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Abstract: This study investigates the contribution of river morphology towards the occurrence of
manganese (Mn) in both sediment and surface water (SW), considering the temporal climatic and
spatial conditions. The Boac and Mogpog rivers on the island province of Marinduque, Philippines,
were examined in this study. These rivers are downstream of the two abandoned open mine pits
at San Antonio and Tapian, where mining disasters occurred in 1993 and 1996, respectively. Field
sampling programs were conducted in 2019, 2021 and 2022 to measure the Mn concentrations in
sediment and SW, and the physicochemical parameters in SW during the same sampling event.
Geographic Information System (GIS) tools were employed to characterize the morphology of each
river, specifically river slope, river bends, sinuosity, and channel width and length. The Boac and
Mogpog rivers were divided into 22 and 15 river segments, respectively, to account for spatial
heterogeneity of all parameters. Correlation (r) analysis on the average Mn concentration and river
morphology within each segment was performed and indicated that river bends (Boac r = 0.421,
Mogpog r = 0.356) and sinuosity (Boac r = 0.403, Mogpog r = 0.352) had the highest correlation
with Mn concentrations in sediment. While river slope (Boac r = 0.716, Mogpog r = 0.282) and
sinuosity (Boac r = 0.505, Mogpog r = 0.257) were the highest for Mn in SW. This confirmed that
the planform of the river affected the accumulation of Mn due to its effect on sediment deposition
along the river and its potential to adsorb and/or desorb metals. Furthermore, the pH of SW also
directly correlated with sediment Mn (r = 0.293), and inversely correlated with SW Mn (r = −0.465),
which was expected as acidic water promotes the release of metals from sediments to SW. The results
from this study will aid local government, environmental engineers and managers in their mitigation
program through identification of the areas and segments in the river that contain the highest and
the least contamination. This is to optimize financial and human resources during river system
remediation and monitoring. Data and information extracted from this study are useful in other areas
of similar condition.

Keywords: river morphology; sediments; surface water; manganese contamination; acid mine
drainage; contamination factor

1. Introduction

Acid mine drainage (AMD) is a common form of environmental pollution in areas
where mining activities has occurred. The interaction of water and oxygen with rocks
containing sulfur-bearing minerals results in sulfuric acid, which can then leach heavy
metals such as manganese (Mn), iron (Fe), and aluminum (Al), cadmium (Cd), Zinc (Zn)
and copper (Cu) from rocks it comes in contact with. When released into the environment,
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this highly toxic, acidic leachate rich in heavy metals can mix with surface water (SW),
soil and groundwater and have severely harmful effects on humans, animals and plants.
Among the various heavy metals that are being released to the environment by the AMD,
Mn, by which the central nervous system as its toxicity target organ, has not been given
attention; hence, the focus of this paper.

Marinduque is an island province in the Philippines that is rich in mineral resources
has attracted many mining companies. For example, a copper mining operations were
carried out in Marinduque since 1969 [1]. Unfortunately, two of the worst mining and
environmental disasters in Philippine history (and worldwide) occurred in 1993 and 1996
at the San Antonio and Tapian mine pits, respectively [1]. On 6 December 1993, the
Maguilaguila siltation dam collapsed and released toxic mine tailings into Mogpog river [2],
flooding the barangays along the river, including the town of Mogpog. On 24 March 1996, a
drainage tunnel in the Taipan pit burst, spilling 1.6 million cubic meters of tailings deposits
into Boac river [2] that flooded barangays and killed livestock, aquatic life, and crops.

These mine tailings deposits in Mogpog and Boac river have remained a long-term
source of acid and elevated concentrations of metals. Significant amounts of soluble salts
have built up due to oxidation of sulfides in the tailings [3]. These salts retain acids and met-
als in a solid state that is easily soluble until the next rainfall. The cycle of salt formation and
dissolution can be repeated each dry and wet season [4]. As a result, severe environmental
contamination remains within Mogpog and Boac rivers and neighboring municipalities [5],
with studies between 1998 [3] and 2019 [4] indicating that metal concentrations continued
to accumulate faster and worsen over time. Elevated manganese concentrations were even
found in crustaceans (603.5 mg/kg), tilapia (121.1 mg/kg) [6] string beans (26.235 mg/kg),
sweet potato (5.511 mg/kg), bitter melon (24.4 mg/kg), eggplant (3.248 mg/kg) [7], vegeta-
bles (27.35 mg/kg), turmeric root crops (634.43 mg/kg) and rice (11.955 mg/kg) [8] that
people consumed. Accumulation of metal in the downstream area of rivers are perceived
to be on going and might continue to worsen in the next number of years.

Mn is a potentially toxic metal depending on the route and level of exposure and
it had one of the highest concentration increases in sediments, from 1060 ppm in 1998,
to 68,169 ppm in 2019. According to Rovetta et al. [9], USEPA [10], and WHO [11], too
much uptake of Mn by humans can severely affect the central nervous system, and the
liver, immune, reproductive, and cardiovascular systems. Sediments and SW contaminated
by Mn could form human exposure pathways via dermal adsorption and/or accidental
ingestion [12]. Communities in the vicinity of Mogpog and Boac rivers may not be aware of
these severe health risks, with adults and children known to still bathe in the rivers [13]. A
study conducted by the municipal health officer of Mogpog found evidence of metal toxicity
in its residents particularly lead, arsenic, mercury, cadmium, copper and chromium [14].

While it is known that the mining disasters and abandoned mine pits caused the
elevation of Mn within the Mogpog and Boac rivers and municipalities [15–18], it is not
yet known how fast it is being transported from the source to downstream, and/or how
the morphology of the rivers affect its accumulation. Mn transport along the river can
occur through sediment [19–22] and SW [23–25], which is strongly affected by changes in
cross-section and planform that can lead to specific patterns of Mn accumulation [26,27],
particularly if the point source is at the upstream of the river. Huang et al. [26] demonstrated
how river sinuosity affects contaminant distribution, with lighter contaminant concentrates
more on the inner bend apex region of the river with higher sinuosity, while heavier
pollutant such as metals accumulating at a depth close to the riverbed but still on the inner
side bend apex region. Using a test model, Xiao et al. [27] showed that the concave bank
of the river bend section accumulates more contaminant than the convex bank. They also
showed that the concave bank can be an efficient contaminant treatment zone for future
remediation plans in rivers.

Adsorption-desorption also plays a very important role in the transport of metals in
rivers, with metals being adsorbed and desorbed in the sediments and water [28,29]. Due to
their small particle size and higher surface area, sediments can adsorb higher concentrations
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of heavy metals [30], meaning metals elevation can be correlated to the amount of sediment
present in the river. Therefore, if river morphology causes higher amounts of sediment in
certain zones, then higher accumulation of metals can also occur [31]. Climate change can
also play a role in metal accumulation in rivers, with extreme rainfall events and higher
flooding resulting in higher flow rates, more overland flow and runoff, and morphological
changes in the river [17]. Despite the relationships identified between sediments and metal
contamination [22], and sediments and river morphology [32], a more extensive study is
needed to assess the correlation between Mn accumulation and river morphology.

The objective of this study was to assess the contribution of river morphology to the
spatio-temporal variability of Mn contamination. This study involves a multi-year field in-
vestigation of Mogpog and Boac rivers on Marinduque island in the Philippines. The rivers
are downstream of two abandoned open mine pits and are historically known receptors of
mine tailings that have accidently discharged from the open pits. Based on field sampling
programs performed in 2019, 2021 and 2022, this study aims to (i) analyze Mn concentra-
tions in the water and sediment along the rivers, (ii) identify river morphology parameters
that affect the accumulation of Mn concentrations, and (iii) calculate contamination factors
(CF) to determine the temporal changes in the degree of river contamination.

2. Materials and Methods
2.1. Study Site Description

Marinduque is an island rich in minerals in the Philippines (see Figure 1) that attracted
many mining companies. A mining company operated in the island from 1975 until the
two disaster happened. An earth dam was constructed at the San Antonio pit to prevent
silt from being discharged to the downstream Mogpog river. However, the dam collapsed
in 1993 and significant contaminated the 23 km long Mogpog river. Highly toxic sediments
flowed downstream, and not only severely impacted water quality, but also towns, rice
fields, vegetation, livestock and aquatic life. The 1996 disaster at the Tapian pit was even
worse [33]. It involved the collapsed of Tapian pit, releasing approximately 180,000 to
260,000 m3 of mine waste tailings into the 27 km long Boac river. Following these disasters,
mining operations were ceased in 1997 and the open mine pits were abandoned. The only
controlling parameters of the water flow were the landcover, topography, and soil types, as
well as sub-surface media type for water overflow and subsurface flow, respectively.
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In addition to being released during the disasters, toxic mine tailings continue to
periodically overflow from the open pits. This has led to the elevation of heavy metal
concentrations in the downstream Mogpog and Boac rivers [17]. The surrounding Mogpog
and Boac municipalities, which have populations of 34,516 and 57,283, respectively [34], are
now categorized as having high potential ecological risk [7]. A comprehensive investigation
of metal accumulation in the rivers over time will be extremely beneficial to optimize
proposed mitigation strategies. Of the various toxic metals, Mn had the highest increase in
concentration between 1998 and 2019, increasing from 1060 ppm to 68,169 ppm [3,4], and is
the key contaminant investigated in this study.

2.2. Spatio-Temporal Assessment Framework

A framework was developed to assess the spatio-temporal variation of Mn in Mogpog
and Boac river, and how it is influenced by river morphology, as shown in Figure 2. SW and
sediment samples were collected along the rivers and then analyzed for Mn concentration
using an XRF scanner, while a multi-parameter meter was used to measure the physico-
chemical properties of the SW. Results from the sparse sampling locations were interpolated
with a geographic information system (GIS) to obtain continuous data along both rivers.
River morphology parameters were also extracted using GIS. The morphological param-
eters, sediment and SW metal concentrations, and SW physicochemical properties were
incorporated into correlation analysis to determine the degree of correlation between each
other, and if river morphology affects the accumulation of Mn in the two rivers. The CF
was also calculated to determine the degree of contamination along the rivers.
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2.2.1. Field Sampling

Field sampling programs were conducted in December 2019, July 2021, and Febru-
ary 2022. These sampling times were selected as they were considered wet months in
Marinduque, where frequent sheet flow is expected due to the open mine pits [17]. As
indicated in Figure 3, a total of 80 sediment samples and 74 SW samples were collected
at various locations along the flow path of Mogpog and Boac rivers. Table 1 shows the
distribution of samples collected over all three years. The sediment sampling followed
the procedure by USEPA LSASDPROC-200-R4 [35], while the SW samples were collected
following the guidelines by USEPA LSASDPROC-201-R5 [36].
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Table 1. Number and type of sample collected during each sampling program.

Year (Month) Number of Sediment Sample Number of Surface Water Sample

2019 (December) 31 22
2021 (July) 23 26
2022 (February) 26 26

2.2.2. Surface Water and Sediment Analysis

The Mn concentrations in collected SW samples were detected by the Optima 8000
Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) (PerkinElmer,
Waltham, MA, USA) following the Standard Methods for the Examination of Water and
Wastewater, APHA 22nd edition, 2012. The detection limit of the ICP-OES for Mn is 0.5 ppm
(mg/L). The Mn concentrations in sediment was measured using the Vanta X-ray fluores-
cence (XRF) analyzer (Olympus, Center Valley, PA, USA), which is a portable handheld
device used to measure elements in various media [37,38]. The detection limit of the Vanta
XRF analyzer for Mn is 5 ppm (mg/L). Additional samples of the sediment were collected
and were analyzed for Mn by the ICP-OES following the acid digestion method in USEPA
Method 3050B. With the aid of the manufacturer, the XRF was calibrated with the ICP-OES
results (R2 = 0.99) and using the Olympus Vanta blank in zipper plastic #2. Furthermore,
previous published studies have demonstrated the reliability and comparability of the
XRF device to traditional approaches like the ICP-OES [4,6–8,17,18,39–46]. The motivation
for using the XRF stems from its portability for environmental monitoring at remote sites
where laboratories are not readily available [47,48].

The HI9811-5 is a compact, rugged, portable multi-parameter meter (HANNA, Win-
sorquit, RI, USA) that was used to measure the physicochemical characteristics of the SW.
These physicochemical parameters of SW were determined during the same SW sampling
event. The meter, which included the HI1285-5 probe and accompanying calibration and
cleaning solutions (e.g., HI70007, HI70031, HI70032, HI700661), was used to measure pH,
temperature (T), electric conductivity (EC) and total dissolved solids (TDS).

2.2.3. GIS Spatial Analysis

Spatial analysis with GIS is widely used as it can greatly enhance sparsely distributed
data and generate continuous spatial information for improved site analysis. It is very
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useful for environmental studies where sampling may be limited to sparse locations and/or
conducted in heterogeneous environments with high uncertainty between locations [49–54].

In this study, the inverse distance weighting (IDW) method was employed. As shown
in Equations (1) and (2), IDW assumes that properties of unsampled locations are the
weighted average of known data points in the area, and the weights are considered to be
inversely correlated to the distances between predicted points and sampled points. IDW
was used to interpolate Mn concentrations in unsampled (or inaccessible) areas of the
river, thereby generating full continuous Mn data along the full stretch of both Boac and
Mogpog rivers.

Cp =

N
o︷︸︸︷
a︸︷︷︸

i=1

WiCi (1)

Wi =

1
di

N
o︷︸︸︷
a︸︷︷︸

i=1

1
di

(2)

where Cp denotes unknown concentration, Ci is known concentration, N is the number of
measured samples, Wi is the weighting of individual stations, and lastly di is the distance
from every station to the unknown point.

2.2.4. River Segmentation

The Grid Index is a geospatial tool in GIS that was used to divide Mogpog and Boac
rivers into segments with 1 km horizontal distances, starting from the pit and moving
downstream. Mogpog river consisted of 15 segments, while Boac river had 22 segments, as
indicated in Figure 4. The Zonal Statistics tool was then used on sampled data to get the
average value of each parameter enclosed within each segment.
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Due to the number of factors that can affect contaminant and river properties that
often differ along the river stretch, providing data for each individual river segment ensures
more effective environmental quality assessments [55].

2.2.5. Assessment of River Morphology

River morphology provides information about changes in river planform due to
processes like sedimentation and erosion. Since sediments greatly affect metal transport
in rivers by adsorption [22], it is really important to consider how river morphology is
attributed to the increase of metal accumulation in rivers. From the literature, the river
morphology factors that most strongly affect metal transport in rivers were identified as
follows: slope [56], river bends [57], channel width, length and sinuosity [26,27]. River
slope has a direct correlation with river velocity, thereby affecting the flow of water and
sediment transport, while river bends represents the meandering of the river channel that
also affects the deposition of sediments. Channel width and length pertains to the actual
size of the river which can play an important role in the hydrodynamic processes in the
river, and therefore affect the dispersion of metals [58].

River morphology was assessed with GIS to extract key properties within segments
along each river. The slope, which is the change in elevation with respect to distance,
was calculated in GIS using the available digital elevation model (DEM), specifically
Interferometric Synthetic Aperture Radar (IfSAR) with a pixel size of 5 m × 5 m. River bends
were determined by counting the number of bends in each river segment, while channel
width and length were measured with the spatial measurement tool in GIS. Sinuosity was
then computed using the following Equation (3) [27]:

S =
LT
L0

(3)

where LT is the total length of the river, and L0 is the straight-line distance from the upstream
end point to the downstream end point. A higher sinuosity value represents a change in
planform [59], which basically indicates meandering channel patterns along the stretch of
the river.

Transport assessment was also carried out using MIKE Eco Lab (DHI Water and
Environment, Ltd., Auckland, New Zealand) to simulate how metal concentration in
surface water and sediments accumulating and dispersing along the river stretch.

2.2.6. Correlation Analysis

Correlation (r) analysis was performed to identify and/or understand any relation-
ship between parameters [60]. Equation (4) presents the equation used to compute the
correlation, r:

r = ∑N
i=1(y1 − y1)(y2 − y2)√

∑N
i=1 (y1 − y1)

2(y2 − y2)
2

(4)

where N is the total sets of data, y1 is the dataset for one parameter, y2 is the dataset for
another parameter, and y1 and y2 are the respective computed mean values.

For this study, the following parameters were included in the correlation analysis to
identify how river morphology is affecting metal accumulation along Mogpog and Boac
rivers: (i) Mn concentration in sediment, (ii) Mn concentration in SW, (iii) river bends,
(iv) channel width, (v) river slope, (vi) river length, (vii) sinuosity, and (viii) EC, TDS, pH
and temperature of SW. Correlation coefficients range from −1 to +1, with negative values
indicating inverse correlation and positive values indicating direct correlation. In terms
of the degree of the relationship, values of 0.90–1.00 indicates a very strong correlation;
0.70–0.89 is a strong correlation; 0.40–0.69 is a moderate correlation; 0.10–0.39 is a weak
correlation; and 0.00–0.10 indicates no correlation [61].
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2.2.7. Contamination Factor

The degree of contamination was determined from the CF which was computed
using Equation (5):

CF =
MC
BC

(5)

where Mc is the measured concentration, and Bc is the background concentration (i.e., con-
centration prior to anthropogenic activities) [62]. Equation (4) is very simple yet effective
to identify how contamination progresses relative to natural conditions [63]. The CF
value corresponds to a certain level of contamination, specifically: low (CF < 1); moderate
(1 ≤ CF < 3); high (3 ≤ CF < 6); very high (CF > 6). It has been used in various studies to as-
sess the degree of contamination for specific metals in rivers [64], soils [65], sediments [66],
and abandoned mines [67].

3. Results
3.1. Sediment and Surface Water Quality

The various parameters measured in sediment and SW samples collected along the
rivers in 2019, 2021 and 2022 were assigned to their corresponding river segment. Figure 5
plots the sediment Mn concentration for each year within the 15 and 22 segments along
Mogpog and Boac rivers, respectively. Figure 5a presents the Mn concentration in sediment
along Mogpog river. In 2019 (blue), Mn is highest in the mid-section of the river (M6-M8)
that is likely due to accumulation of contaminated sediments at the most meandering
portion of the river. Diminished flow velocities and dead zones in these portions can
cause high hydraulic retention and sediment deposition [68]. In 2021 (grey), sediment
Mn declined throughout the length of the river, with highest concentrations now further
downstream at M9-M11. This suggests bulk movement of contaminated sediments during
the extreme precipitation (2901 mm) and high flow events that occurred in 2020 (see
precipitation records in Appendix B). The background concentration of Mn in sediment
was 450 mg/kg at Boac.
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Figure 5. Concentration of Mn in sediments along the (a) Mogpog, and (b) Boac rivers in 2019, 2021,
and 2022.

Figure 5b shows that in 2019, sediment Mn concentrations were elevated within the
upstream segments of Boac river (B1–B5), before gradually declining through downstream
segments. The upstream sediments were likely affected by sheet flow from the Tapian pit. In
2021, sediment Mn decreased significantly in all upstream segments, with small decreases
in the downstream segments that had already low concentrations. Similar to Mogpog
river, this suggests the movement of the contaminated upstream sediments during high
river flows between 2019 and 2021. According to Philippine Atmospheric Geophysical and
Astronomical Services Administration (PAGASA), the total rainfall in the province in 2019,
2020 and 2021 was 2330.40 mm, 4496.30 mm, and 3570.90 mm, respectively. The rainfall
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volumes in 2020 and 2021 were significantly larger than 2019. In 2020, the area received
almost double the amount of rainfall than 2019. In 2021, the area received over 1000 mm
more. As a result, much higher flow velocity occurred in the rivers in 2020 which promoted
sediment movement [31,69]. This relationship between increased sediment loading and
movement induced by increased precipitation was previously observed by Shi et al. [70].

Figure 6 presents the Mn concentration in SW along Mogpog and Boac rivers. In
2019 (blue), SW concentrations are highest in the most upstream segments of both rivers
(i.e., M1–M5; B1–B3) before decreasing further downstream due to increased dispersion
and adsorption by sediments [71] and river morphology [72]. In direct contrast to sediment
Mn, SW Mn increased significantly in 2021. This supports the idea that during the extreme
precipitation events between 2019 and 2021, high flows in the river lead to desorption of
Mn in sediments, thereby contaminating the SW. In 2019, the average pH in the two rivers
was 6.91, with an average pH of 5.42 at the most upstream ends due to the proximity to
the mine pits. The higher precipitation in 2021 resulted in higher overflow from the two
abandoned open pits, which affected the pH in the rivers that now had an average pH of
5.9, with values as low as 3.74. This low acidity in the rivers in 2021 caused desorption of
sediments [28,73] and led to increased SW Mn concentration. Hence, the SW contamination
was attributed to the lowering of pH in SW, and the potential desorption of Mn on river
sediments. Furthermore, overflow from the open pits during high precipitation likely
provided additional Mn to SW. The background concentration of Mn in SW recorded LOD
(Limit of Detection)
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Figure 6. Concentration of Mn in SW along the (a) Mogpog and (b) Boac rivers in 2019 and 2021.

Figure 7 presents the average pH, temperature, EC and TDS in SW within each segment
along Mogpog and Boac rivers in 2019, 2021, and 2022. In 2019, the pH is lowest (and
below WHO limits) in the uppermost portions of both rivers (M1–M6; B1–B2), nearest the
open pits. The pH tends to gradually increase with increasing distance downstream in
both rivers, corresponding to decreased Mn in SW. Between 2019 and 2021, the pH became
lower within most segments in Mogpog and Boac river, which can be attributed to low
pH water discharged into the rivers from pit overflow. The decrease in pH corresponds
to the increase in SW Mn shown in Figure 6, as expected. According to Bondu et al. [74]
and Homoncik et al. [75], Mn in water is inversely proportional with pH as it can form
precipitates in the presence of oxygen and/or carbonates.

Figure 7c,d present the SW temperature along the river. In both rivers, temperature
readings tend to increase with increasing distance downstream, which may be due to a
number of reasons unrelated to Mn concentration, such as anthropogenic activities [76]
and/or climate change [77]. Figure 7e–h presents the EC and TDS for the SW in both
rivers, which are shown to follow the patterns in space and time, which is expected as
TDS was empirically derived from EC. In 2019, EC/TDS were low in all segments of both
rivers except the two most central segments in Mogpog river (M8–M9). EC/TDS generally
decreased from 2019 to 2021, while also becoming a lot more uniform, except for the most
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upstream segments (affected by pit overflow) and downstream segments (affected by
salt-water intrusion) [78].
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Plan-view spatial maps of sediment and SW Mn concentrations for 2019, 2021, and
2022 are presented in Figures A1 and A2 in Appendix A, while maps of pH, temperature,
EC, and TDS are presented in Figures 4, A3, A5 and A6. These spatial maps illustrate the
relationship between Mn concentration and river planform, with higher concentrations
of Mn at river bends. Furthermore, it shows the relationship between Mn accumulation
and the physicochemical properties of SW, such as pH. Tables A1 and A2 summarize the
statistics of the measured parameters for each year in Mogpog and Boac rivers.

3.2. River Morphology

Table 2 shows the average, standard deviation, and range of values for each morpho-
logical parameter (river slope, river bends, channel width, river length, sinuosity) within
the segments of Mogpog and Boac rivers. Mogpog river has 15 segments with an average
slope of 9.87◦ with a standard deviation (SD) of 6.28, while Boac river has 22 segments with
an average slope of 6.22◦ and SD of 5.4. The high SD is due to the high slopes upstream and
very low slopes downstream in both rivers. Despite Mogpog river (23 km) being shorter
than Boac river (27 km), it has higher average slopes which indicate that flow velocity and
momentum is faster [79].

Table 2. Summary of statistics for river morphology parameters in Mogpog and Boac rivers.

River Parameter River Slope
[Degrees] River Bends Channel Width

[m]
Channel Length

[km] Sinuosity

Mogpog Average 9.87 2.87 81.50 1.47 1.43
SD 6.28 0.72 20.61 0.29 0.27

Min–Max 0–23.89 2–4 60.5–131.25 1.07–1.99 1.06–1.92
Boac Average 6.22 1.32 179.60 1.27 1.27

SD 5.40 0.70 55.92 0.30 0.21
Min–Max 0.79–20.55 0–3 57.21–261.75 0.57–1.93 1–1.79

Mogpog river contains more river bends (2.87 ± 0.72) than the Boac river (1.32 ± 0.70),
promoting more movement and accumulation of sediments in different portions of the
river. As shown in Figure 5a, sediment Mn in 2019 is not at its highest at the very upstream
of Mogpog river, but is located midstream. Furthermore, after extreme flows had taken
place between 2019 and 2021, sediment Mn shifted from midstream accumulation to
downstream. The average channel width was 81.5 m and 179.6 m for Mogpog and Boac
rivers, respectively. Larger channel widths have higher capacity to carry flow, which can
be associated with sediment and SW transport. The 15 segments in Mogpog river have
average channel lengths of 1.47 km, while the 22 segments in Boac river have 1.27 km.

The sinuosity in Mogpog and Boac was 1.43 and 1.27, respectively, indicating that
Mogpog river has more bends and curvature along its channel, making it accumulate Mn
faster and higher than Boac [27]. In addition to these morphological parameters, Mogpog
river may be more contaminated than Boac river due to the associated mine pit disaster
occurred three years earlier (i.e., 1993 vs. 1996), meaning more mine waste exposure to
Mogpog river. These findings were also confirmed by the MIKE Eco Lab model that higher
concentrations occurred in bends and portion of river with high sinuosity.

3.3. Degree of Correlation between Mn, pH, EC, TDS and River Morphology

Figure 8 presents the correlation coefficients between sediment Mn and SW Mn con-
centration with SW physicochemical parameters and river morphological parameters. For
sediment Mn and physicochemical parameters, the highest average correlation is with pH
(r = 0.443, moderate correlation) and temperature (r = 0.420, moderate), while for river
morphology, sediment Mn has the highest correlation with river bends (r = 0.356), followed
by sinuosity (r = 0.352), and river length (r = 0.320). Sediment Mn is negatively correlated
with river slope (r = −0.554) as lower slope reduces flow in different parts of the river.
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Figure 8. Correlation coefficients between sediment Mn (a) and SW Mn (b) and SW
pH/temperature/EC/TDS and morphology in Mogpog river.

In SW, Mn shows negative correlation to pH (r = −0.313) due to metals being more
soluble in acidic water. River slope has the highest correlation (r = 0.282) among river mor-
phological parameters, followed by sinuosity (r = 0.257), river bends (r = 0.255), river length
(r = 0.102), and width (r = 0.006). Even with weak level correlation between morphological
parameters and SW Mn contamination, it still confirms some association.

Figure 9 presents the correlation coefficients computed for Boac river. Considering
all years, sediment Mn is correlated to pH, EC and TDS of SW, providing similar results
to Ekissi et al. [80] and Ustaoğlu et al. [81]. In some instances the correlation shifted
from negative to positive, such as with pH where it shifted from r = −0.119 in 2019 to
r = 0.202 in 2021 and r = 0.201 in 2022. Results could be affected by the deposition of
sediments along the river that may also have undergone adsorption and/or desorption [82],
especially after the extreme rainfall in 2020 [83,84]. The average correlation for all three
years of temperature, pH, EC and TDS to sediment Mn is 0.067, 0.142, −0.217, and −0.236,
respectively. Ekissi et al. [80] also had negative correlations between metal concentration
and EC and TDS, and positive correlations with pH.
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Figure 9. Correlation coefficients between sediment Mn (a) and SW Mn (b) and SW
pH/temperature/EC/TDS and morphology in Boac river.

In terms of river morphology, sediment Mn has the highest correlation to river bends
(r = 0.421, moderate), followed by sinuosity (r = 0.403, moderate). This matches the
observations by Xiao et al. [27] who attributed the increase of Mn in sediments to sinuosity.
River length and river slope have weak correlations with r = 0.225 and r = 0.254, respectively.
Lastly, river width exhibits an inverse correlation to sediment Mn with r = −0.121.

In contrast to sediment Mn, Mn in SW is correlated to pH (r = −0.606) and temperature
(r = −0.514). This again suggests that rivers with lower pH tend to be highly contaminated
with Mn, as water with low pH increases the solubility of metals [85]. For river morphology,
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unlike in sediments, river slope has the highest correlation (r = 0.716) to Mn, followed
by sinuosity (r = 0.505), river bends (r = 0.478), river length (r = 0.334), and river slope
(r = −0.519). This demonstrates that river morphology greatly impacts Mn accumulation
in SW along Boac river.

The correlation results for both rivers indicate that river morphology significantly
affects metal, in this case Mn, contamination in different portions of the river. River bends
and sinuosity are the leading parameters that have the highest correlation with sediment
and SW contamination in both rivers. Physical features of the river could inform how, and
possibly where, heavy metal contamination could take place. Complete correlation results
are presented in Appendix A, Tables A3 and A4.

3.4. Contamination Factor

Figure 10 illustrates the calculated CF for sediment Mn within each river segment
in Mogpog and Boac rivers. The 2019 CF in Mogpog river indicates that 5/15 segments
(M1–M5) are moderately contaminated, 5/15 (M11–M15) are highly contaminated, and
5/15 (M6–M10) have very high contamination. The very high contamination occurs at
mid-stream where many bends exist. The Boac river exhibits high contamination at 13/22
segments (B10–B22), while 9/22 (B1–B9) exhibit very high contamination, which are the
most upstream segments that also coincide with a number of large bends.
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The 2021 sediment Mn CF levels decreased in both rivers due to the extreme rainfall
in 2020 that may have desorbed and transported the sediments. In Mogpog river, all
segments now have moderate contamination, aside from the highly contaminated segments
with some of the largest river bends (M9–M11). Boac river experienced a decrease in CF
level in the upstream segments (B1–B9), from very high to high contamination, and the
two most downstream segments (B21–B22) from high to moderate contamination. In
2022, sediment Mn in 11/15 segments in Mogpog river exhibit moderate contamination,
with high contamination occurring downstream (M14–M15), which could be the result of
extreme rainfall events that pushed contaminated sediments downstream. The midstream
segments M6 and M7 exhibit very high contamination, which is correlated to the number
of bends. The 2022 CF in Boac river continued to decrease, now having 7/22 (B1–B2, B15,
B19–B22) having moderate contamination, compared to 0/22 in 2019.

The maps in Figure 8 again indicate that spatial and temporal sediment Mn accumula-
tion is affected by the planform and/or river morphology. Even in 2021, following high
flows in 2020, high Mn levels remain in portions of the river with many bends. Further-
more, even after 25+ years since the mining disasters, sediment Mn has remained high in
both rivers.

Figure 11 shows the CF for SW Mn for each river segment in 2019 and 2021. In 2019,
the majority of river segments exhibited low contamination, particularly in Boac river
with 20/22 segments. Boac river has lower sinuosity and river bends than Mogpog river,
likely causing this relatively lower contamination. In 2021, a dramatic increase in CF
levels occurred, with all segments in both rivers now exhibiting very high contamination.
This is evidence of the impacts of high rainfall events and mine pit overflow, and possibly
discharge of contaminated groundwater from the underlying aquifer. The highest CF values
were found in M6 and M7 along Mogpog and B1 to B6 along Boac, with Mn accumulation
correlated to river morphology within these segments.
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4. Discussion

In this study, extensive data were collected and analyzed to determine the relationship
of elevated Mn with river morphology. Mn concentrations measured in the rivers are
significantly greater than the limits permitted by WHO and can adversely impact water
quality and aquatic life [86] and provide significant risk to human health. For example,
direct contact to open wounds [87] or water consumption can put children at risk of
Mn-induced neurotoxicity [88].

Very high concentrations of Mn in sediment were measured in Mogpog and Boac in
2019, with highest Mn at midstream in Mogpog (2948.61 mg/kg) and at the most upstream
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in Boac (3068.79 mg/kg). High Mn concentrations can be retained in river sediments due
to their small particle size and corresponding high surface area that can adsorb metal
concentration [30]. In 2021 and 2022, sediment Mn concentrations decreased along both
rivers, with highest concentrations shifted to downstream (Mogpog) and midstream (Boac),
suggesting sediment movement. This is supported by the occurrence of extremely high
precipitation events and high river flows between 2019 and 2021.

While Mn concentrations in sediment decreased from 2019 to 2021, Mn concentrations
in SW significantly increased. Miranda et al. [28] and Haimann et al. [29] showed that
dissolved metals such as Mn do not only adsorb to sediments but also desorb. Adsorption
and desorption greatly affects contaminant transport in rivers, and likely the cause of
changes in Mn over time, shifting between sediment and SW. Furthermore, pH values as
low as 3.7 was observed in the rivers, and it is known that lower pH can generate higher
rates of sediment desorption and the release of metals in water [73,85,89].

This study has shown that Mn accumulation in rivers is not only governed by chemical
reaction, but also by the hydrodynamics of the river, where river morphology can affect
metal transport and/or change the zones of sediment deposition over time [90]. River
length, slope, width, bends, and sinuosity were the key morphological parameters that
were compared with Mn accumulation over time in Mogpog and Boac rivers. The highest
correlation with sediment Mn accumulation were river bends (r = 0.389) and sinuosity
(r = 0.378), with these parameters directly impacting sediment deposition. The highest cor-
relation with Mn accumulation in SW were river slope (r = 0.500) and sinuosity (r = 0.381).
River slope directly affects flow velocity, and as metals are basically suspended or dissolved
in water [91], they are being carried along with this flow. In terms of sinuosity, sediment de-
posits are usually higher in sinuous sections compared to straight reaches, thereby causing
higher contamination, as shown in the study of Ciszewski et al. [92].

Adequate characterization of river morphology does not require excessive effort or ex-
pensive equipment, and it can be highly beneficial in the development and implementation
of mitigation strategies. In terms of future morphological changes that may occur along
rivers, the effects by climate change should be considered. Temperatures rise and severe
flooding occurring in rivers [93,94] can induce morphological changes and alter the asso-
ciated stimulation of Mn accumulation [17]. In a river exposed to an identified pollutant
source such as the mine pit that continuously discharges toxic waste to the environment, it
is important to identify how and where these pollutants will accumulate. The toxic waste
flows downstream from the mine pit and its distribution will be greatly affected by river
morphology, and by the adsorption-desorption processes within sediments. Knowledge on
this relationship of metal accumulation and river morphology would help the local govern-
ment to design and implement effective mitigation strategies at the river. Further, conduct
of a separate study that focuses on the bioavailability of Mn and other heavy metals could
be useful in understanding the relationship of metals concentrations, its biodegradation
rate, and possible risks to human and environment.

5. Conclusions

This study shows that river morphology can control sediment deposition and strongly
influence Mn accumulation in sediments and SW. Overflow from the mine pits is a direct
contributor of Mn as it will quickly contaminate the adjacent rivers. Mn absorbed to the
sediments is also a big contributor to Mn in SW through adsorption-desorption processes,
especially as it is not dependent on rainfall events unlike pit overflow. As river morphology
affects the deposition and accumulation of sediments along the river, it also affects Mn
concentration in sediments, and consequently Mn in SW. This possible interchange of
Mn between sediment and SW was shown in this study with the highest sediment Mn in
Mogpog and Boac rivers measured in 2019, followed by the lowest sediment Mn in 2021.
In direct contrast, Mn in the SW of Mogpog and Boac was lowest in 2019 and highest in
2021. It should be noted that even when sediment Mn and SW Mn were at their lowest
in 2021 and 2019, respectively, they still exceeded the limits of WHO for safe human
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consumption. In terms of river morphology, sediment Mn has the highest correlation to
sinuosity (Mogpog r = 0.352, Boac r = 0.403) and river bends (Mogpog r = 0.356, Boac
r = 0.421). On other hand, SW Mn had the highest correlation to river slope (Mogpog
r = 0.282, Boac r = 0.716) and sinuosity (Mogpog r = 0.257, Boac r = 0.505). In 2019, the CF
levels for sediment Mn were highest along river segments with the highest number of bends,
specifically midstream in Mogpog and upstream in Boac. In 2021 and 2022, the highest
CF levels shifted to downstream segments in both rivers, suggesting that contaminated
sediments were transported downstream during the extreme precipitation events that
occurred between 2019 and 2021. The highest retention of Mn occurred at river segments
with the most bends, with the lowest retention along straight flow paths. The CF levels for
SW Mn indicated low contamination in 2019, followed by high contamination in 2021. This
was supported by the corresponding average pH levels in 2019 (6.91) and 2021 (5.9), with
acidic water dissolving more metals in water and promoting desorption in sediments. This
contributed to the Mn increase in SW from 0.024 mg/L in 2019 to 3.01 mg/L in 2021, and
Mn decrease in sediment due to desorption from 1504.67 mg/kg in 2019 to 733.63 mg/kg
in 2021. It should be noted that the increases of Mn concentration in SW would also be
associated with overflow from the mine pits, as higher Mn concentrations in 2021 occurred
after extreme rainfall in 2020 and 2021.

Overall, this study demonstrated the correlation between spatial and temporal vari-
ability of Mn to river morphology. Even though river morphology can be relatively easy to
characterize (e.g., can be done remotely with GIS), the identification of portions along a
river that have the most potential to accumulate high concentrations of Mn, or other metals,
can be highly beneficial to develop effective mitigation strategies.
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Appendix A

Appendix A.1. Spatial Mapping of Manganese

Plan-view spatial maps of Mn concentrations measured in both sediment and SW for
2019, 2021, and 2022 are presented in Figures A1 and A2. As shown in the spatial maps,
higher levels of Mn are concentrated on the bends in the river, especially Mogpog, which
supports the relationship between Mn concentration and river planform. It is also evident
that the physicochemical properties of SW, such as pH, are related to Mn accumulation.
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Appendix A.2. Spatial Mapping of pH, Temperature, EC and TDS

Plan-view spatial maps of pH, temperature, EC, and TDS are presented in Figures A3–A6.
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Appendix A.3. Summary of Statistics for Sediment and Surface Water Parameters

Tables A1 and A2 presents the statistics of the measured parameters for each year in
Mogpog and Boac rivers, respectively, for sediment Mn, SW Mn, and the pH, temperature,
EC and TDS of SW. Mogpog river exhibited the highest average reading of sediment Mn
(1504.67 mg/kg) in 2019, while it had the highest average SW Mn (3.01 mg/L) in 2021.
Similarly, Boac river had its highest average sediment Mn of 1830.04 mg/kg in 2019, with
the highest average SW Mn of 3.00 mg/L in 2021. The USEPA limit for sediment Mn and
SW Mn is 300 mg/L and 0.05–0.3 mg/L, respectively. Therefore, it is evident that the 2019
sediment Mn and 2021 SW Mn for both Mogpog and Boac were almost 10 times greater the
limit, highlighting the scale of the problem.

The lowest pH readings were detected in 2021 (3.74) and 2022 (4.68) in Mogpog, which
were also below WHO limits. Low pH readings were also detected in both abandoned
mine pits.

In Mogpog river, average termperatures measured for 2019, 2021 and 2022 were 31.61 ◦C,
31.00 ◦C and 29.17 ◦C, respectively, while in Boac river it was 30.85 ◦C, 31.78 ◦C, and 27.48 ◦C,
respectively. The average EC in Mogpog river was 949.13 mS/cm, 713.50 mS/cm, and
513.9 mS/cm for 2019, 2021 and 2022, respectively, while in Boac River, it was 705.94 mS/cm,
840.07 mS/cm, and 595.88 mS/cm, respectively. These average EC readings were below
the WHO limits of 1500 mS/cm, though some segments were above the limits such as
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4134.19 mS/cm in Boac river in 2021, and 2222.80 mS/cm in Mogpog river in 2019. The
average TDS along Mogpog river had an average reading of 466.18 mg/L, 345.08 mg/L,
and 247.18 mg/L for 2019, 2021, and 2022, respectively, while the average TDS along Boac
river was 342.28 mg/L, 409.24 mg/L, and 338.08 mg/L, respectively. The WHO limit for
TDS is 1200 mg/L, so all TDS readings in both rivers are acceptable, except for a single
segment in Boac river in 2021.

Table A1. Summary of the statistics for the sample results from Mogpog river.

Year Mn in Sediments
(mg/kg)

Mn in
SW (mg/L) pH Temperature

◦C
EC

(mS/cm)
TDS

(mg/L)

2019
Max 2948.61 3.40 7.94 34.16 2222.8 1102.05
Min 590.00 0.024 5.42 29.63 398.45 193.60

Mean 1504.67 0.752 6.91 31.61 949.13 466.18

2021
Max 1091.06 3.37 7.17 32.49 1004.7 489.32
Min 409.72 2.74 3.74 29.62 573.94 274.02

Mean 733.63 3.01 5.90 31.00 713.5 345.08

2022
Max 2438.96

-
7.57 30.12 751.06 383.81

Min 452.85 4.68 28.42 471.3 223.30
Mean 967.26 6.41 29.17 513.9 247.18

Table A2. Summary of the statistics for the sample results from Boac river.

Year Mn in Sediments
(mg/kg)

Mn in
SW (mg/L) pH Temperature

◦C
EC

(mS/cm)
TDS

(mg/L)

2019
Max 3068.78 0.875 7.70 31.68 1160.98 570.27
Min 1107.04 0.007 6.63 29.95 539.15 258.00

Mean 1830.04 0.134 7.27 30.85 705.94 342.28

2021
Max 1287.08 3.49 8.27 33.45 4134.19 2052.22
Min 726.47 2.36 5.17 30.55 140.74 65.03

Mean 1067.54 3.00 7.37 31.78 840.07 409.24

2022
Max 1270.80

-
8.27 28.22 1283.63 671.59

Min 792.03 5.91 26.48 373.57 228.71
Mean 990.40 7.31 27.48 595.88 338.08

Table A3. Correlation coefficients between sediment Mn and SW Mn and SW
pH/temperature/EC/TDS and morphology in Mogpog river.

Temp. EC pH TDS River
Slope

River
Bends

Channel
Width

Channel
Length Sinuosity

Sed 2019 0.131 0.336 0.166 0.337 −0.585 0.392 0.060 0.223 0.361
2021 0.712 −0.789 0.801 −0.784 −0.675 0.306 0.285 0.232 0.404
2022 0.415 −0.287 0.360 −0.305 −0.401 0.370 −0.147 0.505 0.293

Average 0.420 −0.247 0.443 −0.251 −0.554 0.356 0.066 0.320 0.352
SW 2019 −0.063 −0.100 −0.771 −0.098 0.608 0.245 0.207 −0.055 0.234

2021 0.193 −0.194 0.144 −0.190 −0.044 0.265 −0.194 0.258 0.281
Average 0.065 −0.147 −0.313 −0.144 0.282 0.255 0.006 0.102 0.257
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Table A4. Correlation coefficients between sediment Mn and SW Mn to pH/temperature/EC/TDS
and morphology in Boac river.

Temp. EC pH TDS River
Slope

River
Bends

Channel
Width

Channel
Length Sinuosity

Sed 2019 −0.417 0.588 −0.119 0.585 0.741 0.395 −0.519 0.223 0.385
2021 0.432 −0.735 0.202 −0.735 0.086 0.385 0.054 0.338 0.450
2022 0.187 −0.505 0.201 −0.557 −0.066 0.482 0.102 0.114 0.374

Average 0.067 −0.217 0.142 −0.236 0.254 0.421 −0.121 0.225 0.403
SW 2019 −0.530 0.528 −0.637 0.528 0.811 0.641 −0.698 0.411 0.475

2021 −0.498 0.003 −0.574 0.007 0.622 0.314 −0.341 0.258 0.536
Average −0.514 0.266 −0.606 0.268 0.716 0.478 −0.519 0.334 0.505

Appendix B

Appendix B.1. Precipitation Records

Figure A7 plots the rainfall amount from 2019 to 2022.
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85. Król, A.; Mizerna, K.; Bożym, M. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. J.
Hazard. Mater. 2020, 384, 121502. [CrossRef]

86. Gheorghe, S.; Stoica, C.; Vasile, G.G.; Nita-Lazar, M.; Stanescu, E.; Lucaciu, I.E. Metals toxic effects in aquatic ecosystems:
Modulators of water quality. Water Qual. 2017, 60–89. [CrossRef]

87. Jones, E.M.; Cochrane, C.A.; Percival, S.L. The effect of pH on the extracellular matrix and biofilms. Adv. Wound Care 2015,
4, 431–439. [CrossRef]

88. Wasserman, G.A.; Liu, X.; Parvez, F.; Ahsan, H.; Levy, D.; Factor-Litvak, P.; Kline, J.; van Geen, A.; Slavkovich, V.; Lolacono, N.J.;
et al. Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 2006,
114, 124–129. [CrossRef]

89. Saalidong, B.M.; Aram, S.A.; Otu, S.; Lartey, P.O. Examining the dynamics of the relationship between water pH and other water
quality parameters in ground and surface water systems. PLoS ONE 2022, 17, e0262117. [CrossRef] [PubMed]

90. Richman, L.A.; Dreier, S.I. Sediment contamination in the St. Lawrence River along the Cornwall, Ontario waterfront. J. Great
Lakes Res. 2001, 27, 60–83. [CrossRef]

https://doi.org/10.3390/ijerph16030336
https://doi.org/10.3390/w13091192
https://doi.org/10.1029/2019WR026245
https://doi.org/10.1016/j.gloplacha.2022.103753
https://doi.org/10.1007/s00254-002-0717-6
https://doi.org/10.3390/w11040656
https://doi.org/10.1155/2018/7597640
https://doi.org/10.1016/j.apgeochem.2019.104500
https://doi.org/10.1016/j.scitotenv.2010.02.017
https://doi.org/10.1016/j.jhydrol.2006.11.002
https://doi.org/10.1038/s41598-022-12996-7
https://www.ncbi.nlm.nih.gov/pubmed/35655079
https://doi.org/10.1016/j.aqpro.2015.02.009
https://doi.org/10.1016/j.earscirev.2014.06.001
https://doi.org/10.12691/jephh-9-2-1
https://doi.org/10.1016/j.iswcr.2018.09.001
https://manuals.mikepoweredbydhi.help/2019/General/HeavyMetal.pdf
https://manuals.mikepoweredbydhi.help/2019/General/HeavyMetal.pdf
https://www.worldweatheronline.com/boac-weather-averages/marinduque/ph.aspx
https://www.worldweatheronline.com/boac-weather-averages/marinduque/ph.aspx
https://doi.org/10.1016/j.scitotenv.2017.06.049
https://doi.org/10.1016/j.jhazmat.2019.121502
https://doi.org/10.5772/65744
https://doi.org/10.1089/wound.2014.0538
https://doi.org/10.1289/ehp.8030
https://doi.org/10.1371/journal.pone.0262117
https://www.ncbi.nlm.nih.gov/pubmed/35077475
https://doi.org/10.1016/S0380-1330(01)70623-5


Sustainability 2023, 15, 8276 26 of 26

91. Nasrabadi, T.; Ruegner, H.; Schwientek, M.; Bennett, J.; Fazel Valipour, S.; Grathwohl, P. Bulk metal concentrations versus total
suspended solids in rivers: Time-invariant & catchment-specific relationships. PLoS ONE 2018, 13, e0191314.

92. Ciszewski, D.; Grygar, T.M. A review of flood-related storage and remobilization of heavy metal pollutants in river systems.
Water Air Soil Pollut. 2016, 227, 239. [CrossRef]

93. Monjardin, C.E.; Cabundocan, C.; Ignacio, C.; Tesnado, C.J. Impact of climate change on the frequency and severity of floods in
the Pasig-Marikina river basin. E3S Web Conf. 2019, 117, 00005. [CrossRef]

94. Monjardin, C.E.F.; Bacuel, A.C.; Rubin, N.K.; Tiongson, M.A.J.; Valdecanas, G.; Yamat, R.U. (2018, December). Effect of climate
change to Ambuklao reservoir, simulation of El Niño and La Niña. AIP Conf. Proc. 2018, 2045, 020064.

95. World Weather Online. Available online: https://www.worldweatheronline.com/mogpog-weather-averages/marinduque/ph.
aspx (accessed on 15 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11270-016-2934-8
https://doi.org/10.1051/e3sconf/201911700005
https://www.worldweatheronline.com/mogpog-weather-averages/marinduque/ph.aspx
https://www.worldweatheronline.com/mogpog-weather-averages/marinduque/ph.aspx

	Introduction 
	Materials and Methods 
	Study Site Description 
	Spatio-Temporal Assessment Framework 
	Field Sampling 
	Surface Water and Sediment Analysis 
	GIS Spatial Analysis 
	River Segmentation 
	Assessment of River Morphology 
	Correlation Analysis 
	Contamination Factor 


	Results 
	Sediment and Surface Water Quality 
	River Morphology 
	Degree of Correlation between Mn, pH, EC, TDS and River Morphology 
	Contamination Factor 

	Discussion 
	Conclusions 
	Appendix A
	Spatial Mapping of Manganese 
	Spatial Mapping of pH, Temperature, EC and TDS 
	Summary of Statistics for Sediment and Surface Water Parameters 

	Appendix B
	Precipitation Records 

	References

