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Abstract: The increasing installed volume of grid-connected PV systems in modern electricity net-
works induces variability and uncertainty factors which must be addressed from several different
viewpoints, including systems’ protection and management. This study aims to estimate the actual
performance and degradation of photovoltaic (PV) parks in Central Greece after several years of
operation. Monitoring data over several years are analyzed and filtered, the performance ratio and
normalized efficiency are computed, and five different ANNs are employed: (i) a feed-forward
network (one hidden layer); (ii) a deep feed-forward network (two hidden layers); (iii) a recurrent
neural network; (iv) a cascade-forward network; and (v) a nonlinear autoregressive network. The
following inputs are employed: in-plane irradiance; backsheet panel temperature; airmass; clearness
index; and DC voltage of the inverter. Monitoring data from an 8-year operation of a grid-connected
PV system are employed for training, testing, and validation of these networks. They act as a baseline,
built from the first year, and the computed metrics act as indicators of faults or degradation. Best
accuracy is reached with the DFFNN. The ANNs are trained with data from the first year of operation,
and output prediction is carried out for the remaining years. Annual electricity generation exceeds
1600 kWh /kWp, and MAPE values show an increasing trend over the years. This fact indicates a
possible change in PV performance.

Keywords: photovoltaics; air mass; forecasting; degradation; neural networks

1. Introduction

The substitution of renewable energy sources to the electricity grid has been remark-
able during the last decade in Europe and elsewhere. European and international legislation
for a decrease in greenhouse gas emissions played an important role in this expansion.
According to IRENA, at the end of 2021, the capacity of installed global renewable energy
reached 3064 GWp. This number comprises about 40% hydropower, 28% solar power, 27%
wind power, and 5% other renewable power sources [1]. Renewable electricity production
capacity has also shown a significant increase in Greece, where 41.48% of total electricity
was generated from renewable energy sources (RES) in 2021 [2]. A remarkable number
of fossil-fuel power-generation plants have been phased out from the Greek system. This
has resulted in excessive electricity prices in the market as it coincided with significant
increases in international natural gas prices in 2022, causing a new energy crisis that is yet
to be contained. This situation creates challenges for further renewable energy investments,
especially in photovoltaic (PV) systems.

1.1. Photovoltaic Systems Applications

An intense interest for investment is observed in this area by citizens, companies,
energy communities, and the public sector. There are different modes of photovoltaic
application contracts in Greece. Net metering, virtual net metering for energy communities,
feed-in tariffs, and feed-in premiums are the main modes for grid-connected systems in
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both plants and buildings with a typical lifespan of 20–25 years. PV systems mainly support
distributed energy generation to achieve effective integration into grids and micro-grids.
There are a large number of studies one could cite as examples, which address the combina-
tion of ground-coupled heat pumps for upgraded post-COVID-19 ventilation systems [3],
rooftop PV combination with hybrid condensing radiant tubes’ heating systems [4], and
incorporation into residential buildings with air-to-water heat pump systems [5]. Acceler-
ated vehicle electrification is pushing for further expansion of PV systems. This includes
smart office buildings’ energy systems with rooftop PV systems exploiting electric vehi-
cle battery storage [6], innovative building blocks in Germany with combined heat and
power (CHP), battery storage and exploitation of electric vehicles storage [7], and modular
packages of electric vehicle charging stations in China, designed to charge 1000 electric
vehicles using PV and battery energy storage systems [8]. PV systems in combination with
large-capacity battery systems is another important application area [9]. Here, an efficient
energy management system that handles on-site PV production with battery energy storage
minimizes power exchange with the grid. Interest in classic investments in PV parks is
significant and exploits double utilization of land with agrivoltaics, which utilize the land
around the PV panels for food-producing crops [10]. Jamil et al. studied the potential
of agrivoltaics in Canada using bifacial PV for single-axis tracking and vertical system
configurations [11]. The combination of photovoltaic systems with hydrogen systems is
gaining increased popularity in research. Important technical parameters of an integrated
PV–hydrogen system include the PV tracking system coefficient, PV conversion efficiency,
electrolyzer efficiency, and electrolyzer degradation coefficient [12]. Other studies have an-
alyzed a PV-based fuel-cell power system [13], a CES (composite energy station) combined
with a PV power-generation system, fuel cell, hydrogen production, hydrogen storage,
hydrogenation, and charging, in order to supply energy for electric vehicles (EVs) and
hydrogen fuel-cell vehicles (HFCVs) [14].

Now, the uncertainty in predicting solar radiation is a major issue affecting the success-
ful forecasting PV power output, which is essential to sizing, control system optimization,
and economic analysis of the above-mentioned systems. Exploitation of data from grid-
connected photovoltaic systems is a valid approach that provides significant information
regarding this problem. Furthermore, performance analysis of grid-connected PV systems
supports PV power forecasting. Economic evaluation of this type of project depends on
a good understanding and modeling of degradation of photovoltaic systems that should
rely on actual performance data. In the real world environment, all kinds of modules
exhibit lower efficiency compared to the manufacturers’ specifications [15]. Performance
analysis gives a clear view of systems’ performance under real life conditions. Thus, it is an
important task to be tackled with scientifically sound approaches with an important impact
on both the design and evaluation stages of new and existing plants.

1.2. Photovoltaic Performance Analysis Approaches

Performance analysis is based on mathematical models, linear regression models, and
the use of specialized software and is widely supported by the use of neural networks.

Neural networks (NNs) have proven invaluable to the performance analysis of re-
newable energy sources, especially photovoltaics and power forecasting of generation
and consumption. All the applications differ in various aspects, e.g., input data, data
preprocessing, ANN type and structure, parameter configuration, hybrid application, and
performance [16]. The primary neural network types utilized for power forecasting include
multi-layer perceptron (MLP), the feed-forward deep neural network (DNN [17]), long
short-term memory networks (LSTMs), and convolutional neural networks (CNNs) [17].
Power-generation forecasting studies of PV systems use different types of NNs, with a
selection from several inputs and outputs. A distinction of the various approaches is based
on the type and standardization of available data. López Gómez et al. combined data from
a numerical weather prediction model with an artificial neural network (ANN) model in
order to forecast power generation from a PV system using actual temperature and solar
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irradiation data [18]. Gopi et al. developed a PV system annual yield and performance
ratio (PR) forecasting model based on three environmental input parameters: solar irra-
diance, wind speed, and ambient air temperature. They employed data from a 2 MWp
grid-connected PV system and three different machine-learning techniques: an adaptive
neuro-fuzzy inference system (ANFIS); response surface methodology (RSM), which is a
combination of statistical and mathematical approaches and allows one to determine the
independent variable that, when changed, results in the responsible variable having an
optimal value; and an ANN [19]. Kolsi et al. compared various artificial intelligence (AI)
models based on daily data and seven seasonal models were employed to predict solar
potential: simple average (SA); simple moving average (SMA), nonlinear autoregressive
(NAR); support vector machine (SVM); Gaussian process regression (GPR); and NN. The
results were evaluated based on the root mean square error (RMSE) and mean absolute
percentage error (MAPE [20]). Lim et al. proposed a hybrid CNN–LSTM model. The
CNN classifies weather conditions, while the LSTM is trained to classify power-generation
characteristics. Typical results produce an MAPE of 4.58% on a sunny day and 7.06% on a
cloudy day [21]. Suresh et al. proposed a convolutional neural network (CNN) approach
consisting of different architectures, namely multi-headed CNN and CNN–LSTM based on
data preprocessing techniques to make accurate forecasts using irradiance, module temper-
ature, ambient temperature, and wind speed for short-term forecasting [22]. Andrade et al.
used an MLP, RNN, and LSTM to forecast photovoltaic energy from data collected from the
PV system in Brazil. The MLP performed adequately, requiring less training time [23]. Kim
et al. proposed a combination of a two-step NN bi-directional long short-term memory
(BD-LSTM) model with an ANN model using exponential moving average (EMA) prepro-
cessing of historical hourly input data of horizontal radiation, ambient temperature, and
surface temperature [24]. Preda et al. proposed an SVM, and data were collected from a
cheap data logger and from an API weather station with good prediction results in the
estimation of the PV generated power, supporting micro-grid operation [25]. Meltek et al.
proposed a model to predict the effect of the panel electric power of a photovoltaic thermal
(PV-T) system using LSTM and MLF. Mean absolute error (MAE), RMSE, MAPE, and R2

correlation coefficients were used as performance metrics [26].
Another important aspect of performance analysis is fault detection using neural

networks, IR-thermography electroluminescence images, or a combination thereof. Neural
network fault diagnosis of PV systems is generally based on historical data, relevant data
related to voltage, current, power, and I–V curves. Images are also employed as inputs [27].
Samara et al. proposed a fault-diagnosis algorithm based on a nonlinear autoregressive
exogenous (NARX) neural network that can detect multiple faults, such as open and short-
circuit degradation, faulty maximum power point tracking (MPPT), and conditions of
partial shading [28]. Onim et al. proposed a CNN to detect dust accumulation on PV panels
using a dataset of images of dusty and clean panels. The results demonstrated high accuracy
levels [29]. Selvaraj et al. proposed a method for accurate diagnosis of environmental faults
using CNN and thermal images for classification of these faults [30]. Lu et al. proposed
a fault-diagnosis method to diagnose different PV faults using a proposed dual-channel
CNN, which automatically extracts features and weights them to diagnose partial shading
conditions and open-circuit faults [31]. Yu et al. proposed dimension-reduction technology
mapping multiple-sequence signals to a sequence of images processed by a CNN. Validation
carried out on self-made solar power stations proved to be effective in identifying key
operation conditions from historical data with negligible loss of features at the presence
of mismatched phenomena [32]. Dust accumulation is an important factor; thus, many
researchers use neural networks in order to study this effect [33,34].

Except from ANNs, performance analysis procedures are based on statistical or other
performance metrics. Most of these approaches are based on comparative analysis. Iqbal
et al. proposed a fault-detection method based on string level comparison of DC power of
actual and simulated PV plants with the aid of a statistical tool based on Student’s t-test [35].
Minai et al. analyzed performance data of a 467.2 kWp grid-connected PV system using array,
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inverter and system efficiency, performance ratio (PR), and capacity utilization factor (CUF).
These parameters are evaluated and compared with similar systems in different regions
of the world [36]. Karahüseyin et al. analyzed the performance of a mid-scale crystalline
silicon (c-Si) PV system with different orientations and tilt angles in the same region for
four years of outdoor exposure, using statistical methods to calculate PLRs; seasonal and
trend decomposition using locally weighted scatterplot smoothing (STL); classical seasonal
decomposition; and year-on-year methods coupled with PR, temperature-corrected PR, and
weather-corrected PR [37]. Agyekum et al. used the PR, degradation, energy-loss prediction,
and the PVsyst simulation model to study the performance of solar photovoltaic (PV)
modules under Russian weather conditions [38]. Shin et al. proposed a weather-corrected
index, linear regression method, temperature-correction equation, estimation error matrix,
clearness index and proposed variable index, a one-class support vector machine (SVM)
method, and a kernel technique to classify the fault state and anomaly output power of PV
plants [39]. Phuong Truong et al. presented a method to estimate the yield and analyze the
performance of a grid-connected PV system in a MATLAB/Simulink environment for a
rooftop PV system and a solar farm [40]. Dhimish et al. presented degradation rates over a
10-year span for seven different PV systems located in England, Scotland, and Ireland using
a power-irradiance technique that compares output measured power with a corresponding
irradiance level [41]. Bansal et al. conducted a long-term performance and degradation
study based on IEC standard 61724 guidelines from actual data (incident solar irradiation,
ambient and module temperature and generated electricity) with annual linear degradation
rates found in the range of 0.9 to 1.1% for normal field modules with no visible degradation
and 0.97 to 2.9% for visually degraded modules. Mean and median values were 1.8% and
1.6%, respectively, within a six-year operational period [42].

Despite the significant progress in the performance analysis of PV systems, there exists
ample room for further improvements. It is important to deploy data from grid-connected
PV systems to support the creation of tools that either predict the energy generation of
PV systems or evaluate their performance. Nowadays, PV systems are equipped with
advanced monitoring systems that can collect a variety of useful performance data. There
exist specific studies that propose methods to collect and systematically process these data,
as in [43] where a procedure for the automatic transfer of recorded data is described.

In the present paper, actual data collected from grid-connected photovoltaic systems
in Central Greece are studied by means of several ANN types and statistical analysis. The
objectives of this paper concern the performance evaluation of grid-connected PV systems
after several years of operation, assisted by five different ANN types. The novelty of this
approach lies in the deployment of actual data for 8 years of operation and the careful
selection of inputs for ANN training, taking into account the quality of the atmosphere by
use of clearness index and air mass.

The structure of this paper is as follows. Section 2 presents the methodology, consisting
of three base steps: (i) statistical and efficiency observations of available data; (ii) data
preprocessing; (iii) statistical and efficiency metrics calculations; and (iv) use of five NNs
with five inputs. Section 3 presents the solar potential of Central Greece, observations of
important performance metrics, comparative analysis among the five ANNs, and investiga-
tion into the PV systems’ degradation during the 8-year period. The results are analyzed
and discussed. Conclusions and proposals for future work are presented in Section 4.

2. Materials and Methods

The proposed methodology exploits actual data from grid-connected photovoltaic
systems in Central Greece. A grid-connected 99.84 kWp PV park in Central Greece was mon-
itored. The PV park comprised 416 PV panels on the park, mounted in a fixed south-facing
position at a 25 degree tilt angle. A total of 8 inverters were employed in the DC/AC transfor-
mation, with technical characteristics presented in Appendix A. The following parameters
were monitored in 15 min intervals: solar irradiance; back panel temperature; ambient
temperature; DC voltage to the inverter; and AC power output from the inverter. The data
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employed in the specific work refer to the period from 2013 to 2020. The system’s technical
data and monitoring and measurement equipment are summarized in Appendix A.

2.1. Statistical and Efficiency Observations of Available Data

The first step of the methodology is to observe the dependence of performance on
parameters such as irradiance, clearness index, temperature, and air mass. The main mete-
orological factors affect the solar power forecast in the following descending order: solar
radiation; sunlight; wind speed; temperature; cloud cover; and humidity [44]. Ambient
temperature, solar irradiance, and wind speed as meteorological impact factors of PV
module temperature are affected by each other [45].

2.2. Data Preprocessing

The second step is a preprocessing methodology that acts as a quality-assurance
procedure to the available dataset in order to remove outliers. Data preprocessing in
important because of stationary and non-stationary components in the input data that are
variable and unpredictable due to weather conditions [46]. The accuracy of the forecasting
results is enhanced when preprocessed input data are used [47]. Specific criteria are defined
for cleaning up the data, with regard to irradiance, air mass, and inverter power output.
Recordings with zero values of inverter power output are rejected and the same is carried
out for those with irradiance values <20 W/m2. Air mass is an important indicator taken
into account during data preprocessing. According to previous experience, data records
with AM > 10 are not taken into account.

2.3. Statistical and Efficiency Metrics Calculations

Following preprocessing, performance evaluation metrics were calculated as perfor-
mance ratio calculation (IEC 61724) [48] and normalized efficiency to STC conditions as
described in [49]. It is important to compute energy baseline generation; thus, the applica-
tion of five neural networks was applied using data from the first year of operation. Data
from other years are typically applied in neural networks in order to observe deviation
from actual data. Trained networks include FFANN, DFFNN, RNN, CFFNN, and NARX.
There are five inputs for training and simulation, namely plane irradiance, backsheet panel
temperature, air mass, clearness index, and DC voltage of the inverter. It is important
to introduce information for atmospheric parameters with air mass and clearness index.
Solar spectrum is affected by atmospheric parameters and cloud conditions, which result
in estimation error, and it is necessary to consider the solar spectrum change in highly
accurate PV output forecasting [50].

2.4. Feed-Forward Neural Network (Network1)

One of the most well-known artificial neural networks is a perceptron. It is composed
of an input layer, a hidden layer, and an output layer (see Figure 1, hyper-parameters in
Table 1). The neurons in the layers are linked by synaptic weights. These weights can be
determined with the use of the learning process [51]. There are five inputs for training
and simulation, namely plane irradiance, backsheet panel temperature, air mass, clearness
index, and DC voltage of the inverter. Neural networks consist of one hidden layer with
twenty nodes and one output layer. The Levenberg–Marquardt optimization algorithm is
employed for training.

Figure 1. Feed-forward neural network architecture.
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Table 1. Design parameters of the specific type of FF ANN applied, along with the hyper-parameter
values related to the training procedure.

ANN Type FFANN

ANN dimensions
Inputs 5
Layers 2
Outputs 1
Input delays 0
Layer delays 0
Weight elements 141
ANN connections

Bias connections [1; 1]
Input connections [1; 0]
Layers connections [0 0; 1 0]
Output connections [0 1]
ANN training hyper-parameters

Maximum epochs 1000
Maximum training time Inf
Performance goal 0
Minimum gradient 1.00 × 10−7

Maximum validation checks 10
µk 0.01

µk decrease ratio 0.1
µk increase ratio 10
Maximum µk 1.00 × 1010

2.5. Deep Feed-Forward Neural Network (Network2)

Deep FF ANNs (DFFNNs) are neural networks consisting of more than three layers
(input layer, many hidden layers, and output layer) [52]. A neural network with at least two
layers qualifies as a deep neural network [53]. Inputs for training and simulation include
in-plane irradiance, backsheet panel temperature, airmass, clearness index, and DC voltage
of the inverter. Neural networks consist of two hidden layers with twenty nodes and
one output layer (see Figure 2, hyper-parameters in Table 2). The Levenberg–Marquardt
optimization algorithm is employed for training.

Figure 2. Deep feed-forward neural network architecture.

2.6. Recurrent Neural Network (Network3)

RNNs are an extension of conventional FFNNs, i.e., feedback, which are able to use
the last-time step output as the input at each node [54]. Inputs for training and simulation
include in-plane irradiance, backsheet panel temperature, airmass, clearness index, and DC
voltage of the inverter. Neural networks consist of two hidden layers with twenty nodes and
one output layer (see Figure 3, hyper-parameters in Table 3). The Levenberg–Marquardt
optimization algorithm is employed for training.
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Table 2. Design parameters of the specific type of DFFNN applied, along with the hyper-parameter
values related to the training procedure.

ANN Type DFFNN

ANN dimensions
Inputs 5
Layers 3
Outputs 1
Input delays 0
Layer delays 0
Weight elements 561
ANN connections
Bias connections [1; 1;1]
Input connections [1; 0;0]
Layers connections [0 0 0; 1 0 0;0 1 0]
Output connections [0 0 1]
ANN training hyper-parameters

Maximum epochs 1000
Maximum training time Inf
Performance goal 0
Minimum gradient 1.00 × 10−7

Maximum validation checks 10
µk 0.001

µk decrease ratio 0.01
µk increase ratio 10
Maximum µk 1.00 × 1010

Figure 3. Recurrent neural network architecture.

2.7. Cascade-forward Autoregression Model (Network4)

Cascade-forward neural networks (CFNNs) also consist of input, hidden, and output
layers in which neurons are arranged. In terms of operation, CFNNs are comparable to
FFNNs [55]. Inputs for training and simulation include in-plane irradiance, backsheet panel
temperature, airmass, clearness index, and DC voltage of the inverter. Neural networks
consist of two hidden layers with twenty nodes and one output layer (see Figure 4, hyper-
parameters in Table 4). The Levenberg–Marquardt optimization algorithm is employed
for training.

Figure 4. Cascade-forward neural network architecture.
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Table 3. Design parameters of the specific type of RNN applied, along with the hyper-parameter
values related to the training procedure.

ANN Type RNN

ANN dimensions
Inputs 5
Layers 2
Outputs 1
Input delays 0
Layer delays 0
Weight elements 146
ANN connections

Bias connections [1; 1]
Input connections [1; 0]
Layers connections [0 0; 1 0]
Output connections [0 1]
ANN training hyper-parameters

Maximum epochs 1000
Maximum training time Inf
Performance goal 0
Minimum gradient 1.00 × 10−7

Maximum validation checks 6
µk 0.001

µk decrease ratio 0.1
µk increase ratio 10
Maximum µk 1.00 × 1010

Table 4. Design parameters of the specific type of cascade-forward neural network applied, along
with the hyper-parameter values related to the training procedure.

ANN Type CFNN

ANN dimensions
Inputs 5
Layers 2
Outputs 1
Input delays 0
Layer delays 1
Feedback delays 1
Weight elements 541
ANN connections

Bias connections [1; 1]
Input connections [1; 0]
Layers connections [0 0; 1 0]
Output connections [0 1]
ANN training hyper-parameters

Maximum epochs 1000
Maximum training Time Inf
Performance goal 0
Minimum gradient 1.00 × 10−7

Maximum validation checks 10
µk 0.001

µk decrease ratio 0.01
µk increase ratio 10
Maximum µk 1.00 × 1010

2.8. Non Linear Autoregression Exogenous (Network5)

NARX is a recurrent dynamic neural network, has feedback connections which en-
close several layers of the network for nonlinear time series prediction [56]. NARX is a
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partial recurrent neural network (RNN) as its memory is embedded into the network [57].
Five inputs for training and simulation are employed: in-plane irradiance, backsheet
panel temperature, airmass, clearness index and DC voltage of the inverter. Neural
networks consist of two hidden layers with twenty nodes and one output layer (see
Figure 5, hyper-parameters in Table 5). The Levenberg–Marquardt optimization algorithm
is employed for training.

Figure 5. Nonlinear autoregression exogenous neural network architecture.

Table 5. Design parameters of the specific type of NARX neural network applied, along with the
hyper-parameter values related to the training procedure.

ANN Type NARX

ANN dimensions

Inputs 5
Layers 2
Outputs 1
Input delays 1
Layer delays 2
Feedback delays 2
Weight elements 281
Sample time 1
ANN connections

Bias connections [1; 1]
Input connections [1; 0]
Layers connections [0 0; 1 0]
Output connections [0 1]
ANN training hyper-parameters

Maximum epochs 1000
Maximum training Time Inf
Performance goal 0
Minimum gradient 1.00 × 10−7

Maximum validation checks 6
µk 0.001

µk decrease ratio 0.1
µk increase ratio 10
Maximum µk 1.00 × 1010

The performance analysis methodology involves the application of the first years’
(2013) data in training with the above types of neural network. Five input parameters are
employed: in-plane irradiance; backsheet panel temperature; air mass; clearness index; and
DC voltage of the inverter.

3. Results and Discussion

This section is divided in terms of statistical results of energy generation in correlation
with environment conditions and results from the application of neural network simulation.
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3.1. Statistical and Efficiency Metrics
3.1.1. Energy Generation in Correlation with Environment Conditions

As discussed in Section 2, the correlation of energy production with weather and
atmospheric parameters is important in order to evaluate data. Figure 6 shows that
more than 90% of electricity is generated for air mass values <3. In terms of irradiance
(Figure 7), only 7.5% of electricity is produced at low irradiance levels. Consequently,
rejection of values with irradiance <20 W/m2, which represents 0.1% of energy generation,
was adopted.

Figure 6. Electricity generation distribution among the various air mass classes.

Figure 7. Electricity generation distribution among the various irradiance classes.

Temperature has a negative impact on the energy generation of PV systems. Figure 8
shows that 65% of energy is generated when the temperature is higher from 35 ◦C.
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Figure 8. Electricity generation distribution among the various temperature classes.

3.1.2. Efficiency Metrics

Energy generation from one inverter of nominal power 12.84 kWp fluctuated between
17,986 and 20,111 kWh per year. Furthermore, energy generation per installed DC power
fluctuated between 1437.1 and 1611.5 kWh/ kWp (see Table 6). The maximum generation
was observed during the first year of operation. The analysis procedure was based on
comparison of efficiency metrics of each year with that of the first year.

Table 6. Energy generation from 8-year period.

Year 2013 2014 2015 2016 2017 2018 2019 2020

kWh 20,111 17,986 19,069 19,049 19,498 17,935 18,600 18,816
kWh/kWp 1611.5 1441.2 1528.0 1526.4 1562.4 1437.1 1490.4 1507.7

As observed in Figure 6, the most significant air mass classes are those from 1 to 3. In
these classes, efficiency fluctuated between 12.84–13.86% and 13.07–14.73%, respectively,
according to Table 7. Maximum values were reported during the first year of operation and
lower values were reported during 2019.

Table 7. Averaged efficiency in several air mass classes during 8-year period.

Efficiency

% % % % % % % %

AM 2013 2014 2015 2016 2017 2018 2019 2020
1–2 13.86 13.80 13.72 13.25 13.39 13.25 12.84 13.45
2–3 14.73 14.44 14.39 13.99 13.91 13.99 13.07 14.11
3–4 14.85 14.35 14.59 13.99 14.21 14.04 13.36 14.04
4–5 14.58 14.09 14.00 13.74 13.80 13.66 13.32 13.80

5–10 13.54 13.41 12.96 12.84 13.05 12.94 12.65 13.00
>10 11.74 11.81 11.02 11.04 11.19 11.17 11.02 11.07

In order to decouple the effect of temperature, a normalized efficiency was calculated
(Section 2), which is presented in Table 8. In the first two classes, normalized efficiency
fluctuated between 13.98 to 15.08% and 13.21% to 14.87%, respectively. Maximum values
were reported during the first year of operation and the lowest values were reported during
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2019. It was observed that during 2014, electricity generation values were minimized.
However, efficiency and normalized efficiency values were the maximum values observed
after the first year of operation. This is indicative of the importance of weather conditions
in electricity generation. The stochastic nature of insolation is one of the main problems in
evaluating PV systems’ performance and energy forecasting.

Table 8. Averaged normalized efficiency in several air mass classes during 8-year period.

Normalized Efficiency

% % % % % % % %

AM 2013 2014 2015 2016 2017 2018 2019 2020
1–2 15.08 14.91 14.81 14.39 14.59 14.34 13.98 14.62
2–3 14.87 14.50 14.57 14.10 14.07 14.10 13.21 14.28
3–4 14.67 14.14 14.40 13.80 14.04 13.85 13.22 13.87
4–5 14.28 13.77 13.67 13.44 13.51 13.37 13.06 13.50

5–10 13.12 12.99 12.54 12.44 12.65 12.55 12.29 12.60
>10 11.19 11.26 10.51 10.53 10.68 10.64 10.52 10.53

Another important metric for system evaluation is performance ratio. However, this
metric cannot take into account the temperature effect. Figure 9 presents the evolution of
the daily PR for this period, which was observed to fluctuate from 0.8 to 0.96. The effect
of temperature is clearly depicted in Figure 9, where the PR had a decreasing trend in the
summer months (due to the higher temperature values). Taking into account Figure 8,
where it is observed that an important part of energy generation is produced when the
temperature is higher than 35 ◦C, it seems that PR and efficiency alone cannot provide clear
results. It is important to take into account additional factors during days with specific,
already known faults. Such faults concern problems with the grid, electrical faults, faults in
string fuses, days with snow cover, and problems with sensors in the monitoring system.

Figure 9. Performance ratio variation during the 8-year period.

Figures 10–13 present the measured power and irradiance in correlation with the daily
PR and the Kt daily clearness index. Figure 10 shows observations from spring days when
the clearness index varied from 0.29 to 0.7. These limits differentiate a clear-sky day from a
cloudy day for this period of the year. The performance ratio was observed to fluctuate in a
narrow range from 0.91 to 0.96, indicating the absense of faults.
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Figure 10. Cloudy and sunny days during March of 2013.

Figure 11. Several cloudy days during April 2014.

During cloudy days, the clearness index fluctuated significantly, as depicted in
Figure 11. There were days with significant irradiance fluctuations. For example, ir-
radiance levels were high in the example of 29 April 2014 when the clearness index was
0.42 and the PR was 0.94. On the other hand, during totally cloud covered days, values of
the clearness index at 0.19 to 0.25 were reported.

Comparing clear-sky days during summer (Figure 12) and clear-sky days during
spring (Figure 10), it was observed that values of clearness index fluctuate from 0.5 to 0.7.
Furthermore, PR values are lower during clear-sky summer days compared to the spring’s
clear-sky days.

Clearness index values were reported below 0.1 during totally cloudy days of winter.
On the other hand, values between 0.5–0.65 were observed during clear-sky days. Clearness
index values varied from 0.5 to 0.7 for clear-sky days depending on the month.
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Figure 12. Summer days during July of 2015.

Figure 13. Winter days during winter January–February of 2015.

3.2. Neural Networks Simulation

The proposed methodology is based on the comparative analysis of the application of
neural networks on the available data. First, it is important to observe the NN behavior. To
this end, the predictions of five types of NN were compared with real values for spring
clear-sky days of 2014. Figure 14 shows this comparison for 10 April 2015 to 13 April 2015
when clearness index values were 0.59 to 0.65 and PR values were 0.88 to 0.91, respectively.
A general trend in these clear-sky days is that the MAPE varied from 1.90% (DFANN)
to 3.42% (NARX). Taking account of the MBE metric positive values (Table 9), it is clear
that all networks overestimated power. FFANNs and DFFNNs have lower fluctuations on
performance metrics.



Sustainability 2023, 15, 8326 15 of 26

Figure 14. Predicted and real values of power during clear-sky days of (a) FFNN; (b) DFNN; (c) RNN;
(d) CFN; and (e) NARX.

The goal of the proposed methodology is the long-term performance analysis based
on comparing simulated values with real values of power. The proposed neural network
types were trained with data from the first year of operation, which acted as the baseline
operation. Deviation from baseline values is an indicator of possible faults, degradation
problems, and dust accumulation effects. This section investigates which of the proposed
models is better for baseline.

Furthermore, it is important to evaluate the NN performance for different years.
Figure 15 shows the fluctuation in daily MAPE for five NNs during the year 2014, which
was the first year of evaluation. A box plot (Figure 15) for 2014 shows that the error for
DFFNN and FFANN is lower than the error of the other networks, and the median values
are reported around 3.7%. The MAPE of NARX is reported to be of a higher value during
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2014, especially the median values of around 4.2%, with the next higher values reported for
RNN with median values of around 4.2%. CFN shows slightly higher values than DFFNN
and FFANN with median values of around 3.9%. Figure 15 shows that the MAPE values for
the year of 2014 are reported to be between 3.7% and 4.2%, depending on the type of neural
network. The pattern of these differences is examined next for several years of operation.

Table 9. Comparison between five neural networks in terms of performance metrics during
spring of 2015.

Network RMSE MBE MAPE MAE n RMSE

W W % W

10 April 2015

FFANN 117 49 2.26 102 0.0011
DFFNN 97 1 2.28 81 0.0009

RNN 89 4 2.46 78 0.0008
CFN 113 27 2.05 88 0.0010

NARX 191 113 3.42 161 0.0018

11 April 2015

FFANN 152 109 2.90 130 0.0014
DFFNN 140 93 2.54 120 0.0013

RNN 153 113 2.86 130 0.0014
CFN 153 107 3.08 130 0.0014

NARX 149 109 3.21 129 0.0013

12 April 2015

FFANN 127 102 2.02 111 0.0012
DFFNN 128 102 2.22 112 0.0012

RNN 128 103 2.30 113 0.0012
CFN 126 97 2.70 109 0.0012

NARX 123 101 2.44 108 0.0011

13 April 2015

FFANN 105 71 2.58 96 0.0010
DFFNN 103 73 1.90 89 0.0010

RNN 114 82 2.33 100 0.0011
CFN 114 80 2.75 103 0.0011

NARX 119 94 2.60 103 0.0011

Figure 15. Comparison of five networks during 2014 in terms of MAPE.

Figure 16 follows, in general, the same pattern as far as differences between networks
is concerned. The DFFNN and FFANN have lower errors than the other networks, and
median values are reported to be around 4.3%. The MAPE of RNN is reported to be of a
higher value during 2015, especially the median values of around 4.9%, with the next higher
values reported for NARX with median values of around 4.8%. The CF ANN shows slightly
higher values than the DFFNN and FFANN with median values around 4.5%. Figure 16
shows that the MAPE values for 2015 year are reported to be between 4.3 and 4.8%,
depending on the type of neural network. Comparing Figure 15 with Figure 16, slightly
lower MAPE values can be observed, ranging from 3.7–4.2% to 4.3–4.8%. Comparing the
evolution of the performance of each network between 2014 and 2015, an increasing trend
in all networks is observed.
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Figure 16. Comparison of five networks during 2015 in terms of MAPE.

Figure 17 generally follows the same pattern as far as differences between the networks
are concerned. The DFFNN and FFANN are lower in terms of error values than the other
networks, and median values are reported to be around 5.1%. The MAPE of the RNN is
reported to be of a higher value during 2016, especially the median values of around 5.6%,
with the next higher values reported for NARX with median values of around 5.6%. The
CFN shows slightly higher values than the DFFNN and FFANN with median values of
around 5.3%. Figure 17 shows that the MAPE values for the 2016 year are reported to be
between 5.1 and 5.6%, depending on the type of neural network. Comparing Figure 17 with
Figure 15, however, the MAPE is about 1.5 units higher compared to 2014 for all networks
from 3.7–4.2% to 5.1–5.6% in terms of median values.

Figure 17. Comparison of five networks during 2016 in terms of MAPE.

The same pattern between networks behavior is also observed in Figure 18. The
DFFNN with median values of MAPE at 4.2% and the FFANN with median values of
MAPE at 4.4% are lower in terms of error than the other networks. The MAPE of NARX
is reported to be of a higher value during 2017, especially the median values of around
4.8%, with the next higher values reported for the RNN with median values of around
4.6%. The CFN shows slightly higher values than DFFNN and FFANN with median values
of around 4.5%. Figure 18 shows that the MAPE values for the 2017 year are reported to be
between 4.2 and 4.8%, depending on the type of neural network. However, the time values
are lower compared to 2016, higher compared to 2014, and at the same level as 2015.

Figure 19 presents results from 2018. The DFFNN with median values of MAPE at
5.4% and the FFANN with median values of MAPE at 5.5% are lower in terms of error
than the other networks. The MAPE of the RNN is reported to be of a higher value during
2018, especially the median values of around 5.8%, with the next higher values reported for
NARX with median values of around 5.7%. The CFN shows slightly higher values than the
DFFNN and FFANN with median values of around 5.6%. Figure 19 shows that the MAPE
values for the 2018 year are reported to be between 5.4 and 5.8%, depending on the type of
neural network.
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Figure 18. Comparison of the five networks’ performance during 2017 in terms of MAPE.

Figure 19. Comparison of the five networks’ performance during 2018 in terms of MAPE.

Figure 20 presents results from 2019. The DFFNN and FFANN with median values
of MAPE at 6.2% are lower in terms of error than the other networks. The MAPE of the
RNN and NARX is reported to higher in value during 2019, especially median values of
around 6.6%, with the next higher values reported for the CFN that shows median values
of around 6.5%. Figure 19 shows that the MAPE values for the 2019 year are reported to be
between 6.2 and 6.6%, depending on the type of neural network.

Figure 20. Comparison of the five networks’ performance during 2019 in terms of MAPE.

Figure 21 presents results from 2020. The DFFNN and CFN with median values of
MAPE at 5.3% and the RNN with median values of MAPE at 5.5% are lower in terms
of error than the other networks. The MAPE of NARX is reported to be of higher value
during 2020, especially median values of around 5.9%, with the next higher values reported
for FFANN that shows median values at around 5.7%. Figure 20 shows that the MAPE
values for the 2020 year are reported to be between 5.3 and 5.9%, depending on the type of
neural network.
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Figure 21. Comparison of the five networks’ performance during 2020 in terms of MAPE.

Figures 19–21 present the annual periods of 2018 to 2020, respectively. The reported
values of MAPE are significantly higher for all networks compared to the period of
2014–2017. It is clear that the reported value of the MAPE for 2019 (Figure 20) is higher,
exceeding 6%. The median values of MAPE from the analysis above are summarized
in Table 10.

Table 10. Median values from box charts from Figures 15–21.

Year Figure FFANN DFFNN RNN CFN NARX

2014 Figure 15 3.7 3.7 4.2 3.8 4.2
2015 Figure 16 4.3 4.3 4.9 4.5 4.8
2016 Figure 17 5.1 5.1 5.6 5.3 5.5
2017 Figure 18 4.4 4.2 4.7 4.5 4.8
2018 Figure 19 5.5 5.4 5.8 5.6 5.7
2019 Figure 20 6.2 6.2 6.6 6.4 6.6
2020 Figure 21 5.7 5.3 5.5 5.3 5.9

From the above-mentioned analysis, it is concluded that the DFFNN achieves overall
better performance because the reported values of MAPE are the lowest among all types of
networks. According to this fact, the DFFNN is selected to act as the baseline among the
proposed NNs in the comparative analysis, which is presented below. In order to investigate
the long-term performance of PV systems, the performance metrics of the DFFNN are
selected to be used as indicators of faults compared with mean normalized efficiency, which
was calculated in Section 2. Figure 22 shows the evolution of the MAPE in the period of
2014 to 2020, where a nonlinearly increasing trend is observed. Days with reported faults
are rejected from Figure 22 in order to decouple the effect of degradation. The error in
these faulty conditions was over 30% for faults in a string, whereas a faulty panel was
associated with a deviation of 10–20% and faults of near shading of 6–10% compared to
5% during normal operation [58]. Most of the PV panels’ manufacturers declare a linear
degradation of the semiconductor, which is included in the warranty conditions. In this
case study, a decreasing trend is indeed observed; however, this is not linear, which could
be explained by the dust accumulation and cleaning effect. Dust effects have a significant
impact on PV performance, particularly resulting in a decrease of 5.6% on heavily soiled
panels [59] in Central Greece and a 5% power output reduction, even after a small period
of time PV exposure into the atmospheric air pollution in Athens [60]. In southern regions,
PV modules are reported to decrease in their produced power by 12%, 6%, 6%, 7%, 3%, 4%,
and 4%, for ash, calcium carbonate, limestone, cement, sulfur, sawdust, and brown soil,
respectively [61].
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Figure 22. Evolution of DFNN prediction MAPE during several years of operation.

The increasing trend in MAPE in Figure 22 is correlated with the decreasing trend in
normalized efficiency in Figure 23 during 2013–2014. This holds especially for air mass
values 1–3. Both approaches converge to the finding that performance during the year
2019 is significantly lower than that of 2014. However, actual electricity generation was
lower during 2014 (Table 1) because of the reported faults and weather conditions. The fact
that efficiency is higher in 2020 compared to 2019 could possibly be due to increased dust
accumulation during 2019.

Figure 23. Evolution of DFNN predictions MAPE during several years of operation.

Combining results from Figures 22 and 23, we conclude that the PV system’s perfor-
mance shows a decreasing trend, which is influenced by stochastic dust accumulation and
cleaning effects. Using the performance metrics of NN application predictions, this method
estimates a decreasing trend in performance. However, this method is not proposed for
future predictions based on data from just the first year of operation. Another important
conclusion is that electricity production forecasting should take into account, as additional
input, the degradation rate of PV panels.
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4. Conclusions

This paper studies the performance of a grid-connected PV system in Central Greece.
Energy generation per installed DC power fluctuated between 1437.1 to 1611.5 kWh/kWp.
The maximum generation was observed during the first year of operation. The application
of five different ANNs, namely (i) feed-Forward network (one hidden layer), (ii) deep feed-
forward network (two hidden layers), (iii) recurrent neural network, (iv) cascade-forward
network, and (v) nonlinear autoregressive network, was employed with the following
five inputs: in- plane irradiance, backsheet panel temperature, air mass, clearness index,
and DC voltage of the inverter. The DFFNN (3.7 to 6.2 %) and FFANN (3.7 to 6.2%) have
slightly better performance compared to CFN (3.8 to 6.6%). On the other hand, NARX
(4.2 to 6.6%) and RNN (4.2 to 6.6%) have higher values MAPE every year. MAPE values
show an increasing trend over the years. This fact indicates a possible change in PV
performance. It also suggests that long-term energy forecasting should embed data from a
whole year period for accurate prediction. The DFFNN prediction is used as a baseline and
compared to actual data. The performance metrics of DFFNN application act as indicators,
in combination with normalized efficiency, and point to a performance decrease trend,
which is also influenced by dust accumulation and cleaning effects. However, this method
is not proposed for future predictions based on data from just the first year of operation.
Another important conclusion is that electricity forecasting should take into account, as
an additional input, the degradation rate of PV panels. The proposed methodology is
appropriate for PV performance evaluation using real data from grid-connected PV systems
when networks are trained with data from the first year of operation. A possible task for
future work is to train neural networks with data from several years of operation in order
to accurately predict future energy generation.
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Abbreviations

PV Photovoltaic
RES Renewable Energy Sources
IRENA International Renewable Energy Agency
ANN Artificial Neural Networks
HVAC Heating Ventilation Air Conditioning
CHP Combined Heat and Power
EV Electric Vehicles
HFCV Hydrogen Fuel-Cell Vehicles
MLP Multi-Layer Perceptron
DNN Deep Neural Network
LSTM Long Short-Term Memory
CNN Convolutional Neural Networks
ANFIS Adaptive Neuro-Fuzzy Inference System
RSM Response Surface Methodology
AI Artificial intelligence
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SA Simple Average
SMA Simple Moving Average
NAR Nonlinear Autoregressive
SVM Support Vector Machine (SVM)
GPR Gaussian process regression
NN Neural Networks
MAE Mean Absolute Error
RMSE Root Mean Square Error
MAPE Mean Absolute Percentage Error
PR Performance Ratio
RNN Recurrent Neural Network
BD-LSTM Bi-directional Long Short-Term Memory
EMA Exponential Moving Average
PV-T Photovoltaic Thermal
R2 Correlations Coefficient
MLF Multi-layer Feed Forward
API Applications Programming Interface
IR Infrared
NARX Nonlinear Autoregressive Exogenous
MPPT Maximum Power Point Tracking
CUF Capacity Utilization Factor
STL Scatterplot Smoothing
AM Airmass
MBE Mean Bias Error
Kt Daily Clearness Index

Appendix A

Table A1. Technical Characteristics of PV panels.

Yingli 60 Cell YGE SERIES

Module Type YL240P-29b

STC NOCT

Power output W 240 174.3
Module efficiency % 14.7 13.3
Voltage at Pmax W 29.5 26.6
Current at Pmax A 8.14 6.56
Open-circuit voltage V 37.5 34.2
Short-circuit current A 8.65 7.01

Normal operating cell temperature
(NOCT)

◦C 46+/−2

Temperature coefficient of Pmax %/◦C −0.45
Temperature coefficient of Voc %/◦C −0.33
Temperature coefficient of Isc %/◦C 0.06
Temperature coefficient of Vmpp %/◦C −0.45
Dimensions(L/W/H) mm 1650/990/40

STC: 1000 W/m2 irradiance, 25 ◦C cell temperature, AM1.5 G spectrum according to EN 60904-3

Average relative efficiency reduction of 5% at 200 W/m2 according to EN 60904-3

NOCT: open-circuit module operation temperature at 800 W/m2 irradiance, 20 ◦C ambient
temperature, 1 m/s wind speed
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Table A2. Technical characteristics and efficiency ratings.

Fronius IG Plus 150V-3

PDC,MAX W 12,770
IDC,MAX A 55.5
UDC,MIN V 230
UDC,START V 260
UDC,R V 370
UDC,MAX V 600
PAC,R W 12,000
IAC,MAX A 17.4
UAC,R V 3-NPE 400/230
Maximum efficiency ninv % 95.9
ninv at 5% PAC,R (230 V/370 V/500 V) % 91.8/92.5/91.1
ninv at 10% PAC,R (230 V/370 V/500 V) % 91.0/94.3/93.2
ninv at 20% PAC,R (230 V/370 V/500 V) % 94.7/95.1/94.6
ninv at 25% PAC,R (230 V/370 V/500 V) % 95.1/95.3/94.7
ninv at 30% PAC,R (230 V/370 V/500 V) % 95.1/95.3/94.9
ninv at 50% PAC,R (230 V/370 V/500 V) % 95.3/95.9/95.3
ninv at 75% PAC,R (230 V/370 V/500 V) % 94.7/95.6/95.4
ninv at 100% PAC,R (230 V/370 V/500 V) % 94.0/95.2/95.1
PDC,MAX W 12,770
IDC,MAX A 55.5
UDC,MIN V 230
UDC,START V 260

Figure A1. Efficiency curve of inverter with the AC power for different DC voltages.

Table A3. Irradiance sensor characteristics.

Sensor Mono-Crystalline Si-Sensor

Sensor voltage 75 mV at 1000 W/m2

(exact calibration voltage written on sensor)
Accuracy ±5% (average of a year)
Ambient temperature −40 ◦C to +85 ◦C
Design Sensor mounted on z-shaped aluminum profile
Dimensions L × W × H = 55 × 55 × 10 mm
Fronius Product Nr. 43,0001,1189

Table A4. Temperature sensor characteristics.

Sensor PT 100

Measuring Range −40 ◦C to +188 ◦C

Accuracy ±0.8 ◦C (in the range −40 ◦C to +100 ◦C)

Design Sensor on an adhesive film for measurements
on surfaces

Dimensions 32 × 32 mm

Fronius Art.Nr. 43,0001,1190
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Appendix B

Definition of important performance metrics

YF =
E

PSTC

(
kWh
kW

)

YR =
H

GSTC

(
kWh
kW

)

PR =
YF

YR
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