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Abstract: According to the World Meteorological Organization, since 2000, there has been an increase
in global flood-related disasters by 134 percent compared to the previous decades. Efficient flood
risk management strategies necessitate a holistic approach to evaluating flood vulnerabilities and
risks. Catastrophic losses can occur when the peak flow values in the rivers in a basin coincide.
Therefore, estimating the joint flood risks in a region is vital, especially when frequent occurrences of
extreme events are experienced. This study focuses on estimating the joint flood risks due to river
flow extremes in the Grand River watershed in Canada. For this purpose, the study uses copula
analysis to investigate the joint occurrence of extreme river flow events in the Speed and Grand
Rivers in the Grand River Watershed in Ontario, Canada. By estimating the joint return period for
extreme flows in both rivers, we demonstrate the interdependence of the two river flows and how
this interdependence influences the behavior of river flow extreme patterns. Our findings suggest
that the interdependence between the two river flows leads to changes in the river flow extreme
pattern. Determining the interdependence of floods at multiple locations using state-of-the-art tools
will benefit various stakeholders, such as the insurance industry, the disaster management sector,
and most importantly, the public.

Keywords: joint flood risks; Grand River watershed; probability analysis; copula; disaster management;
Canada

1. Introduction

Extreme weather events such as floods, landslides, heat waves, wildfires, storms, and
droughts are becoming more frequent and severe [1,2]. Compound extreme events refer to
the interdependence of simultaneous or successive occurrences of two or more extreme
events or hazard drivers that can cause severe impacts on the ecosystem [3]. Cascading
events are a type of compound event where the consecutive occurrence of events lead
to significant effects [4]. Cascading events can considerably impact the environment, the
economy, and human health and safety [5]. To effectively manage the risks associated
with compound extreme events, it is crucial to understand their interdependence and the
cascading effects that can occur. By taking a holistic approach to risk assessment and
management, stakeholders can develop effective strategies to mitigate the impacts of these
events and protect vulnerable populations.

According to the World Health Organization, floods affected more than two billion
people worldwide in the last two decades, and 80–90% of natural disasters in the last
decade are from floods, droughts, and severe storms [6]. Floods cause disastrous impacts
on humans as well as animal and aquatic life. Joint risk estimation of cascading flood events
is critical these days as more frequent and severe events are projected in the near future.
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Different rivers can have varying effects on flood generation in the mainstream. When
floods co-occur in various rivers, they can lead to peak flow and increase the risk of flooding.
To accurately assess the combination risk for hydraulic design, it is essential to consider
the impact of simultaneous occurrences of extreme flows in different rivers in the region.
The traditional univariate frequency analysis that estimates the probability that a value
of the flood characteristic will be exceeded, cannot encompass the risk of coincidence of
flood risks at multiple rivers in the region. Furthermore, when the river receives significant
flow from a tributary, the univariate approach does not yield reliable estimates of flood
properties. In such cases, multivariate analysis incorporating the dependence between
flood variables of different rivers/tributaries is needed [7].

A bivariate model using the copula function was applied in this study to estimate the
joint flood risks of two rivers in the Grand River watershed. Because of its applicability
in multivariate analysis, the copula is widely used in the financial sector and business
decisions [8–10]. In the past few decades, its applicability in hydrological and meteorolog-
ical studies is becoming increasingly widespread [11–13]. Copula has now been widely
used in varied fields where interdependence between variables plays a crucial role. For
instance, copula has been successfully implemented in the analysis of extreme events
such as flood and drought [14–16], rainfall frequency analysis [15] and other multivariate
problems [17–22].

One of the key advantages of using copula functions in flood studies is their ability
to model the tail dependence of variables [13,23]. The tail dependence of variables refers
to the degree to which extreme values of one variable are associated with extreme values
of another variable. In the context of flood studies, this means that copula functions
are particularly useful for analyzing extreme flood events that have the potential to cause
significant damage to communities and infrastructure [13,24]. By modeling tail dependence,
copula functions can provide valuable insights into extreme flood events’ likelihood and
potential impact. This information can inform flood risk management strategies, such as the
development of flood warning systems, the construction of flood protection infrastructure,
and the implementing land-use planning and zoning policies that consider the potential
impact of floods.

Copula functions are often used to combine interrelated variables such as peak flow
and flood volume and conduct analysis in a probabilistic approach. They allow assessing
compound flood hazards from riverine and coastal interactions [25]. Copula-based flood
frequency analysis can model the dependence structure among peak flow, volume, and
duration [26]. This method could relax the limitation of traditional flood frequency analysis
by selecting marginal from different families of probability distribution functions for flood
characteristics [26]. Copula-based flood frequency analysis is found to perform better than
conventional flood frequency analysis [26]. Xie et al. [27] assessed the joint impact of rainfall
characteristics on urban floods using a coupled hydrological model based on copula.

Several studies have demonstrated the effectiveness of copula functions in flood stud-
ies [28–30] and found that copula-based models provided a more accurate representation
of the dependence structure between the variables, which was important in accurately
assessing flood risk and designing appropriate management strategies. For example,
Wang et al. [31] proposed a copula simulation approach to developing a joint flood risk
distribution of multi-reservoirs. They found that the copula-based approach provides
valuable insights into reservoir joint risk control. Zhong et al. [32] conducted a copula-
based multivariate probability analysis for flash flood risk assessment by considering the
compounding effect of soil moisture and rainfall. Bačová Mitková et al. [33] focused on
comparing different methods for performing frequency analysis of floods and suggested
that the copula method is useful for this purpose.

Most copula-based flood studies typically focus on the relationship between two
or more flood variables, such as peak flow and flow volume. By understanding the
interdependence of these variables, researchers can gain a more accurate picture of flood
risk and make better-informed decisions regarding flood management and mitigation.
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The current study uses a copula to estimate the bivariate return period of peak flow
events in two rivers in a river catchment. This involves examining the correlation between
peak river flows in a catchment and using copula analysis to identify interdependence
between these flows and estimate joint return periods.

The study addresses several important research questions about peak river flows in a
catchment. For example, it seeks to understand how the peak flow in multiple rivers in
a catchment correlate and how copula analysis identifies interdependence between these
variables. The study also aims to estimate joint return periods for peak river flows and
explore how this information can inform flood risk management and mitigation strategies.

By answering these research questions, the study contributes to the broader field of
flood risk management and provides valuable insights for policymakers, researchers, and
other stakeholders. By understanding the interdependence between peak river flows and
other flood variables, stakeholders can develop more effective strategies for managing flood
risk, protecting communities and infrastructure, and minimizing the damage caused by
floods. Ultimately, the study highlights the importance of copula analysis in flood frequency
studies and underscores the need for ongoing research to refine our understanding of flood
risk further and develop more effective strategies for managing this critical natural hazard.

2. Materials and Methods
2.1. Grand River Watershed

The Grand River watershed is the largest watershed in southern Ontario [34], with an
area of 6800 km2. The area has five major urban settlements: Guelph, Kitchener, Waterloo,
Cambridge, and Brantford. Agricultural land makes up 70% of the watershed. This study
selects the Speed River and Grand River as case studies. These rivers meet in the City of
Cambridge, and simultaneous flooding of these rivers can cause disastrous impacts in the
highly populated urban settlements (Figure 1). The annual peak flows of the rivers at the
meeting station (Galt) are analyzed for their interdependence structure and to estimate the
bivariate return period. The annual extreme flow data has been obtained from the website
of the water survey of Canada [35]. Additionally, the annual extreme flows at the two
rivers, Speed and Grand at Galt, Cambridge, are analyzed to explore the probability of joint
occurrence of extreme events at the two rivers.

The selected case study of the joint occurrence of flood in Two Rivers (Grand River
and Speed River) is essential for several reasons. Firstly, these two rivers meet at a high
settlement urban area, which makes it crucial to study their joint occurrence of flood.
Urbanization significantly increases the risk of flooding in urban settings [36], as in the
watershed selected in this study, which may lead to severe consequences, including loss
of life, property damage, and environmental degradation. Therefore, studying the flood
dynamics in these rivers is essential to mitigate the risk of flooding and ensure sustainable
development in the region. Secondly, the frequent occurrence of floods in the area and
the long history of flooding in the Grand River system highlight the urgency of the study.
Floods in the region can occur in all seasons, and they have caused significant damage
in the past, such as the major flood events of 1912, 1948, 1974, and 2017 [37]. Therefore,
understanding the flood dynamics and predicting the flood risk accurately can help the
local authorities in taking effective measures to reduce flood damage and ensure public
safety. Lastly, the Grand River is the largest river in southern Ontario, which makes it
a crucial water resource for the region. The river provides water for various purposes,
including drinking water, irrigation, and industrial use [37]. Therefore, it is essential
to study the flood dynamics in this river to ensure the sustainability of water resources
in the region.
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Figure 1. Grand River and Speed River meeting at the City of Cambridge, Ontario, Canada.

2.2. Copula in Bivariate Frequency Analysis

To estimate a multivariate return period, joint probability analysis of the variables
needs to be conducted, which would become complicated if traditional methods are em-
ployed as the marginal distributions of the variables can differ. Copulas can be efficiently
used in this scenario as copulas are functions that describe the correlation structure between
random variables, irrespective of their marginal distributions [38]. As per Sklar’s theorem,
any multivariate joint distribution can be described in terms of univariate marginal distri-
bution functions and a copula defining the dependence structure between the variables.

Consider two random variables, Y1 and Y2, with distribution functions F1(Y1) and
F2(Y2), respectively. As per Sklar’s theorem, there always exists a copula function (C)
such that,

F(Y1 = y1, Y2 = y2) = C(F1(y1), F2(y2)) (1)

where C(ul,u2) is itself a distribution function, where u1 and u2 are F1(y1) and F2(y2) respectively.
A copula can be described as a cumulative distribution function with a uniform

marginal. The detailed mathematical formulations and derivations of copula can be seen in
the literature [13,23,24,39].

2.3. Joint and Conditional Return Period Using Copula

The return period is an estimate (statistical measurement) of the interarrival time
between events, such as floods or earthquakes of a certain intensity. It is often used for risk
analysis and infrastructure design [13].

For univariate studies, the return period (T) is the average time interval between
occurrences of the event Y > y and can be described as below [12,40,41]:

T =
µ

P(Y > y)
=

µ

1− FY(y)
(2)
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where P(Y > y ) is the probability of exceedance, FY(y) is the non-exceedance proba-
bility and µ denotes the average interarrival time between two events (or realizations
of the process).

2.3.1. Joint Return Period Using Copula

In a bivariate analysis using copula, the joint/conditional probabilities and corre-
sponding return period can be calculated using the copula distribution function. Some of
such relations are given in Equations (3)–(8) below [13]:

Consider two random variables (Y1 and Y2). The copula describing the interdepen-
dence of the variables is given as C12. The joint return period for “AND” and “OR” cases
and the conditional return period for different conditions can be calculated using the
relations given below:

P(Y1 ≤ y1) = F1(y1) = u; P(Y2 ≤ y2) = F2(y2) = v (3)

C12(u, v) = F12(y1, y2) = P12(Y1 ≤ y1, Y2 ≤ y2); (4)

“AND” case: Y1 > y1 and Y2 > y2

The joint return period of the “AND” (where both Y1 and Y2 are exceeded) case can
be expressed as follows:

TAND(y1, y2) =
µ

P12(Y1 > y1, Y2 > y2)
=

µ

1− u− v + C12(u, v)
(5)

“OR” case: Y1 > y1 or Y2 > y2

The joint return period of the “OR” case is simply expressed as follows:

TOR =
µ

1− P12(Y1 ≤ y1, Y2 ≤ y2)
=

µ

1− C12(u, v)
(6)

2.3.2. Conditional Return Period Using Copula

The copula can be used to determine the conditional return periods under diffe-
rent conditions.

Y2 > y2 | Y1 = y1(or Y1 > y1 | Y2 = y2) :

The corresponding conditional return period is as follows:

T(Y2 > y2 | Y1 = y1) =
µ

1− C12(V ≤ v | U = u)
=

µ

1− ∂C12(u,v)
∂u

∣∣∣
U=u

(7)

Similarly, the conditional return period of Y1 > y1 | Y2 = y2 is as follows:

T(Y1 > y1 | Y2 = y2) =
µ

1− ∂C12(u,v)
∂v

∣∣∣
V=v

(8)

The detailed mathematical description of the joint probabilities and return periods
using copulas can be seen in literature such as Zhang and Singh [13], Nelson [23] and
Hofert et al. [39].

3. Results and Discussion

A bivariate analysis of peak river flow events in two rivers in the Grand River
watershed is carried out in the study. In the bivariate analysis, the annual peak river
flows at Grand River and Speed River have been analyzed and joint return periods have
been estimated.
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Bivariate Copula in Estimating Joint Flood Risks

The annual peak river flows from 1951 to 2021 at the Grand and Speed Rivers were
analyzed. The yearly peak flow events at the rivers are shown in Figure 2.
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Figure 2. Annual peak flow events at the Speed River and Grand River in the Grand River watershed
in Canada.

The marginal probability distributions that fit each of the rivers’ peak flow data
were estimated. The probability distributions such as Gumbel, Normal, Gamma, and
exponential distributions were selected as possible marginal distributions for the peak flow
of Speed and Grand Rivers. The parameters for the distributions were estimated using
the Maximum Likelihood method and the best fit marginal distribution is selected by the
Akaike information criterion [42] (with the lowest AIC value). The Speed River and Grand
River data are observed to be following normal and gamma distribution, respectively.

The Speed River and Grand River flow data behaved differently regarding probability
distributions, making it difficult to calculate joint probability distributions of the events.
Copulas are hence used here, as they can be easily applied in such scenarios irrespective of
the marginal distributions of individual variables. It is worth mentioning that the observed
river flow data of the Speed and Grand Rivers have a Kendall correlation coefficient of 0.6,
exhibiting a medium correlation between their occurrences.

The bivariate copula that fits the random variables is estimated by using the function
“bicopselect” in “VineCopula” R package [43]. Before using the function, the data are
preconditioned as data vectors within the range of [0, 1]. The bivariate copula is selected so
that it fits the two variables (Speed and Grand Rivers data) perfectly and the selected copula
is BB7 copula [44]. The observed river flow data and the simulated data by copula are
given in Figure 3, showing the fitted copula can simulate the data with great accuracy. In
addition, goodness of fit tests such as Cramer–von Mises (CvM) and Kolmogorov–Smirnov
(KS) tests at a 5% critical level are used here to evaluate the fit of the selected copula to data.
The CvM test compares the cumulative distribution function (CDF) of the fitted copula
to the CDF of the observed data, while the KS test compares the empirical distribution
function (EDF) of the fitted copula to the EDF of the observed data [45]. A smaller test
statistic indicates a better fit, and the bootstrapped p-value estimates the probability of
observing such a statistic under the null hypothesis of no difference between the fitted
copula and the observed data [45].
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The results of the tests are given in Table 1 and they indicate that the BB7 copula
provides a good fit to the extreme river flow data, as indicated by the high bootstrapped
p-values for both the CvM and KS tests. The observed test statistics were small, suggesting
a good fit between the fitted copula and the observed data. Hence, these findings show that
the selected BB7 copula is a suitable model for the extreme river flow data. The probability
distribution function (pdf) and cumulative distribution function (cdf) of the developed
bivariate distribution are shown in Figure 4 and Figure 5, respectively.

Table 1. Results of Goodness of fit test for the copula.

Goodness of Fit Tests p-Value Test Statistic

Cramer-von Mises 0.96 0.024
Kolmogorov-Smirnov 0.96 0.437
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Figure 5. Cumulative distribution function (CDF) of the developed bivariate distribution of the Speed
and Grand Rivers flow extremes.

The bivariate return periods of the two river flow events were also estimated using
the fitted copula by applying Equations (3)–(8). The AND return period of the events,
where the probability of both the rivers’ flow exceeding the given values, were estimated
using Equation (5). The OR return period where the probability of either of the rivers’ flow
conditions exceeds the given condition was estimated using Equation (6). The conditional
return periods were also estimated using Equations (7) and (8). The joint return periods of
Speed and Grand Rivers flow extremes are shown in Figures 6 and 7. The conditional return
periods of Speed and Grand Rivers flow extremes are given Figures 8 and 9. Comparing
the joint return periods with the traditional univariate return periods of flow data gives a
comprehensive system outlook. The univariate return periods have been estimated by tra-
ditional extreme value analysis using the marginal probability distributions (Equation (2))
and are given in Figure 10.

By incorporating the mutual dependence of the Speed and Grand Rivers flow extremes
by means of the copula, detailed information regarding the joint probability of flood risks
can be obtained. The joint return period (AND) of the Speed and Grand Rivers flow
extremes (Figure 6) shows the return period for the joint occurrence of both the Speed and
Grand Rivers extremes. Our analysis of the copula-based approach revealed important
findings regarding the dependence between the Speed and Grand Rivers flow extremes.
Specifically, the conditional return period analysis of Speed River extremes given the Grand
River flow (Figure 8) showed that as the Grand River flow extremes increase, the magnitude
of a t-year return period event for the Speed River flow decreases until the Grand River
flow was approximately near 600 m3/s. Beyond this point, the magnitude of the Speed
River flow events remained constant for all return periods. This implies that the Grand
River flow has a limiting effect on the magnitude of extreme events in the Speed River
flow. The inference may suggest that the interdependence and interaction between the
two rivers are complex and depend on various factors, such as the magnitude of extreme
flow events and the temporal and spatial scales of the analysis. Further research may be
required to understand these relationships in more detail. Similarly, the conditional return
period analysis of Grand River extremes given the Speed River flow (Figure 9) showed that
as the Speed River flow extremes increase, the magnitude of a t-year return period event
for the Grand River flow increases. This indicates that the flows of the Speed River can
influence the flood outcome of the Grand River, similar to the effect of tributary flows on
the main river channel.
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These interdependencies and interactions between the two rivers can have a significant
impact on the flood outcome in the region. Hence, there is an imminent future scope to
study more about the interactions by incorporating detailed modeling approaches such as
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coupled hydrological and hydraulic models, or dynamic flood inundation models. These
types of models can provide more insight into the spatial and temporal dynamics of flood
events and can help to identify the most effective flood management strategies.

These results have important implications for flood risk management and planning.
By incorporating the dependence structure between the two rivers using a copula-based
approach, we can obtain more accurate estimates of the joint probability of flood risks.
Moreover, the conditional return period analysis provides insights into how the risk of
floods in one river may be affected by changes in the flow of the other river. These insights
can help inform flood risk management strategies and improve our ability to plan for
extreme weather events.

For a more detailed understanding, the return period for some combinations/cases
of Grand and Speed River flow extremes is given in Table 2. The combinations of Grand
and Speed Rivers are selected based on the basic statistics of the flow data. The mean,
the 3rd Quartile, and the upper control limits (mean + 1 × standard deviation and
mean + 1.5 × Standard deviation) of Speed and Grand Rivers peak flow data are used
to find out the respective bivariate and univariate return periods.

Table 2. Bivariate and univariate return periods of Speed and Grand Rivers flow extremes.

Speed Flow
(m3/s)

Grand Flow
(m3/s)

TAND
(Year)

TOR
(Year)

TS
(Year)

TG
(Year)

52 420 2.8 1.7 2 2.2
65 518 5 2.7 3.2 3.8
77 607 9.5 4.7 6.1 6.5
90 700 20.7 10 15 12.2

Based on the observations from Table 2, it is apparent that when dealing with higher
flow conditions, joint return periods should be taken into account when planning flood risk
management strategies. For instance, while considering the joint return period for either
Speed flow or Grand flow to exceed 90 and 600 cubic meters per second (m3/s), respectively,
in the area, it is ten years, whereas the univariate return period is 15 years and 12 years
for Speed and Grand flow, respectively. Furthermore, it is worth noting that the 6-year
return period flow of 77 m3/s and 607 m3/s in Speed and Grand rivers (while considering
univariate analysis) can translate to a 9-year return period of simultaneous flow, which
also needs to be considered. Therefore, the joint return period is essential in accurately
assessing flood risk and planning appropriate management strategies, particularly in areas
with high flow conditions.

The comparison between univariate and bivariate probabilistic analysis of extreme
river flow events using copulas highlights the benefits of considering the dependencies be-
tween the extreme river flows at the two rivers. The univariate analysis focuses on modeling
the marginal distribution of a single variable, here, the river flow extreme of a river. While it
provides information about the likelihood of individual extreme events, it does not consider
any dependencies between the extreme flow events at the two rivers. On the other hand,
bivariate analysis based on copula focuses on modeling the joint distribution of two river
flow extreme variables (at the Speed and Grand Rivers) and considers the dependencies
between variables. This leads to a more comprehensive understanding of the relationship
between the two rivers’ extremes and can inform risk management and decision-making in
a way univariate analysis cannot. Bivariate analysis using copulas can better represent the
overall risk, as it accounts for complex dependencies, including non-linear relationships,
between variables. In contrast, univariate analysis only provides information about indi-
vidual events and does not account for the interplay between variables, which can result in
underestimating the overall risk. Bivariate analysis incorporating dependencies between
variables improves prediction accuracy compared to univariate analysis.

It is also important to mention that river flow rate is influenced by various factors
such as precipitation, snowmelt, and other climatic factors, as well as the geomorphic
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characteristics of the surrounding environment. Future studies could consider using
hydrological and hydraulic models to incorporate these factors into the analysis and
provide a more comprehensive assessment of flood risk.

4. Conclusions

The main objective of this paper is to estimate the joint return period of river flow
extremes in two rivers located in the Grand River watershed in Ontario, Canada. To achieve
this goal, the study employs bivariate copula analysis, which enables the incorporation
of mutual dependencies between the two events. By estimating the return period for the
joint occurrence of extremes at the two rivers, the study provides valuable insights into
the interdependence of the two river flows and how this interdependence influences the
behavior of river flow extreme patterns. One of the key observations of the study is that the
interdependence between the two river flows leads to behavioral changes in the river flow
extreme pattern. The copula analysis employed in the study can capture the dependencies
between different extreme river flow events, which traditional methods of extreme value
analysis may not be able to do. The use of copulas in studying joint flood risks has several
benefits, including flexibility in modeling complex relationships, separation of marginal
distributions and dependence structure, better handling of extreme events, improved risk
assessment, and improved prediction accuracy.

By highlighting the importance of considering joint flood risks, the study contributes
to the body of knowledge on flood risk management and provides useful insights for
policymakers and other stakeholders involved in flood risk management. Furthermore,
studying joint flood risks provides a more comprehensive understanding of floods’ com-
plex and interrelated risks. This understanding can inform decision-making for effective
risk management.

In conclusion, this paper emphasizes the importance of studying joint flood risks
using copula analysis. The study provides valuable insights into the interdependence
between river flows and how this interdependence influences the behavior of river flow
extreme patterns. The use of copulas in studying joint flood risks can provide several
benefits, including improved risk assessment and prediction accuracy, and can inform
decision-making for effective risk management.
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