2019 Audi A8, for instance, this is the maximum level of autonomy currently offered (sold
currently in Europe, and later this year in Canada).

Level 4
High automation

The steering wheel and pedals are still present, but no human intervention or supervision
is required—except in more challenging circumstances such as inclement weather or an
unfamiliar environment. The driver can intervene on streets and then become a simple
passenger on highways. The Level 4 autonomous vehicle test for the Hyundai NEXO was
just successfully completed.

Level 5
Full automation

This is a real autonomous vehicle because it can drive itself entirely without human
intervention on any road and in any weather. No pedals or steering wheel are needed.
The user needs simply to indicate their destination to the vehicle, either through the
onboard display or voice command.
As an illustration of Level 5, consider how the Google Car operates without even a
steering wheel.

Concerning level 3 vehicles (which allow driving, but do not have to be driven on
highways, which means that the driver does not need to always pay attention to the driving
task), these are appearing in some countries in the world, as the manufacturer Honda
began offering this type of vehicle in 2021. Regarding level 4 vehicles, no human action
or supervision is required, except in more complex cases such as unfavorable weather
or an unusual environment. However, these autonomous vehicles will only be allowed
to operate in specific locations approved by authorities. In terms of level 5 autonomous
vehicles, it is challenging to imagine these appearing in the near future.

The performance of shared automated mobility is nevertheless being impacted by a
number of overlapping technological factors, including automation, connectivity, electrifi-
cation, and the shared usage of commodities [6]. Furthermore, without suitable incentive
policies, shared electric automated and connected mobility might negatively affect traffic
congestion and be a competitor of other transportation modes [3]. Additionally, despite the
advancements seen in automotive technology, shared electric automated and connected
mobility might not be put into use in the middle term (a long transition period between
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10–40 years until fully automated vehicle be a common on the road) due to several chal-
lenges, including the complexity perception of the environment, energy, cyber-security,
infrastructure, and government regulations, which prevent the use of shared electric au-
tomated mobility on public roads [7]. Additionally, there is a lack of cooperation among
the key players, including the government, federal and state authorities, technical busi-
nesses, software developers, and customers. To overcome the barriers to integrating these
cutting-edge technologies, these key stakeholders must collaborate [8]. In addition, security
issues are still a big challenge for authorities, which can subject fully autonomous vehicles
circulating on the road to many constraints, including requiring them to only activate
the autonomous mode on roads without pedestrians or cyclists and only at speeds not
exceeding 60 km/h, etc. Additionally, the “brains” of these cars can be susceptible to mali-
cious code infection, source code changes, data leakage, etc., just like any other computer
system. For instance, someone who recently hacked into a Tesla 3 gained access to critical
information stored on the vehicle’s hard drive [9]. As a result, cybersecurity threats in
self-driving vehicles may directly affect the security of users, pedestrians, other cars, and
related infrastructure. Additionally, shared automated mobility faces barriers related to
the use of car-sharing systems that may limit the viability of such systems. These barriers
include safety and security issues, transport barriers, accessibility issues, and in particular
the social exclusion issues often reported by users of car-sharing services [10,11]. There
are seven main categories of these car-sharing social exclusion issues, namely economic,
physical, geographical, spatial, fear-based, time-based, and facility-access barriers; taking
them into consideration can help decision makers run shared mobility services that are
better suited to the needs of society [10].

In technical terms, the assignment of Electric Automated Vehicles (EAVs), in particular,
represents a big challenge for SEAM researchers; they need to develop an optimization
technique to minimize user waiting time and minimize the trip time (to save the vehicle’s
battery power) for the operator (reduce the cost). This makes it difficult to predict driver
behavior and vehicle trajectory, thus making the modeling and performance assessment of
these vehicles very challenging. These issues have garnered significant research attention
in recent years. The key issues that directly affect these systems’ dimensioning and the
operational and financial feasibility of such systems are presented in Table 2. The crucial
challenge is to ensure that an EAV is available to pick up a customer in the quickest amount
of time and that empty spots are available for charging the EAV.

Table 2. Some research questions of shared electric automated mobility.

Level Questions

Strategic and tactical level

What is the optimal number of charging stations and chargers?
What effects will this new mobility have on other forms of
transportation?
What is the optimal design and location of a charging station?
What is the optimal vehicle assignment strategy to reduce the
waiting time and trip time of customers?
Which strategy is preferred to implement charging stations or
chargers across a city?
What fleet size is necessary to offer the desired level of service?

Operational level

How many additional stations must be added to the network?
How many additional e-autonomous vehicles must be added to
the expanded network?
Which repositioning mode should be used, regular or preventive?

In this paper, the use of stochastic Petri nets and discrete event simulation will be
proposed for the modeling and structural analysis performance evaluation of shared electric
automated mobility. Moreover, the developed model has the potential to be used to test the
impact of a network’s characteristics on the efficiency of the system, as well as to permit
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the simulation of several scenarios of autonomous repositioning issues (meaning an EAV is
autonomously driven to change its place in order to balance the network), including static
repositioning during the maintenance of the network or of some of the system’s charging
stations, launching repositioning in a specific period, and dynamic repositioning according
to the network situation and demand. The paper is structured as follows. In the next
section, we provide a summary of previous work related to shared automated mobility.
In Section 3, the suggested models based on stochastic PNs are applied and discussed. In
Section 4, simulations of system behavior in various situations are shown, and the results
are discussed. The conclusion and future works are presented in Section 5.

2. Previous Related Research and State of the Art

This literature review raised a number of research topics that have the potential to
significantly impact the operational/economic sustainability of such systems, as well as
the quality of the services they provide. How does one design and plan a SEAV network?
How will electric and automated mobility interact with other transportation means? How
should vehicles be distributed among charging stations? How does one manage the EAV
charging process according to “user” requests? What is the optimal charging station location
that will extend the covered distance of EAVs? What is the optimal vehicle assignment
strategy that will reduce the waiting time and trip time of customers? What fleet size is
required to provide the necessary level of service? In fact, the satisfaction of stakeholders’
(represented by consumers, operators, and governments) central values has been one of
the main objectives of the majority of studies on SEAV. In this case, the customer needs a
large amount of flexibility and the shortest possible waiting time to receive the vehicle, the
shortest possible distance traveled, and the lowest possible cost, while the operator expects
the minimum possible cost to operate the system while still serving the maximum number
of customers and earning the highest possible income. Governments work to improve
public space, minimize pollution, lessen traffic, and increase safety. In the literature,
numerous issues relating to autonomous driving and vehicles have been covered, including
vehicle cybersecurity, psychology, pedestrian detection, and environment perception [12].
However, there are few works that have investigated the crucial issues discussed earlier,
and also provided a survey of recent potential topics regarding shared electric automated
and connected mobility. Through this literature survey, in technical terms, and overall
from a planning and design viewpoint, the key operational research issues and topics that
have been addressed in the literature on shared electric autonomous mobility systems
can be summarized as follows: (1) Vehicle Assignment; (2) Vehicle repositioning; (3) Fleet
dimensioning; (4) Energy, battery capacity and station location; (5) Cybersecurity attacks.
Table 3 summarizes the relevant research studies found in the literature. For each of these
issues, we provide an overview of the literature and describe one or more solutions that
have been proposed.

Vehicle assignment to the customer (What is the optimal EAV assignment and charging
scheduling that minimizes user waiting time (minimizes lost demand)?) represents a big
challenge for researchers, who need to develop an optimization technique that minimizes
user waiting time and minimizes the trip time (to save the vehicle’s battery power) for
the operator (reduce the cost). A vehicle assignment system assigns vehicles to the user
based on certain strategies, heuristics, or optimization algorithms. The assignment of the
closest vehicle is typically implemented for electric automated mobility modeling (e.g.,
Chen et al., [13]; Zhang and Guhathakurta, [14]). For dynamic shared automated vehicle
services, Hyland and Mahmassani [15] have presented different vehicle assignment policies.
The customer is assigned to the closest inactive vehicle in the first policy, which is based on
the first come, first served principle. The second policy is also based on the same principle.
The third policy entails assigning users simultaneously. The fourth policy takes into account
inactive and en route pickup cars when assigning a vehicle for new requests. Their study
comes to the conclusion that optimization-based approaches that take into account both
assigned and unassigned users are more effective in lowering fleet miles and traveler
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waiting times. However, the authors did not take into consideration the fleet vehicle
limitation. To increase the efficiency of shared autonomous services, various operation
strategies need to be developed to satisfy user preferences. For instance, a customer may
request an AV immediately, and another may want to reserve a trip for the next morning.
Therefore, most strategies need to be able to separately consider long-term and short-
term requests, defining a framework that corresponds to static and dynamic optimization.
Most studies focus on the dynamic mode (real-time) since it is very common for these
services to emerge within a short period of time (Dia and Javanshour [16]). Ma et al. [17]
presented a reservation-based shared electric automated system in the static mode (based
reservation), where consumers can book trip requests in advance and the system operator
assigns the requests to routes as efficiently as possible. The cooperative modeling approach
also represents an interesting solution to the assignment issue in the literature, where the
associated components (the customer needs to make a little walking effort, the service
coordinator makes the assignment, and the fleet of shared E-automated vehicles provide
the service) of shared E-automated mobility cooperate together to reduce the operating cost
of systems. In this regard, Zhu et al. [18] developed a platform for microscopic simulation
and a demand-side cooperative optimization model. Their proposed model handles the
assignment issue as a vehicle routing optimization problem, with repositioning subject to
many limitations, such as E-automated vehicle capacity and maximum consumer walking
distances. Their program seeks to optimize network revenue while decreasing energy use,
journey time, and distance traveled (to reduce the fleet operational cost).

Table 3. An overview of some relevant works.

Source Issue Addressed Contribution or Method Limitations

[13–18] Assignment issue
First come, first served.
Demand side cooperative
optimization model

-No real data used
-Small network size
-Repositioning issue not addressed
-Model did not consider battery range

[1,3,19–21] Repositioning issue -Discrete event simulation
-Macroscopic simulation.

-Most studies addressed the relocation issue
of traditional shared mobility systems, but
only a few works addressed this issue in
automated shared mobility.
-Models did not consider energy issue.
-Most studies did not consider ridesharing
policy in modeling

[13,22–41] Fleet dimensioning issue Agent-based modeling
-Multi agent simulation

-Demand considered static
-Did not consider battery range issue.
-Demand was assumed to be deterministic

[28–30] Energy and battery range issue

-Mixed integer optimization
methodology
-Multi agent simulation to
determine the location of
charging stations.

-No use of real data.
-Demand considered static
-Ridesharing policy not included in
some works

[31–39] Cybersecurity attack issue Security solution based on
conjugated authentication

-Most studies addressed this issue for
automated vehicles, and a few works
addressed it for a network.

Vehicle repositioning/relocation modeling is also a critical issue that has been dis-
cussed in the literature. The main research questions in this area are: What is the optimal
relocation technique at the lowest price?; When should a repositioning service be intro-
duced? Two major vehicle relocation policies—operator-based vehicle relocation and
user-based vehicle relocation—have been studied in the literature on conventional shared
mobility [3]. The identical problem with shared automated mobility systems might be
resolved by combining both of these approaches. Due to the stochastic nature of consumer
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requests and behaviors, shared automated mobility networks may become unbalanced,
resulting in some areas/stations having the most active autonomous vehicles while others
have the least. In this regard, Benarbia et al. [1] used stochastic Petri nets and discrete
event simulation to handle the relocation problem of conventional shared electric mobility.
Additionally, their proposed model and simulation have the ability to assess performance
and estimate critical situations (such as engorgement and deficit scenarios). Their simula-
tion’s results showed that by calculating the time to start the relocation process, the overall
number of relocation trips was decreased. The BlueSG network in central Singapore has
been used to test this suggested model and simulation technique. Similarly, Cepolina and
Farina [19] addressed the repositioning problem of shared vehicles by using automated
vehicles. They suggested that cars should automatically move between stations when
relocation is necessary, and assessed many performance indices by microscopic simulation.
However, automated shared mobility is subject to other central problems, such as the
assignment of the automated vehicle to meet the user’s request in a short time, as well as it
being not necessary for the vehicle to return to the station when it drops off the customer
(the car could wait for the next request at any location without returning to the station). In
this context, the authors did not seek to relocate unused automated cars to more favorable
locations (outside of stations) in order to reduce future traveler wait times, and also did
not highlight the assignment issue of automated shared systems or address the systems
as normal classical mobility systems. Different relocation procedures, referred to as R1
through R4 with a diminishing bound for relocation distance, were studied by Fagnant and
Kockelman [20], both separately and in combination. Customers were found to wait for
less time while using technique R1, which allows for longer relocation distances. Vehicle
kilometers traveled rose as a result of each relocation strategy. Babicheva [21] analyzed the
efficiency of six different repositioning techniques, with their results indicating that the
combined simple nearest neighbor and index-based reposition approach offers the most
promising outcomes.

Regarding studies on the fleet dimensioning of SEAM, these primarily focus on deter-
mining the beginning positions of the vehicles and the optimal size of the fleet necessary
to meet a specific demand and to minimize the operating cost of the system. Using agent-
based modeling and randomly generated demand data, Chen et al. [13] investigated how to
manage a fleet of shared autonomous electric vehicles. Their simulation results demonstrate
how strongly the range of the vehicles and the availability of charging facilities influence
fleet size. Their proposed method, however, had significant weaknesses: the scenarios
depicted presupposed that 10% of a region’s trip demand would be satisfied by SEAM
and that the temporal and spatial distributions of SEAM trips would be the same as the
region’s overall trip-making patterns (demand was assumed to be deterministic). By using
the multi-agent simulator (MATSim) to simulate the Rouen (Normandy) metropole area’s
automated Taxi transportation system, Vosooghi et al. [22] investigated the impact of fleet
size on shared autonomous taxis. Their study’s outcomes indicate that the demographic
structure of the city or region of interest and the range of choices among its residents are
crucial factors in the design and sizing of fleet-shared autonomous taxis. Similar research
also has been conducted by Bischoff and Maciejewski [23], who developed a simulation
model to analyze different penetration rate scenarios with various sizes of autonomous
taxi fleets to replace all private vehicle trips in the city of Berlin. By providing a real-time
dispatching method, their results successfully proved that all private vehicles could be
replaced by much less shared AVs for the same demand. Similarly, Vosooghi et al. [24]
proposed a real study at the tactical level to design a shared autonomous system. They par-
ticularly addressed the impact of fleet size and capacity on the system’s performance using
the multi-agent transport simulation platform (MATSim). They simulated several scenarios
on real dynamic cases based on a local survey, which included 5059 households and 11,107
individuals; 929 activity chains, including 8 trip purposes, were found. Loeb et al. [25]
addressed the impact of the charging station location on an EAV fleet by using agent-based
modeling. Furthermore, they simulated robust locations around the region the charging
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stations were placed, as well as simulated the effects of battery range, charging times,
and fleet size on SAEV system performance. Similarly, Vosooghi [26] also demonstrated
that the choice of charging and battery swapping station placement strategy has a pro-
found effect on service performance and effectiveness. The ridesharing mode of shared
automated mobility, which can save costs and boost revenue, was not considered among
these strategies. Ridesharing can be a significant factor in reducing the size of an EAV fleet
and system costs by providing services to numerous unrelated customers. In this respect,
Narayanana et al. [27] proposed a model based on game theory, and simulated several sce-
narios testing the ride-sharing penetration rate. Their results showed that the ridesharing
of a shared automated network performed better than a car-sharing system. However, this
feature can complicate their model, and in particular the assignment policy tinvolved.

The issues of the energy range and the location of the charging infrastructure pose
significant challenges to designing and putting into operation a successful E-automated
shared mobility network. In this regard, the use of wireless charging is required in the
construction of a shared fully electric automated mobility network that enables greater
flexibility and autonomy. In this context, Mohamed et al. [28] proposed a mixed integer
optimization method to deal with the problem of planning optimization for in-route
wireless-charging-infrastructure-enabling fixed-route on-demand shared automated electric
shuttles in South Carolina, USA. Their proposed optimization algorithm can determine
the optimal decision parameters for dimensioning the network (number and assignment
of wireless chargers, charging power level, and battery range), which show the most cost-
effective solution and allow the system to run for an extended period of time on a charge.
Jäger et al. [29] addressed the fleet management and charging infrastructure dimensioning
issues by employing multi-agent simulation. They highlighted the impact of battery range
on the system’s demand (this indicates how the capacity of the battery can impact the
number of consumers served). Additionally, they analyzed the influence of the charging
infrastructure (key decision parameters were the number of charging stations and location)
on the performance of the network and particularly on the waiting time of customers
during the day. On the other hand, the location of battery swapping and recharging stations
plays a crucial role in optimizing the battery range and maximizing the covered area. Based
on two basic optimization techniques—maximizing serviced consumers and minimizing
the distance between potential demands and stations—Vosooghi et al. [30] proposed three
major charging station positioning solutions. The first involved restricting the vehicle
range in accordance with the battery capacities of an EA vehicle and offering one standard
charger for four shared vehicles. The second involved maintaining the same policy while
using rapid chargers to expand the service coverage. However, the overall waiting time
was important in all circumstances, according to the infrastructure setup. In the third
scenario, they added more outlets for standard chargers for electric vehicles that operate at
the highest degree of efficiency.

In terms of cybersecurity threats, shared automated and connected mobility face
significant security and hacking challenges. An increase in the number of cyberattacks
on autonomous vehicles and systems is projected to be seen in the future, which are
currently on the rise in current vehicles. Attacks on cybersecurity can be classified into
three categories: physical, network, and infrastructure-level attacks. Physical attacks
include those that disrupt sensors, alter the vehicle trajectory, and cause physical damage.
Network-level attacks include those that target cloud servers and communications between
vehicles. Infrastructure-level attacks include those that target traffic signs and infrastructure-
to-vehicle communications [31]. Cybersecurity issues related to shared electric automated
mobility have, as far as we know, not been extensively studied. In their paper [32], Vaidya
and Mouftah dealt with various cyberattack forms that target shared electric automated
mobility, and proposed a security solution for such connected and automated systems
based on the method of conjugated authentication and authorization. Through the creation
of a conceptual framework and the identification of a few contributing aspects, Pandey and
Seetharaman [33] addressed the implications of cybersecurity in automated and connected
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vehicles. Their developed framework puts forth three propositions: the first deals with the
detection and assessment of new attacks on automated vehicles, the second discusses the
design and defense mechanisms used in cybersecurity in autonomous vehicles, and the
third deals with the evaluation of promising technologies such as adversarial ML attacks.
In addition, a number of important elements that aid in the detection and evaluation
of novel forms of threat have been researched in the literature, including cyber-attacker
objective trees, attacks under mixed traffic, the forecasting of unidentified threats, and
tools for threat analysis. In contrast, the present study’s investigation was conducted
based on a limited number of research articles. An automated virtual vehicle within a
simulation environment was suggested by Clark et al. [34] as a virtual simulation tool
to assist with lower operational and cybersecurity risks. As more training iterations are
possible with the virtual model than with the physical model, the former has an advantage
over the latter. However, this virtual simulation does not take into consideration all the
decision variables of the physical model, such as actual weight. Further, the sensors in the
virtual model provide ideal data that are much more accurate than those of the physical
model, which reduces the real nature of the automated vehicle model. To boost consumers’
and passengers’ faith in this promising technology, cybersecurity digital labels are an
interesting potential solution that could be added to automated vehicles’ dashboards. In
this respect, Khan et al. [35,36] proposed an approach named Cybersecurity Box (CSBox),
where the cybersecurity information of a connected autonomous vehicle is displayed to
the main stakeholders of CSBoX, including automated vehicle automakers, governments,
and consumers, by using digital labeling techniques. Kukkala et al. [37] discussed the
major cybersecurity threats of connected vehicles over time and their impact. The authors
also investigated the important obstacles that still need to be resolved and the technical
and legislative issues that need to be addressed, as well as a roadmap for attaining secure
autonomous vehicles in the future. Additionally, the authors suggested that the label on an
autonomous vehicle’s dashboard could be shown on a digital screen to alert the public to
the security status of the vehicle. In order to solve privacy issues related to the contextual
information shared as a result of autonomous vehicle interactions, Yankson [38] provided
architecture and an abstract Privacy Integrated Context Ontology model. Haas et al. [39]
highlighted some of the significant cybersecurity risks that are emerging in the connected
automobile world, concentrating on three key areas where cyberattacks might occur: e-
mobility, car sharing, and automated vehicle parking.

3. Problem Formulation of Shared Electric Automated Mobility

There are two main directions of the modeling and analysis of shared automated
mobility in the literature: analytical models that focus on specific issues such as vehicle
assignment and repositioning and agent-based models that place emphasis on the system
performance and impact of the shared automated mobility network under various scenarios
where key parameters are changed [3]. Automated shared mobility is considered a discrete
event system; several tools allow the study of this kind of system, such as computer simu-
lation, queuing networks, parallel/real-time programming languages, algebraic dynamic
models, automata, and Petri nets. In this respect, this work employed Petri nets to model
such a system. To the best of our knowledge, only a few works have addressed automated
mobility using Petri nets, and our work, based on stochastic Petri nets, constitutes the first
that addresses the modeling of shared electric automated and connected mobility [40].

In the literature, there are numerous operating concepts of shared electric automated
mobility. We employed one such concept with simplifying assumptions. Once the user
requests a trip, an EAV should be selected among the fleet in real-time according to the
demand and charging battery range of the EAV (could be among inactive, in-service,
or in-charging station AVs); after the trip, the EAV decides to go to a charging station
(according to its battery range), the next user, a specific location to wait for the next request,
or the control center (see Figure 1). Only when the electric vehicle is fully charged may
the customer call or reserve it. Otherwise, they can reserve an available EAV (thus, the
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charging level (L) of the battery is equal to or higher than the availability threshold L ≥ s,
s is considered 50% in this model). Along the way, the vehicle may stop at one or more
locations to pick up or drop off passengers. In general, autonomous driving requires three
key steps: the perception of the environment and location, trajectory planning (trajectory
generation involves the prediction of a reference trajectory, which avoids collisions and
respects passenger safety and the rules of the road), and decisions. However, shared
mobility systems present crucial inconveniences, since one of their main issues is the
repositioning/relocation issue. Automated shared vehicles should face this unbalancing
challenge by implementing autonomous repositioning mechanisms among areas to avoid
deficit and congested areas that impact the efficiency of the network.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 25 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Shared electric automated system operation. 

When an EAV reaches max (100%) charge, it should leave the charging station and 
park somewhere or serve the next demand as a priority. This policy makes chargers avail-
able during the day, as the number of these is limited around the city. 

We define the network as being unbalanced when an unequal distribution of vehicles 
is going to happen in the middle term, which means some areas will suffer from a deficit 
of vehicles (almost no vehicles in the area) or a high number of vehicles. In terms of Petri 
nets, the total number of automated vehicles in the area (Ai) Naevi is represented by the sum 
of the marking of places Pasi (represents the EAVs being charged Nasi), Phsi (represents 
the EAVs with a 50% charging level that are being charged Nhsi), Pfvi (Nfvi represents the 
fully charged EAVs in area Ai), and Pvsi (Nvsi represents the EAVs parked in area Ai wait-
ing for a ride demand or free charger), as formulated in the following equation: 

Customer requests 
EAV 

Demand is  
received  Demand  is 

placed 

Drop off the customer 

The consumer is driven 
by an automated 
vehicle to his 

Which route should be used to reach 
the consumer quickly? 

Autonomous driving to customer 

 Which customer should be served first?  

 Which closest EAV should be assigned to 

the customer from the fleet? 

Assignment questions 

A
ss

ig
nm

en
t 

of
 

th
e 

ne
ar

es
t 

ac
ce

ss
ib

le
 

A
EV

 f
ro

m
 th

e 
fle

et
 to

 
th

e 
cu

sto
m

er
 

Tracking the EAV 

Remote control 
center 

 

Processing of 
demand 

SAEV  
Platform 

 

 Available EAV  

 EAV in service 

 Location of customer 
 EAV are being 

charged 
Considering demand and energy 
availability, the automated vehicle 
chooses which task to perform next. 

 Go to park somewhere   

 Go to serve the next cus-

tomer 

 Go to the charging sta-

tion  

 Go to the control center 

Figure 1. Shared electric automated system operation.

Based on the above description, a stochastic Petri nets model was developed that
can replicate an E-automated transportation network. The presented model is based on
earlier works [1,41] on shared mobility that used Petri nets. A stochastic Petri nets model
with variable weights of a shared electric automated and connected vehicle network is
proposed in this section. This model replicates the actual behavior of the suggested concept
in Figure 1. The model considers the dynamic behavior of the automated mobility network
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under various restrictions (such as the number of chargers available, the fleet size of
E-automated vehicles, the battery range limitation, and vehicle control).

We decided to test the initial model on a network with two charging stations and
areas for the sake of clarity. The proposed model can, of course, be generalized using
the discrete event simulation approach to a huge network with numerous locations, a
large fleet size, and large number of charging stations. We presumptively deployed one
charging station in each location and assumed that the system was subject to customers
making random requests based on a Poisson process. The developed model also replicates
the stochastic aspect of the system by including stochastic transitions associated with the
exponential probability distribution law. The names of the various model elements are
listed in Tables 4 and 5.

Table 4. Significance of certain places in the model.

sPlace Meaning

Pvsi Used to indicate the number of inactive EAVs in the area after a ride
Pavi Used to indicate the number of active EAVs (vehicles still in a ride)
Paai Used to test the possibility of assigning an inactive vehicle
Pain Used to test the possibility of assigning an active vehicle (a vehicle in service)
Paci Represents the assigned automated vehicle from the EAV fleet
Pasi Represents that the vehicles are being charged (charging level less than 50%)
Psm Used to indicate the total number of vehicles in the area Ai
Pcg Used to detect critical congested situations in area Ai (meaning the number of EAVs is higher than the fixed threshold Ei)
Pdfi Used to detect deficit situations in area Ai (meaning the number of EAVs is lower than the fixed threshold Pi)
Psavi Used to account for the number of vehicles Nvsi that should be moved to the deficit area
Pvpsi Used to indicate to which area the relocated vehicles would be directed
Pvci Indicates that the assigned vehicle reached the location of the customer
Pci Indicates the capacity of the charging station
Phsi Indicates the number of charged vehicles at a 50% charging level in the charging stations Si
Pdui Indicates the number of served consumers after the end of the trip
Pfvi Used to indicate the number of fully charged EAVs parked outside the charging station
Pvfi Indicates that the vehicle has already dropped off the costumer

Table 5. Significance of certain transitions in the model.

Place Meaning

Tvsi Represents an immediate transition used to manage the priority of the assignment
Tsmi Represents an immediate transition used for counting the total available vehicles in area (Ai)
Taai Represents the processing time taken to assign an inactive vehicle
Taci Represents the time of a vehicle’s trip to reach the costumer’s destination (stochastic transition)
Tasi Represents the time taken to reach the charging station after dropping off the costumer (stochastic transition)
Tshi Indicate the average delay to reach 50% charging level (stochastic transition)
Tfsi Indicates the average delay to reach 100% charging level (stochastic transition)

Tfvi Represents the charging process ending and a fully charged vehicle immediately leaving the station to park somewhere
(immediate transition)

Tvci Represents the time taken to pick up the costumer in their location (stochastic transition)
Tvui Represents the trip’s time from the costumer’s location to their destination
Thsi Represents the processing time to assign a vehicle with 50% charging level
Tvfi Represents the time taken by the vehicle to park in the area after dropping off the customer
Tvai Represents the necessary time the vehicle needs to go pick up the next costumer
Tfasi Represents the processing time taken to assign a vehicle with 100% charging level
Taini Represents the processing time taken to assign an active vehicle (after a ride)

When an EAV reaches max (100%) charge, it should leave the charging station and park
somewhere or serve the next demand as a priority. This policy makes chargers available
during the day, as the number of these is limited around the city.

We define the network as being unbalanced when an unequal distribution of vehicles
is going to happen in the middle term, which means some areas will suffer from a deficit of
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vehicles (almost no vehicles in the area) or a high number of vehicles. In terms of Petri nets,
the total number of automated vehicles in the area (Ai) Naevi is represented by the sum of
the marking of places Pasi (represents the EAVs being charged Nasi), Phsi (represents the
EAVs with a 50% charging level that are being charged Nhsi), Pfvi (Nfvi represents the fully
charged EAVs in area Ai), and Pvsi (Nvsi represents the EAVs parked in area Ai waiting for
a ride demand or free charger), as formulated in the following equation:

NaevTi = ∑ M(Pasi) + M(Phsi) + M
(

Pf vi

)
+ M(Pvsi) (1)

It is important to note that if Nave1 = 0, this means that no vehicle is available in the
area (A1), and if Naev1 = Max, this means that a high number of vehicles from the network
fleet is available in this area (A1), where Max represents the max number of vehicles in
the area (estimated depending on the frequentation and size of the area). The available
EAVs that can be assigned to consumers are either fully charged, have a 50% charging level,
are parked after a ride, or are waiting in service (if the waiting time is so high that the
reservation will be canceled by the systems), as formulated in the following Equation:

Naevi = ∑ M(Pasi) + M(Phsi) + M
(

Pf vi

)
+ M(Pvsi) (2)

As a result of the vehicles’ connectivity to one another and to the control center,
repositioning is carried out automatically. This process is only initiated when some areas
are in emergency conditions. In this respect, we propose a control strategy based on
decision thresholds named Pi, Si, and Ei, where the parameter P is used to detect a deficit
situation if the number of EAVs Naevi < Pi, E is used to detect a congested situation in
an area if the number of EAVs Naevi > Ei, and Si is used to represent the desired number
of vehicles in an area or the balancing threshold. It is assumed that the vehicles in this
model are interconnected and that a real-time inventory control system was implemented to
monitor urgent situations. The system alerts the vehicle in real-time about critical network
problems in order to start the repositioning process. Based on the monitoring, if many
areas are suffering a deficit of vehicles less than the threshold Pi (Neavi ≤ Pi), the balancing
system is launched. For repositioning, the EAV moves automatically from an area (Ai) with
engorgement vehicles to an area (Aj) with deficit vehicles. Additionally, a random switch
Rs is correlated with transitions in the Petri nets model to resolve conflicts (fired transition
with higher Rs). Using the relocating vehicle is not possible until the relocation is finished.

Figure 2 displays the four modules of the suggested model: (a) the fleet of EAVs, which
represents the availability of EAVs, i.e., whether they are plugged in, ready to be parked, or
in use; (b) the assignment module; (c) the repositioning module; (d) the warning module,
which alerts the balancing system in real-time to critical network conditions. The relocation
module’s goal is to limit unfavorable scenarios and reduce the amount of lost demands.

Regarding the automated vehicle fleet module, three main sub-modules are included:
one charging station with a limited number of chargers, automated vehicles in use, and au-
tomated vehicles parked in a waiting area. In terms of Petri nets, this module is represented
by a set of places, Pasi, Pci, Phsi, and Pfsi, as well as a set of transitions, Tasi, Tci, This, and
Tfsi. The marking of the place Pasi represents the number of vehicles being charged that
have just arrived at the charging station (charging level L < 50%), the marking of the place
Phsi indicates the numbers of vehicles with charging levels greater than 50% (available to
leave if there is demand), and the place Pfsi indicates the fully charged vehicles that should
leave the station in order to free up chargers so that other vehicles can charge. The marking
of the place Pfvi indicates the fully charged vehicles that have just left the charging station
and that are now parked somewhere waiting for assignment. The place Pvsi represents the
vehicles that are currently parked in the area (Ai) and that have enough charge to make
another trip; otherwise, they go to a charging station for charging (if chargers are available).
The place Pavi is used to indicate the number of vehicles in service that can be used for the
next ride request if neither a charged nor parked vehicle is available.
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Regarding the vehicle assignment module, this is basically composed of the places
Paai, Pain, and Paci and the transitions Taai, Tain, Tvs, Tav, and Tfv (see details about these
terms’ meanings in Tables 4 and 5). The assignment policy used in the model assumes
that a fully charged vehicle should be assigned first in order to meet the first demand,
which is represented by the firing of the transition Tfvi. If there is not a fully charged
vehicle available, the system suggests vehicles with a 50% charging level, represented by
the firing of the transition Thasi. However, if all vehicles in the charging station have a
charging level of less than 50%, the assignment mechanism assigns a parked vehicle in
the area Ai to pick up the customer, which is represented by the firing of the transition
Tavsi. Otherwise, the system recommends vehicles currently in service to the costumer as a
final option, which is indicated by the firing of the transition Tavi. The place Paci indicates
that the assigned vehicle is going to pick up the costumer from their location, and the
stochastic transition Taci indicates the average travel time of the assigned vehicle to reach
its destination. Figures 3 and 4 summarize the logic of this policy.

In order to address the conflicts associated with the assignment of vehicles, it is
important to design a priority management system (deterministic or random) based on
real-time inventory control approaches. We employed transitions associated with random
switches and inhibitor arcs to implement the stochastic Petri nets model. The following are
the validation requirements for the transitions This1 and Tfv1:
Conditions of validation of stochastic transition Ths1

M(Phs1) ≥ 1 means that there must be at least one token available at the place Phs1;
M
(

Ppd1

)
≥ 1 means that at least one token must be available at the place Ppd1;

M
(

Pf v1

)
< 1 means that the place Pfv1 should not be marked.

Conditions of validation of stochastic transition Tfv1
M
(

Pf v1

)
≥ 1 means that at least one token should be available at the place Pfv1;

M
(

Ppd1

)
≥ 1 means that the place Ppd1 must have at least one token.

It is crucial to understand that the firing of the transition Tfv1 has precedence over that
of transition Ths1. The inhibitor arc from the place Pfv1 to the transition Ths1, as shown in
the model of Figure 2, indicates that the transition Ths1 is only fired if the marking of the
place Pfv1 equals zero (which means no fully charged vehicles are available).

An automated vehicle will be able to automatically carry out the following tasks after
completing a trip and dropping off the customer:

X Serve the subsequent request as long as no available EAV is parked in the area, and
provided its battery range is sufficient for the next trip. In terms of Petri nets, this
event is represented by the firing of the stochastic transition Tnex, which places a
token in the place Pavi, indicating that the vehicle is available for the next ride.

X Go to the charging station to be charged to the max or 50% level. In the model, this
event is represented by the firing of the stochastic transition Tasi, which can only be
fired if at least one token is present in the place Pci (represents the number of chargers
in the station).

X Move to park somewhere if the charging station is full (no chargers available). In
terms of Petri nets, this event is represented by the firing of the stochastic transition
Tpar, which causes a token to be placed at the place Pvsi.

X Go to the control center (if any technical problems are detected, revision is necessary).
In the model, this event is represented by the transition Tm, which is associated with
less random switches (the probability that the average number of vehicles needs
control during the day/week).

Regarding the repositioning module, its role is to launch relocation when necessary
with the assistance of the real-time inventory monitoring module implemented in the
control systems and in the vehicle.
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The repositioning approach provides calls for the vehicles to move autonomously from
the congested (a high number of EAVs) area Ai to the deficit area Aj (almost no vehicles). Of
course, this strategy considers each vehicle’s battery range and moves the charged vehicles
first. The real-time alert module incorporates the policy (Pi, Ei) by accounting for the
number of EAVs in each area, which is represented by the places Psm (represents the sum of
available vehicles in the concerned area), Pdf, which is used to test the deficit situations, and
Pcg, which tests if the number of vehicles in the area is almost at the maximum (Figure 5
summarizes the logic of this policy). The repositioning module is represented by a set of
places, Psav, Pvp, and Pvpsi, and the transitions Tsum, Tre, and Ttv, where Nvsi denotes that
the vehicle has to be moved to the other deficit areas. The following equation represents
this event:

NVSI =
(
∑ M(Pasi) + M(Phsi) + M

(
Pf vi

)
+ M(Pvsi)

)
− Si (3)

where S is the repositioning threshold; the area should continue to have the desired number
of automated vehicles to meet and cover demand. Figure 6 illustrates the suggested policy.
(As depicted on the map of Figure 6 by the circles, we can observe an area with multiple
vehicles while another one in deficit situation. The red color in the Figure 6 indicates that
the area is in a critical situation, while the green indicates that the area is in the frame
of balancing).
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4. Simulation and Discussion

The use of Petri nets as a modeling tool is well suited to characterizing the repo-
sitioning dynamics of shared electric automated mobility networks. Using MATLAB
software, a series of simulations with various scenarios (a dynamic case without reposi-
tioning (a), a dynamic case with repositioning (b), and a static example representing the
offline/maintenance mode (c)) was conducted to validate and assess the performance of
the developed Petri nets model. The interpretation of solutions derived from these data
is still limited, even though a random generator can produce realistic data simulating
specific dynamics of transit demand in urban locations. In this instance, we simulated the
model using data from BleuSG (Singapore’s shared electric mobility system) [1]. The model,
which can be used for autonomous repositioning, assumes that the electric vehicles are
autonomous. To effectively evaluate the system’s behavior, a long time horizon was used in
the simulation. As a result, several performance indices for the proposed model were able
to be measured, such as the average number of vehicles in the area, the average number
of vehicles being charged, the average waiting time of costumers to receive automated
vehicles, the percentage of time the area was empty, the percentage of time the area was
congested, the average number of served/unserved costumers, etc. This was carried out
through the dynamic evolution of the marking of various places in the model according to
the firing of transitions occurring in time.

4.1. Simulation of Scenario (a)

In this scenario, the network’s dynamic behavior was simulated without a reposition-
ing mechanism. In terms of Petri nets, this configuration was achieved by deactivating the
repositioning module, meaning that when the vehicle reached its destination, it stayed in
the same area (either to go to a charging station or to park somewhere). The simulation
results were obtained from the scheme of the evolution of the number of e-automated vehi-
cles in each area, which meant visualizing the markings Pasi, Phsi, Pfsi, Pfvi, Pvsi, Pavi. The
results showed that the simulated areas were characterized by undesirable situations (see
Figure 7). Because of this, given the simulated arrangement, the transition rates between
the various areas tended to be saturated (a large number of vehicles almost reached the
max) and occasionally deficient (the number of EAVs was very low or equaled zero).
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was not available).

These results suggest that the repositioning mechanism provides many benefits to
guarantee areas’ long-term rebalancing. Additionally, it was possible to assess a number of
types of system performance, such as:

• Throughout the whole simulation period, the average percentage of time when the
areas were saturated was 24.1%. That is to say, over a service horizon of 5 days
(2100 min), the network remained congested for 506.1 min (2100∗24.1/100).

• During the entire simulation period, the areas were in deficit conditions for an average
of 10.23% of the time. In other words, over the horizon of 5 days of service (2100 min),
the network experienced 214.83 min (2100∗10.23/100) without vehicles in some areas.

4.2. Simulation of Scenario (b)

This scenario aimed to test the balancing process by activating the repositioning model
(automated redistribution). It was feasible to track how the suggested solution affected the
service quality and average number of unserved users. We focused on the time evolution
of the number of available EAVs in the areas simulated, which can be observed in Figure 8.
The repositioning function integrated into the model showed that the number of EAVs
(marking of the place Pci) in most areas oscillated around the fixed threshold. Operators
can gain a lot from graphs that depict the dynamic behavior of a particular system, such
as those shown in the illustrative example. They give operators a quick, simple, and
visual way to see whether a system is operating properly, depending on the management
guidelines or constraints set. Additionally, for the scenario (b) simulation, the following
results obtained on the system’s performance evaluation:

• 8.1% of the overall simulation time was spent on areas that were saturated. In other
words, for the 5 days of service (2100 min), the network was still overloaded for
170.1 min (2100∗8.1/100).



Sustainability 2023, 15, 881 19 of 23

• Throughout the simulation period, an average of 7.5% of the time was spent with an
area having an EAV deficit. In other words, for the 5 days of service (2100 min), the
network remained in deficit for 67.05 min (2100∗7.5/100).
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Figure 8. Flow evolution of autonomous electric vehicles in some areas (repositioning process
was available).

It is important to note that the suggested repositioning approach was able to improve
the network’s balance by reducing the number of undesirable situations (deficits and
congestion) in the shared automated electric mobility network.

4.3. Simulation of Scenario (c)

In this scenario, the static condition with minimal network activity was used. In more
concrete words, this scenario reflected the network dynamics at night or during a service
outage due to system maintenance.

By significantly raising the rates associated with the transitions Tbi, this condition was
analyzed and replicated from the perspective of the Petri nets model. As a result, these
transitions’ crossing frequencies drastically decreased. We obtained curves with identical
behavior to that of the simulation results of the static model with a high firing delay to
changes: the quantity of EAVs was nearly constant in each area due to the network’s
extremely low frequency (see Figure 9).
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Figure 9. Flow evolution of electric autonomous vehicles in some areas in static case (case of
maintenance of network/night).

5. Conclusions and Perspectives

In the coming years, shared electric automated and connected mobility systems will
transform and redefine the transportation system. However, deploying such systems will
need cooperation on the part of key stockholders, including automakers, governments,
and shared mobility operators. Furthermore, shared E-automated mobility systems are
extremely complex in practice due to the significant problems of modeling, optimization,
repositioning and assignment. This paper highlighted firstly a number of critical research
issues pertinent to shared electric automated mobility. The majority of studies in the
literature have focused on the strategic level when discussing cybersecurity attacks to and
the assignment and energy difficulties of electric automated vehicles and shared electric
mobility. However, only a small number of works have specifically addressed the issue of
repositioning in shared electric automated and connected mobility systems. Overall, our
survey of recent studies suggested that a shared electric automated and connected network
fleet may be able to significantly outcompete a traditional taxi fleet in a metropolitan area.

The second contribution to the literature of this paper was its proposal of a stochastic
Petri nets modeling approach that addresses the assignment and repositioning issues and
the performance evaluation of different indices. Additionally, a strategy for reposition-
ing was proposed based on decision parameters that specify when and between which
areas repositioning should be carried out. The developed model takes into account the
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assignment issue (with some assumptions to simplify the modeling) through the assign-
ment algorithm, which can assign a vehicle automatically to a customer. Furthermore, the
developed model is highly configurable to support the dynamic and behavioral complexity
of this automated mode of urban transportation. It is possible to simulate several con-
figurations using the proposed model, including a dynamic mode without repositioning
(during the day), a dynamic mode with repositioning, and a static mode (when the system’s
frequentation is very low, for instance during the night or in the case of network mainte-
nance). Several performance indices, such as the average number of charging vehicles, the
percentage of network shortage time and the congestion time, can be assessed using the
developed model. Additionally, the presented model can be used to design/simulate a
shared electric automated mobility network by simulating the dynamic behavior of systems
through changes in network decision parameters, such as the the size of the automated
vehicle fleet, the number of charging stations, and the number of chargers. Further, the
proposed formalism and discrete event approach can be employed to simulate and analyze
the implementation and realization of an electric automated and connected taxi network.
This study shows that, despite the involvement of electric automated vehicles in these
kinds of systems, the unbalancing of the network is a significant difficulty these systems
face. Therefore, in order to balance the network and improve the effectiveness of such
systems, the operator is required to employ repositioning tactics.

On the other hand, the results from this study’s Petri-nets-based modeling and sim-
ulation demonstrate the potential of employing graphical models such as Petri nets to
assess the effectiveness of shared e-automated mobility systems. The results also show the
potential of using Petri nets models to predict critical situations, analyze control strategy
efficiency, improve system performance and in particular model repositioning and assign-
ment problems. To the best of our knowledge, this is the first study to date to use stochastic
Petri nets to model shared electric automated mobility systems. However, the developed
approaches still have some limitations, such as the complexity of the graphical model
and challenges related to generalizing the formalism for larger networks. Petri nets have
significant potential to be used for the modeling and performance evaluation of discrete
event systems; however, they must be used in conjunction with other optimization methods
in order to solve optimization issues. Furthermore, the proposed model overlooked the
ride-sharing policy, which could have complicated the formalism.

This work raises many questions that could be tackled in future works. Designing a
shared electric automated mobility service involves a number of optimization issues, in
particular deciding on the best fleet size and parking station locations. In the following
stage, additional work will be carried out, such as reformulating the developed model
to use hybrid stochastic Petri nets to take into account continuous system aspects and
continuous decision variables such as vehicle velocity and energy consumption. Moreover,
a dynamic ridesharing policy will be incorporated into the model to improve fleet perfor-
mance metrics. Additionally, this Petri-nets-based modeling concept will be transformed to
a graph-theory-based modeling concept to efficiently address the routing vehicle optimiza-
tion problem by employing the Basic Differential Multiplier Method(BDMM). Furthermore,
related optimization problems will be tackled by combining the developed model and the
BDMM. On this basis, fleet vehicle optimization, assignment optimization, and shortest
path problem optimization will all be the goals of future research. Furthermore, a com-
parison could be carried out with other works addressing the repositioning issue of such
dynamic systems.
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