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Abstract: In deregulated electricity markets, accurate load and price prediction play an essential
role in the Demand Response (DR) context. Although electrical load and price demonstrate a strong
correlation which is not linear, price prediction may be a task much more challenging than load
prediction due to several factors. The volatility of electricity price compared to load makes price
prediction a complex procedure. To perform purchasing decisions commercial consumers may rely
on short term price and load prediction. A system which combines Adaptive Neuro-Fuzzy Systems
(ANFIS) which predict Load Marginal Prices (LMPs) and electricity consumption is presented in this
study. Furthermore, the Virtual Cost (VC) concept, which is the sum of the products between the
predicted hourly consumption values and their respective predicted LMPs is introduced. Virtual
Cost is assessed with a Fuzzy Decision Tree (FDT) compared to a threshold set by the customer. If
needed, the amount of electrical energy that a healthcare facility must purchase at every hour of the
day may be scheduled using Genetic Algorithm (GA) to meet the threshold criterion. This hybrid
model proved economically beneficial for the facility, which is of great importance since the saved
resources may be utilized to improve its infrastructures or for other purposes with social impact.
The novelty of the proposed method is the utilization of ANFIS, Fuzzy Decision Trees and Genetic
Algorithms combined as tools to improve the hospital’s energy and economic efficiency, achieving
a reduction of the electricity costs up to 21.95 percent. The contribution of the study is to provide
a reliable decision-making tool to everyone who participates in the electricity market in order to
perform profitable energy scheduling automatically and accurately.

Keywords: electricity price prediction; adaptive neuro-fuzzy system; fuzzy trees; genetic algorithms;
healthcare facilities; sustainable hospitals

1. Introduction
1.1. General Context and Importance of the Present Study

Due to a combination of socioeconomic, environmental and technological changes, the
electric power industry has been reformed drastically in the last decades. The integration of
Renewable Energy Sources (RES) and Information and Communication Technologies (ICTs)
to the power systems which results to the Smart Grid (SG) implementation, along with the
urge to reduce CO2 emissions and the deregulation of electricity markets, underline the
significance of accurate price and load predictions. Moreover, the diffusion of ICTs and
the digitalization of the electricity industry makes it feasible to obtain accurate predictions,
using Artificial Intelligence (AI) and Machine Learning (ML) tools substituting the classical
statistic and econometric tools. Additionally, the purchase of electrical energy can be
performed automatically in real time, which can be beneficial for the market participants in
a Demand Response (DR) context [1]. According to [2]: “Demand Response can be defined as
the changes in electricity usage by end-use customers from their normal consumption patterns in
response to changes in the price of electricity over time”.
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The volatility of the electricity price in comparison to consumption makes the task of
accurate price prediction more challenging, since there are multiple factors which affect
the results. Concerning the prediction horizons, there are three main categories: Long,
medium- and short-term price prediction [3], each one used for different tasks. Long-term
price prediction usually refers to a time horizon from months to years and is useful to long
term planning and decision making in subjects such the construction site or the power
plants’ fuel sources; medium-term applies to few days to months ahead. It is useful for
balancing sheet calculations, performing risk management and derivatives pricing. On the
other hand, short-term price prediction refers to a time horizon from minutes to some days
ahead and applies to everyday routines.

Furthermore, due to the fact that in energy markets electrical energy is traded as
a commodity, the accuracy of price prediction is critical to help the market participants
take the right bidding decisions. In a price-directed electricity market, the participants’
economic efficiency maximization is heavily dependent on the accuracy of the electricity
price prediction because their scheduled operations or bidding strategies are optimized
relying on the short-term value of Locational Marginal Pricing (LMP). LMP “Reflect the least
cost to service the next increment of demand at a location (bus), consistent with all power system
operating constraints” [4]. According to this definition, LMP-based wholesale power market
prices vary by location and time. Moreover, LMP markets permit the definition of price
and allocation of the transmission system with transparency. Since the impact of marginal
congestion and losses in many locations across the grid is reflected upon it, LMP also acts
as an accurate marker indicating the location where energy is more valued. Furthermore,
the use of LMP can improve DR, due to the increment of the offer caps, resulting in more
DR entrance into the market [5]. Because the explanation of billing strategies is not within
the scope of the present study, and for simplicity reasons, LMP is assumed to reflect the
price of the energy purchased at a certain time and location of the grid, without considering
any other components of costs or charges (such as capacity, ancillaries, risk premiums etc.).

Since the demand for hospital services is growing, the hospitals are pushed towards
adopting sustainable strategies with positive impact at the same time. The sustainability of
the buildings relies on the implementation of solutions and technologies for the preservation
of the environment, the economization of natural resources and the reduction of operating
costs, while at the same time they meet the needs of the occupants [6].

Hospitals can reduce energy consumption, adopting DR strategies. Due to their social
impact, they consist of a complicated yet interesting subject. Their mission is to keep
patients and staff in a safe environment, while being functional for the employees who
work there [7]. They demand significant amounts of energy for their operation as well as
for heating and cooling purposes [8], while operating on 24 h-365 days-a-year basis [9].
Additionally, they have a significant environmental fingerprint, as they consume 10.3%
of the total consumed energy of the commercial buildings sector while they only account
for 4.8% of the total area of them [10]. DR can improve a building’s energy profile and
therefore, its environmental impact [11]. Moreover, hospitals’ complex energy systems
must demonstrate enhanced effectiveness and resilience, especially under emergency
circumstances, such as natural disasters. Kyriakarakos and Dounis [12] point out the need
for an Intelligent Energy Management System (IEMS), capable of offering this effectiveness
and resilience. Finally, energy savings will result to financial savings which may be
invested in the upgrade and complementation of the medical equipment or hospitality
conditions [13], which will result to the enhancement of their economic sustainability and
the quality of patient care simultaneously [6].

1.2. Literature Review on Demand Response Approaches

Efficient DR scheduling strategies often rely on utility functions, which represent the
comfort or satisfaction level of the users as a function of their energy consumption [14].
Utility functions models mathematically the satisfaction of the customer for a certain
power consumption level. From economical aspect, the objective is to obtain the maximum
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comfort/satisfaction for the consumer while at the same time the electricity cost remains at
a minimum level [15]. In Refs. [15,16] for a supposed predetermined budget for the daily
power expenses, the consumption pattern is scheduled accordingly.

Alternatively, a detailed modeling of the appliances and their constraints in residential
DR approaches allow the customers to guide the DR decisions based on their preferences
expressed by discomfort or dissatisfaction [17].

Comfort and discomfort concepts aim to link the user’s satisfaction with the relevant
power consumption level and to quantify this relationship. Since they represent behavioral
or qualitative aspects, the selection of the respective functions can be a challenging task,
while the parameters of the function need to be estimated after the selection of the function’s
shape [18].

Another approach relies on handling price and load anticipation integrated together, at
the same time slot, in order to satisfy the participants’ expectations. Hence, price forecasting
shapes the final load demand curve. In Refs. [18,19] price prediction is combined with the
consumer’s load consumption prediction to form the final consumption scheduling. In
Ref. [18], dynamic optimization of the load pattern is performed exploiting the integrated
load and price anticipation. The optimization takes into account three parameters: First is
the load that the customer can reject, second is the similarity of the final optimized load
curve to the anticipated one and the third is the user-defined budget. The integration of
ICT such as smart energy meters in electricity industry permit the monitoring and purchase
of electricity 24/7, using sophisticated AI tools as the model proposed in the present study,
minimizing human interference.

Typically, a DR optimization scenario is based in a decision-making process concerning
the consumption policy under uncertainty about the real-time prices of power for the
given scheduling horizon [14]. It is important for the DR efficiency to minimize these
uncertainties. Ref. [20] proposed a chance constrained optimization model based on a
stochastic optimization algorithm known as Particle Swarm Optimization (PSO), assessing
probabilistically the uncertainties to address the load and price forecasting errors in a home
energy management system. In such approaches, the uncertainties are combined with
utility functions or detailed household appliance models to perform the DR scheduling [18].

The abovementioned methods are briefly summarized in Table 1:

Table 1. Tabular presentation of the reviewed methods.

Author(s) Optimization
Tool

Scheduling
Strategy

Application
Field

Major
Findings

Ogunjuyigbe,
Ayodele and

Akinola
[15]

Genetic
Algorithm

(GA)

Utility
Function

Residential
Building

The algorithm successfully
maximized the user’s

achieved satisfaction and
minimized the cost per

unit satisfaction.

Mohajeryami
et al.
[16]

Overlapping
Generations

(OLG)

Utility
Function Households In both scenarios examined,

reduction of cost occurred.

Javadi et al. [17]
Epsilon-

constraint
technique

Discomfort
Index Households

A daily bill reduction is
confirmed, verifying the

effectiveness of the Home
Energy Management
Systems (HEMS). The
installation of energy

storage devices and their
optimal operation by

HEMS can also decrease
additionally the
consumer’s bill.
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Table 1. Cont.

Author(s) Optimization
Tool

Scheduling
Strategy

Application
Field

Major
Findings

Alamaniotis,
Gatsis and

Tsoukalas [18]

Second-order
cone

programming
(SOCP)

Load and price
anticipation Any type of load

The consumer’s
intervention in the process
is minimal, limited to the
evaluation of up to three

parameters: The amount of
energy that the consumer is

willing to cancel, the
amount of load that may be
shifted and the maximum
amount that the consumer

is willing to pay.

Alamaniotis,
Tsoukalas and

Bourbakis
[19]

Linear
optimization

Load and price
anticipation

Smart
grids/cities

The virtual cost approach
requires minimum user
intervention and mimics
the human interaction to

price signals. This
approach is able to reduce
the real cost of electricity in

an automated manner.

Huang et al.
[20]

Improved
Particle Swarm
Optimization

(PSO)

Detailed house
appliances

model
Households

Heuristic-based
evolutionary algorithms
can provide a fast and

almost optimum solution.

Based on the above mentioned analysis and the comparison presented in Table 1, one
can easily conclude the following:

• Metaheuristic algorithms provide fast and accurate solutions
• Load and price anticipation methods can be applied to any type of load and can

reduce costs
• Load and price anticipation methods require minimum interventions from the user
• Utility function and discomfort index methods rely on subjective concepts
• Detailed appliances model demand thorough knowledge of every appliance’s behavior

which in some cases may not be available
• Hospitals are major commercial consumers, with high energy use
• Demand Response approaches can be beneficial for hospitals, since they can improve

their sustainability both financially and environmentally
• None of the abovementioned methods have as an application field a healthcare build-

ing or hospital
• A combination of a heuristic optimization algorithm, a load and price anticipation

strategy and a simple decision-making system seems promising for this implemen-
tation since it combines the simplicity of the load and price anticipation methods
with the accuracy and the agility of a heuristic algorithm, reducing energy costs with
minimum user’s intervention.

1.3. Statement and Structure of the Study

The present study proposes an AI model which automatically predicts the electricity
prices and the electricity consumption of a hospital for the next 24 h and makes the final
decision on the amount of electricity to be purchased every hour of the day, in order to
reduce electricity costs without jeopardizing the safety and the comfort of the patients
and the staff, using a hybrid model consisting of two ANFIS and a Fuzzy Decision Tree
integrated with Genetic Algorithm (GA) as an optimization tool.

AI and ML for load prediction are already in use for three decades now; Artificial
Neural Networks (ANNs) demonstrate high capability in complex nonlinear systems
approximation [21], while Fuzzy Logic models are able to interpret strict mathematical rela-
tionships to IF-THEN statements [22] which are easily understood. Recently, a combination
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of ANNs and Fuzzy Systems, named Adaptive Neuro-Fuzzy Inference Systems (ANFIS),
which exploits the advantages both of ANNs and Fuzzy Systems [23,24] was introduced to
perform load predictions. Accurate forecasting of load demand can reduce energy waste
and improve energy sustainability [25].

Due to the exceptional nature of electricity as a commodity which cannot be stored,
has transportation constraints, and its price is strongly seasonal at different levels, price
prediction is more complicated than load prediction. Moreover, in comparison to other
commodities, electricity price demonstrates high volatility since it can rise by tens or
hundreds of times to its normal value [26].

The novelty of the proposed method is the utilization of ANFIS and Fuzzy Decision
Trees as tools to improve the hospital’s energy and economic efficiency. In addition, the
contribution of the study is to provide a reliable decision-making tool to everyone who
participates in the electricity market in order to perform profitable energy scheduling
automatically and accurately.

The present article has the following structure:

• In Section 2, the consumption and LMP forecasting models are described in detail. The
decision-making inference system is also presented, and the Genetic Algorithm and
Virtual Cost concepts are introduced, and the objective functions and the constraints
are set, while the electrical loads of the Hospital are divided into Mandatory, Shiftable
and Optional. Additionally, the Section 2 contains the presentation of the data sources,
the building’s model and specifications, the models’ inputs and the input selection
method for the price-predicting model. Finally, a flowchart of the whole process
is presented.

• In Section 3, the Mean Absolut Percentage Error (MAPE) as metric of the models’
performance is introduced and the models’ accuracy in price and consumption fore-
casting is evaluated. For visualization purposes, Figures of the forecasted price values
against the actual values and Scheduled, Forecasted and Actual (real) total loads for
selected days of the year 2019 are presented, followed by a summary and explanation
of the presented results and a Figure comparing LMP forecast against the Scheduled
loads, in order to explain the system’s behavior. In the Section 3 also, the resulting
economic aspect is examined under Section 3.2.

• In the Section 4, the models’ accuracy is analyzed and suggestions for improvement
of the method and further research are made. Accordingly, points that need to be
examined in detail are highlighted.

• The Section 5 gives the summary of the proposed method and the benefits that it may
have, while indicating some topics that the future research may focus on.

2. Materials and Methods
2.1. Forecasting Models

Artificial Neural Networks are conceptualized as reasoning models that emulate the
mental processes of the human brain. An Artificial Neural Network (ANN) consists of several
simple, highly interconnected processors, which are called neurons, just like the human
brain neurons. They are connected by links, and every single link is associated with a
weight, which indicates the strength of each neuron input. A neural network has the ability
to learn through a learning process in which the weights are repeatedly adjusted until a
criterion is reached; on most instances, the goal is to achieve an MSE (Mean Square Error)
lower than a fixed value within a certain number of iterations known as epochs.

A typical ANN’s structure is depicted in Figure 1.
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Adaptive Neuro-Fuzzy Inference System (ANFIS) has a structure similar to ANNs. It
is a neural network equal to a Sugeno fuzzy inference system. Sugeno’s fuzzy system
can generate fuzzy rules out of the given input-output dataset. These fuzzy rules have a
structure like the following:

IF Input1 is A1
AND Input2 is A2
AND Inputi is Am
THEN Output = f (Input1, Input2, . . . , Inputi)
Where Input1, Input2, . . . , Inputi are the input variables; A1, A2, . . . , Am are the fuzzy

sets; and Output is a constant or a linear function of the inputs. When Output is a constant,
the fuzzy system is a zero-order Sugeno fuzzy model, and the rule results to a singleton. If
Output have the form of a first-order polynomial:

Output = (k0 + k1 Input1 + k2 Input2 + . . . + ki Inputi) (1)

The model is called a first—order Sugeno fuzzy model. Figure 2 illustrates the general
structure of the systems used in the present paper.

The advantage of ANFIS in solving problems is that prior knowledge of the rule
parameters is not essential because these parameters are learned by the system itself.
ANFIS outperform ANNs on complicated, nonlinear and multivariate problems, giving
results which are very accurate because of its capability to generalize. Its architecture is not
affecting its performance, contrary to ANNs, where its performance is heavily dependent
on it.

For the present study, two different ANFIS models were used as predictors. The first
ANFIS model is supplied by the consumption of the Hospital for the past 24 h as inputs in
order to predict the day’s hourly consumption and the other ANFIS model uses LMPs as
inputs in order to predict the next day’s LMPs per hour. In order to reduce the rule base
of the ANFIS and avoid computer’s “out of memory” problems due to the complexity of
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computation, it is important to perform a feature selection between the candidate inputs as
well as select as inputs the LMPs with the higher correlation scores.
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2.2. Decision-Making Inference System

In human thinking and perception, cognitive uncertainties inherently exist in human
thinking and perception. In most, decision tree induction methods do not deal with
vagueness and ambiguity which are associated with the cognitive process. Fuzzy Decision
Trees (FDTs) use fuzzy evidence to reduce the classification ambiguity. FDTs approximate
human thinking in classification knowledge demonstrating robustness when dealing with
information which may be imprecise, conflicting or missing [27]. It is well known that FDTs
can perform decision-making processes for power system issues. Crisp decision trees are
able to provide only YES or NO types of answers while the fuzzy ones can give accurate
information about the degree of the target’s fulfilment. In comparison to crisp binary trees,
FDTs demonstrate resilience to wrong decisions that may occur in their first nodes and
especially in the root of the tree [28]. FDTs use fuzzy logic instead of standard crisp logic at
the internal nodes while the final conclusions end up to the final nodes. The simplest fuzzy
binary tree is a single node with two successors like the one in Figure 3.
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The instance to classify, x is classified through the discrimination function, v:

v : {x} → [0; 1], x = [x1, x2, . . . , xn]
T (2)

For the decision-making process of the study, a simple FDT has been developed with
a rule base with two trapezoidal membership functions like these in Figure 4.
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2.3. Genetic Algorithms

Genetic Algorithms are a category of stochastic search algorithms imitating Darwin’s
natural evolution theory. The basic concept is that a set of candidate solutions represented
as binary strings can result to a solution of a problem by applying the following steps:

1. A random initial population, called the chromosomes is generated.
2. A series of new populations are created. At every generation, the individuals are the

parents of the next population, known as the offspring. The algorithm performs the
mating of the individuals according to the following steps:
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a. The fitness of every individual of the current population is evaluated as a
possible solution.

b. The selection of candidate parents is based on their fitness.
c. A percentage of the individuals, those who achieved the best fitness, pass on

the next generation as elite.
d. The next generation is produced either by mutation of a single parent or by

crossover, which is the mating of a pair of parents.
e. The next generation, which includes the children and the elite, replaces the

current population.

3. The algorithm stops when one of the stopping criteria is met.

The main idea behind the GA application is that given the price and consumption
forecasts on every hour of the day and the constraints of the problem, it will maximize the
revenues:

maxRevenues = T −∑24
i=1 Pf orecastedi ·L f orecastedi (3)

where Pf orecastedi is the forecasted LMP in U.S. Dollars for the i-th hour of the day and
L f orecastedi is the forecasted consumption for the respective hour and T is the daily upper
budget set by the customer. Optimizing Equation (3) results to Loptimali , the optimal con-
sumption for the specific hour which results to a beneficiary daily consumption scheduling.
All loads are measured in kWh.

2.4. The Virtual Cost Approach

Alamaniotis et al. [19] introduce the Virtual Cost (VC) concept, which is the daily sum
of the product of the hourly price and consumption forecasts:

VC = ∑24
i=1 Pf orecastedi ·L f orecastedi (4)

Furthermore, Ref. [19] suggest Virtual Cost (VC) approach as benchmark for electricity
consumption scheduling for smart grids/cities in price-directed electricity markets. Ac-
cording to this approach, the consumer sets a Threshold value T for a day’s expenses. This
allows the customer to control his daily budget for electricity purchase. Therefore, Profit or
Loss in rule base in Figure 4 can be obtained following the rules:

I f (VC ≤ T) Then load schedule is approved (5)

I f (VC > T) Then reschedule load (6)

The Load pattern of the hospital can be decomposed in Mandatory (M), Shiftable (S)
and Optional (O) loads:

Li = Mi + Si + Oi (7)

Li is the total load of the i-th hour of the day.

- Mandatory loads are those who cannot be rescheduled and need to be available at the
initial time of scheduling. It evolves tasks of the hospital that cannot take place any
other time. For example, operating and emergency rooms, life support, blood storage,
and generally loads that need continuous and uninterrupted electricity supply. Mi is
the mandatory load of the i-th hour of the day.

- Shiftable loads are those that can be utilized under predefined time intervals and
definite hours of operation, but for the purpose of cost reduction and contribution
to DR programs, the exact time of their operation is taken by the building’s control
center. The time of their operation can be shifted to the next or the previous hour or
several hours ahead or behind the scheduled time, depending on their nature. Si is the
Shiftable load of the i-th hour of the day. It is easy to understand that concerning the
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Shiftable loads, the total sum of energy that is forecasted to be consumed on a daily
basis, should be finally optimized and purchased. This is a constraint to the problem:

∑24
i=1 S f orecastedi = ∑24

i=1 Soptimali (8)

where:
0 ≤ Soptimali (9)

And S f orecastedi and Soptimali are the forecasted and optimal Shiftable load of the i− th
hour of the day.

- Optional loads are those that may be cancelled without any consequence regarding
the operability of the hospital. They are conditionally scheduled and can be expressed
in the following form:

∑24
i=1 Ooptimali ≤ ∑24

i=1 O f orecastedi (10)

where:
0 ≤ Ooptimali (11)

And O f orecastedi and Ooptimali are the forecasted and optimal Optional load of the i− th
hour of the day respectively. Summarizing, the optimization problem has the form:

minVirtual Cost = ∑24
i=1 Pf orecastedi ·L f orecastedi (12)

where:
L f orecastedi = M f orecastedi + S f orecastedi + O f orecastedi (13)

s.t.:
Moptimali = M f orecastedi (14)

∑24
i=1 Soptimali = ∑24

i=1 S f orecastedi (15)

Soptimali + Ooptimali ≤∑24
i=1 L f orecastedi −Moptimali (16)

Moptimali , Soptimali , Ooptimali ≥ 0 (17)

When the optimization process ends, the optimal loads will be the finally scheduled
loads.

2.5. Methodology

To sum up the abovementioned concepts, a brief description of the method followed
in the study is essential.

The U.S. Department of Energy (DOE) has developed in collaboration with the Na-
tional Renewable Energy Laboratory (NREL) 16 reference building types which represent
most commercial buildings for energy modeling analysis. A prototype hospital building
model located in New York City [29] was selected and simulated with ENERGYPLUS
ver. 22.2.0 simulation software for the years 2017–2020, while LMPs for the same period
were collected from NY-ISO [30]. The data collected from the abovementioned source was
processed with MATLAB Release 2022b programming and computing software. MATLAB
was used for the development of the proposed models and the results’ analysis as well.
The building’s general specifications are given in Table 2:
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Table 2. General specifications of the prototype building.

Comments

Vintage New Construction

Location Zone 4A: New York, NY, USA
(Mixed Humid)

Selected climate based on
ASHRAE Standard 169-2013

[31]

Available fuel types Gas, electricity

Building type
(Principal building function) Healthcare

Building prototype Hospital

Total floor area including
basement 22,436.18 m2 241,410 sq. feet

Number of floors 5 plus basement

In Figure 5, the shape of the model building is presented:
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The building’s load data obtained from the simulation consists of 26,280 hourly sam-
ples. The same number of samples was collected for the LMPs. The data were preprocessed
removing the outliers and replacing them with rational values representing the linear
interpolation of neighboring, nonoutlier values. Finally, the data were divided into two
subsets: one for the training process and one for the testing of the ANFIS models with a
ratio of 75:25 respectively.

As mentioned above, in the ANFIS model which is designed for the LMP forecasting
an input selection must be carried out. Examining samples of the LMP timeseries using
partial autocorrelation, where P represents the LMP values, the five most significant lags
are selected: Pt−1, Pt−2, Pt−20, Pt−21, Pt−19. Figure 6 shows the partial autocorrelation plot
of the samples [32]:
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Two ANFIS models were designed: One for the LMP forecasting, with 5 inputs and
one for the loads’ forecasting which use the 24 past hourly loads as inputs. The training
and testing load samples were decomposed to Mandatory, Shiftable and Optional load
samples. The models were trained for the respective samples.

From the testing data sets, a day from every month of the year 2019 was selected.
Starting from the Mandatory loads, the VC was tried against the Threshold and the Shiftable
and Optional loads were rescheduled with GA with respect to the constraints. The following
flowchart in Figure 7 depicts the process.

2.6. Load and Price Data

As mentioned before, the load consumption is predicted via ANFIS models like this
in Figure 2. Initially, the total Load (L) timeseries obtained by the building’s simulation is
decomposed to Mandatory (M), Shiftable (S) and Optional (O) loads’ timeseries.

L = (L1, L2, L3, . . . ., Lν) (18)

M = (M1, M2, M3, . . . ., Mν) (19)

S = (S1, S2, S3, . . . ., Sν) (20)

O = (O1, O2, O3, . . . ., Oν) (21)

where:
L = M + S + O (22)
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The ANFIS models are trained with Mandatory, Shiftable and Optional datasets.
ANFIS accepts the past 24 values of the load as inputs and predicts the next hour’s load
as output (Mandatory, Shiftable or Optional). Thus, assuming that in the present hour the
mandatory load is Mt, ANFIS predicts the next hour’s mandatory load Mt+1 according to
Equation (1):

Mt+1 = (k0 + kt−1Mt−1 + kt−2Mt−2 + . . . + kt−23Mt−23) (23)

where k0, . . . , k23 the parameters of ANFIS tuned via the training process. Optional and
Shiftable loads are also predicted in the same manner.

Price data are also timeseries of Locational Marginal Prices from the NY-ISO. LMPs are
real data-not obtained by simulation. Due to electricity price’s nature and the complexity
that it demonstrates, it wasn’t feasible to select more than 5 past LMP values as inputs
because the rule base would become too large, thus resulting in memory faults. Therefore,
using the partial autocorrelation procedure described in Section 2.5, the 5 most significant
inputs out of the past 24 price values were selected. Again, the ANFIS model will accept
the 5 abovementioned inputs and the output will be the next hour’s LMP. Following the
Equation (1), we have:

Pt+1 = (k0 + kt−1Pt−1 + kt−2Pt−2 + kt−19Pt−19 + kt−20Pt−20 + kt−21Pt−21) (24)

Concerning the price data, an assumption has been made: LMP reflects the least cost
to service, the next increment of demand at a location (bus), consistent with all power
system operating constraints, and not the tariff. Since it is not the scope of the study to
explain the billing process in depth, in brief, LMPs play the role of the price signals.

The Threshold is set by the customer and represents the upper cost limit that the
customer is willing to pay. The customer can also select which loads are Mandatory,
Shiftable or Optional, according to the needs of the facility.

3. Results
3.1. Forecasting Models’ Evaluation

The models were trained, and their accuracy was measured using the Mean Absolute
Percentage Error (MAPE) metric. MAPE is preferable because it is scale-independent and
since the result is in percentage form, it indicates instantly the accuracy of a model. The
MAPE formula is given in Equation (20):

MAPE =
1
n ∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (25)

where y and ŷ denote the observed and the forecasted values, respectively, and n the
number of observations.

A day from every month of the year 2019 was selected to evaluate the proposed
method. A summary of the results is presented in Table 3:

Summarizing the results, LMP prediction generally has MAPE values significantly
larger than the respective MAPE values of the loads. Nevertheless, due to the high volatility
of the LMPs, it is expected the model to lack in accuracy. Moreover, the fact that an input
selection took place, resulting to loss of information, also impact to the model’s accuracy. It
is worth mentioning the case of the sample day on May 13, where the MAPE value is more
than 100 percent, indicating a total failure of the model’s ability to accurately predict this
day’s LMPs. In Figure 8, the forecasted and the actual MLPs are presented for this day:

Indeed, the LMPs on this date present high fluctuation at the early hours of the day,
with a sharp rise of the price within one hour (04.00–05.00), leading to the failure of the
ANFIS model to predict accurately. The model fails completely to predict from hours 17.00
to 24.00. On the other hand, in Figure 9, the model predicts rather accurately, resulting
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to a MAPE value around 5.93 percent. In this sample day, the fluctuation of the LMPs is
significantly smaller, limited to 0.021 and 0.034 US $/kWh.

Table 3. Summary of predictions’ evaluation for one day from every month of the year 2019.

8
January

20
February

11
March

24
April

13
May

18
June

2
July

23
August

17
September

9
October

19
November

24
December

LMP
MAPE (%) 10.95 11.59 10.64 25.36 100.59 9.90 9.88 12.47 13.6 10.15 5.93 7.14

Mandatory load
MAPE (%) 0.60 0.60 0.60 0.60 0.60 0.60 0.60 4.21 0.60 0.60 0.60 9.34

Shiftable
load

MAPE (%)
1.23 1.20 1.48 1.63 1.92 3.53 1.76 5.46 2.06 1.73 1.22 5.35

Optional
load

MAPE (%)
0.69 0.67 0.62 0.61 0.62 0.60 0.60 2.12 0.60 0.62 0.71 6.35

Total
load

MAPE (%)
0.22 0.22 0.22 0.07 0.23 0.33 0.38 1.09 0.12 0.16 0.21 4.46

The Mandatory
and Shiftable

loads were totally
covered
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Contrary to LMP prediction, the models developed for load prediction demonstrate
robustness. This is easily explainable: Unlike electricity prices, which demonstrate high
fluctuation and they rely heavily on several factors which affect them, the load demand is
not so flexible, following a seasonal routine. A well-trained ANFIS can easily predict loads,
since the electricity demand is not dramatically changing from day to day. Furthermore,
the load patterns follow the human routines and needs, and they can be explainable in a
straightforward manner. In Figures 10 and 11, the total Scheduled, Forecasted and Actual
loads for 20 February and 23 August are presented. Note that the total Scheduled Load
(Mandatory, Shifted and Optional) is approximately equal to the actual loads. In February,
the Scheduled loads covered 90% of the total demand, while in August the percentage
of the total demand covered was 95%. As for the Optional loads, in February 40% were
covered while in August, 50% of the Optional loads were covered. In addition, the forecast
in August gives a larger MAPE value compared to other sample days. A number of
deterministic and non-deterministic factors affect the accuracy of the prediction, such as
weather and climate factors, social events, special days (holidays, anniversaries etc.). The
sample day in December also gives large MAPE values, but a potential explanation is that
the 24th of December is Christmas Eve.
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Virtual Cost approach integrates the price and load forecast as a benchmark for the
decision-making process. Therefore, LMP forecast, and load scheduling are linked, and the
decisions taken are rather simple and straightforward, duplicating human actions: when
the price is low and the needs in energy are high, the system purchases energy [19]. When
the price is high, the system just covers the necessary loads. This relationship is visualized
in Figure 12:

3.2. Revenues

For 9 out of 12 sample days, the proposed method achieved profits. On 23 August,
the revenue was 71.75 US Dollars, which corresponds to a 22.95 percentage revenue in
comparison to the non-optimized model. In May, despite the fact that the price prediction
has a very large MAPE, the system proved to be resilient, achieving a revenue percentage
of 7.1%, corresponding to 34.24 US Dollars. In June, the revenue was 8.79 USD (1.27%). It is
also interesting that in May, 99% of the total energy needs were covered, while the system
achieved to be profitable. In some cases, the GA failed to achieve the solutions by keeping
the constraints, resulting in purchasing excessive energy amounts, and, on most occasions
the result was to lose money. The sample days of January, October and December had
losses. Despite the fact, the losses were relatively small and, concerning the cases of June
and July sample days, small revenues were also obtained. Moreover, excessive amounts of
energy may be combined with a Battery Energy Storage System (BESS) for arbitrage and
ancillary services, reducing the electricity costs [33]. It is important that BESS is already
a technology used to facilitate RES deployment, so the proposed approach and the BESS
could supplement each other.
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4. Discussion

This study presented a model for a price directed market context, proving that accu-
rate load and price predictions in combination with automated decision-making systems
integrated with ICT can be feasible and profitable.

More precisely, ANFIS demonstrates high accuracy in load prediction compared to
other AI methods, as Panagiotou and Dounis [34] state. Additionally, the decision-making
binary fuzzy tree can perform along with GAs in such a way that electricity purchases
are made automatically and profitable. A more sophisticated system may consider the
hospital’s ability to generate and perform transactions of energy, in a “prosumer”, near-
Zero Energy Building context, which implements the use of energy produced with on-site
renewable energy generation methods along with arbitrage and ancillary services [33].

Nevertheless, some points need to be studied: In domestic applications, the customer
is free to choose the preferable loads and categorize them to Mandatory, Shiftable and
Optional, and formulate policies for possible scenarios. A healthcare building must be
always prepared to operate under critical conditions demonstrating resilience to extreme
conditions. Thus, it is necessary to establish detailed scenarios with a better insight into
a hospital’s operation, and a more detailed study of the system’s behavior under critical
circumstances [12] is necessary.

Additionally, the impact of the prediction’s errors to the final result should be further
researched and analyzed qualitatively and quantitively in order to reduce uncertainties and
system failures. It is important to improve the accuracy of price prediction and to develop
systems that act proactively in order to prevent deficiencies.

Another matter for research and discussion is the establishment of a proper metric
that represents the model’s accuracy and robustness in a clear and unambiguous way.
MAPE is a useful metric because it gives a percentage value which is easily understandable
and gives an insight for the model’s accuracy. On the contrary, it is not always a clear
indicator of a model’s accuracy and robustness. The majority of other available metrics
most of the time demand a solid background in statistics and a thorough knowledge of the
examined system.

5. Conclusions

ANFIS can predict a hospital’s consumption accurately. It is more difficult to achieve
price prediction due to the volatility of the price in the energy industry. However, ANFIS
can also give rather accurate results. The combination of predicted loads and price in Virtual
Cost context gives to the customer the flexibility to set the amount of money which wants
to pay. Nevertheless, it is necessary to set priorities between the loads of the same category
and develop strategies that a building’s management system must follow in accordance
with its needs. The certain topic is interesting with significant social, environmental and
economic impact and raises interesting matters for further study.
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