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Abstract: Asphalt binder is a temperature-sensitive material with a performance that is greatly
affected by changing climates. Improper selection of asphalt will cause a lot of damage and affect
the durability of the road. The establishment of asphalt pavement performance zoning in Xinjiang,
a vast area with great temperature differences, will provide a reference for the selection of asphalt
suitability, the refinement of pavement design, and the sustainable development of road engineering.
In this study, 11 years of temperature data in the Xinjiang region have been collected and analyzed,
and 98% reliability of pavement design temperature has been used to draw a performance grading
map of asphalt pavement in the Xinjiang region based on the ArcGIS platform. Finally, the Xinjiang
region is divided into nine performance zones. At the same time, the performance grades (PG) of five
kinds of asphalt binders in Karamay are explored. The result shows that there is little difference in
continuous PG span between different matrix asphalt binders; the lower the penetration grade, the
better the high-temperature performance, and the worse the low-temperature performance. After
adding the SBS modifier, the continuous PG span can be about 20 ◦C higher than the matrix asphalt.
The indoor test of asphalt mixture also shows that SBS-modified asphalt has better durability. All
these provide the basis for a reasonable selection of asphalt binders in different areas of Xinjiang.

Keywords: performance zoning; Superpave; performance grade; dynamic shear rheometer; bending
beam rheometer

1. Introduction

Asphalt pavement has the advantages of low noise, easy maintenance, and fast con-
struction and is widely used in most high-grade roads in China [1–3]. Xinjiang is a vast
territory, and the climate varies greatly from region to region, which greatly tests the
durability of asphalt pavement in the Xinjiang region. Various factors influence asphalt
pavement durability on roads because the construction processes, quality of materials,
design aspects, weather conditions, as well as operating conditions directly contribute to as-
phalt pavement durability. Most of the studies where factors that impact asphalt pavements
durability are identified mainly focus on (1) traffic effects and vehicular loads, (2) char-
acteristics and properties of the materials that make up the structure of the pavements,
and (3) weather and road operation effects [4]. Under the coupled action of traffic and
environmental effects, asphalt binders undergo significant physical changes such as aging,
healing, and premature failure due to their sensitivity to temperature and loading rate,
resulting in the early deterioration of asphalt pavement performance [5–7]. The climatic
factors that affect the performance of asphalt pavements include high temperature, low
temperature, water, fatigue, and aging [8,9]. Asphalt pavements are prone to rutting lesions
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under high-temperature driving loads [10], fatigue cracks under intermediate tempera-
tures [11], experiencing prolonged repetitive driving loads, and transverse cracks under
low-temperature cold environments [12,13], all of which seriously affect driving safety. The
rise of pavement temperature due to global climate change over recent years creates higher
requirements for the high- and low-temperature performance of asphalt roads [14].

The performance of asphalt pavement mainly depends on the performance of the
asphalt binder material used for construction [15]. Asphalt binder has both viscous and
elastic properties, showing soft viscosity at high temperatures and brittle behavior at low
temperatures [16]. Increasing the modulus of the asphalt binder can improve the load-
bearing capacity of the pavement, thus reducing the occurrence of rutting [17–20]. There
are usually two ways to increase the modulus of asphalt binder: one is to use asphalt with a
lower penetration grade, such as 50# or 30# matrix asphalt binder, and the second is to add
modified substances in the asphalt binder, such as SBS modifier and various high modulus
agents [21]. Styrene-butadiene-styrene (SBS), as a copolymer, is often used as a modifier for
asphalt binders to improve the bonding properties of the binder [22]. SBS modifiers can
form a cross-linked network that improves the flexibility, elasticity, and durability of the
binder; this allows the asphalt to better resist cracking, rutting, and other forms of damage,
thereby extending the life of the pavement [23]. In addition, the SBS modifier improves
the viscosity of the asphalt, which results in better binding to the aggregate to form a
more durable pavement [24]. However, the use of modified asphalt will greatly increase
production costs, intensify the consumption of non-renewable resources, aggravate air
pollution, and is not conducive to the sustainable development of the local economy [25,26].
Xinjiang has abundant resources of low penetration asphalt grade, and the production cost
is low. Due to the lack of comprehensive understanding of the performance of asphalt with
low penetration grade, the 90# matrix asphalt is still used for most of the asphalt pavement
in Xinjiang. In summary, it is necessary to research the performance law of matrix asphalt
with different penetration grades and the gap between them and SBS-modified asphalt.

At present, the standard asphalt classification in China is mainly based on the pen-
etration grade; this method is convenient but cannot accurately assess the high- and
low-temperature performance of asphalt [27]. In contrast, the characterization methods
based on performance grading can better simulate the actual conditions to which the
asphalt is subjected [28,29].

The asphalt binder performance grade (PG) system based on asphalt rheological
properties is a product of the Strategic Highway Research Program (SHRP) in the United
States [30]. In Superpave research, rheological analysis is widely used for road paving as-
phalt, including Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR) [31].
Among them, the DSR test can provide a large amount of high-temperature performance in-
formation, such as composite shear modulus (G*), phase angle (δ), rutting factor (G*/sinδ),
and fatigue factor (G*·sinδ); these parameters are used to quantify the high-temperature
rutting resistance and medium-temperature fatigue resistance of asphalt binder [32]. The
creep stiffness modulus S and m values obtained from the BBR test are characterized by the
low-temperature performance of asphalt.

According to the actual environment in which the asphalt pavement is located, the
selection of suitable asphalt binder can not only enhance the durability [33,34], comfort,
and safety of asphalt pavement but also achieve the purpose of economic and environmen-
tal protection, which is an effective way to achieve sustainable development. Therefore,
many countries have conducted climate-based performance zoning studies and developed
performance-level zoning standards for asphalt pavements based on local climate as a
reference for asphalt suitability selection so that asphalt pavement design can be adapted
to the climatic environment of a region [35,36]. For example, the U.S. Strategic Highway Re-
search Program (SHRP) proposed a method for classifying asphalt pavement performance
grades (PG) based on high- and low-temperature indicators [37]. Asi et al. proposed a
temperature–climate zoning method that divided Jordan into three zones based on the high
and low temperatures of the pavement at a 98% confidence level [38]. Hassam et al. used a
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data development model to predict high and low temperatures of asphalt pavements in
Oman and proposed performance grades of asphalt binders for each region in Oman [39].
Saleh et al. converted road surface and pavement temperatures based on Superpave and
LTTP projects to generate four asphalt performance grading zones for Egypt [40]. Mirza
et al. recommend an SHRP model with 98% reliability that divides Pakistan into six PG
grading zones [41]. Jitsangiam et al. divided northern Thailand into two grading zones
by calculating the average temperature and standard deviation value at a 95% confidence
level [42]. Salem et al. used the SHRP model with 50% reliability to classify the road PG
grading of the Libyan desert into three zones [43]. Viola et al. developed an isoline map
of pavement temperature in Italy based on the Superpave specification and considered
the effects of climate change on pavement performance [44]. Cota et al. generated a PG
grading chart of asphalt binders in Mexico based on temperature and elevation, which
was used to determine the grade of asphalt binders required [44]. Zhang et al. proposed a
temperature conversion formula for asphalt pavements in northeast China based on the
SHRP method, established a PG climate zone in northeast China, and evaluated the high-
and low-temperature performance of asphalt binders [15]. Zhao et al. proposed perfor-
mance zoning indexes for different asphalt pavement layers in Inner Mongolia, China,
and divided the asphalt pavement in Inner Mongolia into three main performance zones
and six secondary performance zones and verified them [45]. To sum up, the selection of
asphalt is inseparable from the guidance of the performance zone of asphalt pavement, and
it is necessary to establish the pavement performance grading map in the Xinjiang region.

This paper is mainly focused on the collection and analysis of meteorological data
in different regions of Xinjiang to determine the environment in which the asphalt is
located by pavement temperature, to establish a performance grade zoning chart of asphalt
pavement in Xinjiang, and to propose the high- and low-temperature performance of
asphalt to be used in different regions. Due to the wide application of Karamay asphalt
in the Xinjiang region, four different penetration grades of matrix asphalt and one SBS-
modified asphalt are selected for the PG grading study. The difference between high-
and low-temperature properties of matrix asphalt with different penetration grades and
softening point temperatures are analyzed; this also includes the gap between matrix
asphalt and modified asphalt. These findings will provide a reference and basis for the
suitable selection of asphalt binders in the Xinjiang region and also points out the direction
for the sustainable development of asphalt pavement in the Xinjiang region.

Based on the research background and research objectives, a flowchart is given in
Figure 1 to show the research content and conclusion of this paper.
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2. Generation Performance Grading Map of Asphalt Pavement for Xinjiang
2.1. Temperature Data Collection and Analysis

The performance grade of Superpave asphalt binder is established based on the
minimum and maximum pavement temperature expected on site. Due to the lack of
pavement temperature data in Xinjiang, data were obtained by proposing a conversion
model based on the relationship between air temperature and pavement temperature.
Therefore, the latitude and longitude of 84 stations in Xinjiang were collected and analyzed,
as well as the average values of summer maximum temperature for seven consecutive days
and extremely low temperature for seven consecutive days throughout the year for the
past 11 years.

If the calculations are performed as an average of the temperatures, only 50% reliability
levels of high and low pavement temperatures can be obtained. Reliability is the percentage
probability that the actual temperature does not exceed the design temperature over the
course of a year; a higher percentage means lower risk. The maximum and minimum
design temperatures at 98% reliability are calculated statistically. A reliability of 98% is two
standard deviations from the average value. The calculations are as follows:

T(max) at 98% = X(High Temp) + 2 × S(High Temp)

T(min) at 98% = X(Low Temp) - 2 × S(Low Temp)

where the standard deviation value is determined by the calculation of Equation (1).

S =

√
1

N − 1

n

∑
i=1

(Xi − X) (1)

where Xi is a single temperature record, X is the average value of a set of temperatures, and
N is the number of temperature records in a set.

These values are listed in Table 1, and the standard deviation values of maximum
temperatures in different regions ranged from 1.1–2.8, while the standard deviation values
of minimum temperatures ranged from 1.8–4.7, indicating that the maximum temperatures
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in the hot season had little difference in Xinjiang over the past decade, while the minimum
temperatures fluctuated more in the cold season.

Table 1. Maximum and minimum temperatures and pavement design temperatures for stations
in Xinjiang.

Station Longitude
(◦) Latitude (◦)

Average of
Seven Days,

Average
Maximum

Temperature
(◦C)

Standard
Deviation

Maximum
Design

Temperature
of Road

Surface (◦C)

Average of
Seven Days,

Average
Minimum

Temperature
(◦C)

Standard
Deviation

Minimum
Design

Temperature
of Road

Surface (◦C)

Fuhai 87.48 47.11 38.0 2.2 65.50 −39.0 3.1 −31.83
Habahe 86.32 48.04 37.4 2.4 64.99 −37.8 4.1 −30.80
Buerjin 86.85 47.70 37.4 2.4 64.97 −39.0 3.8 −31.83
Jimunai 85.87 47.44 35.4 2.8 63.05 −34.8 4.1 −28.22
Fuyun 89.53 46.99 38.4 2.8 65.88 −41.0 4.1 −33.55
Qinghe 90.38 46.67 35.0 2.2 62.61 −42.2 3.4 −34.58
Tacheng 82.59 46.46 38.2 1.9 65.65 −33.2 4.1 −26.84

Emin 83.62 46.52 36.5 2.0 64.03 −36.5 4.5 −29.68
Yumin 82.98 46.20 38.0 2.2 65.44 −34.2 4.4 −27.70
Tuoli 83.60 45.94 34.8 1.9 62.37 −31.4 3.6 −25.29

Hebukesaier 85.72 46.79 32.2 1.5 59.95 −34.8 3.8 −28.22
Wusu 84.62 44.45 38.9 1.7 66.17 −30.6 2.5 −24.61

Kelamayi 84.77 45.59 39.5 1.7 66.83 −32.3 3.2 −26.07
Kuitun 84.89 44.45 38.9 1.6 66.17 −30.4 2.5 −24.43
Shawan 85.62 44.33 37.7 1.3 65.02 −31.5 3.1 −25.38
Manasi 86.20 44.29 39.1 1.8 66.35 −33.1 2.8 −26.76
Shihezi 86.00 44.18 39.2 1.5 66.44 −38.5 4.6 −31.40
Changji 87.30 44.02 40.3 2.1 67.48 −37.1 3.8 −30.19

Wulumuqi 87.61 43.79 37.7 2.1 64.98 −29.4 3.0 −23.58
Wujiaqu 87.54 44.17 41.0 2.1 68.16 −36.8 2.6 −29.94
Fukang 87.94 44.16 40.2 1.8 67.39 −32.5 3.0 −26.24
Miquan 87.68 43.97 40.0 1.9 67.19 −33.0 4.0 −26.67

Qitai 89.59 44.02 38.2 1.7 65.47 −37.1 3.3 −30.19
Jimusaer 89.18 44.00 38.2 1.6 65.47 −32.2 3.2 −25.98

Mulei 90.28 43.83 34.4 1.8 61.83 −32.6 3.9 −26.33
Balikun 93.01 43.59 33.0 2.0 60.48 −35.0 3.3 −28.39

Yiwu 94.69 43.25 32.8 1.7 60.26 −31.3 2.6 −25.21
Hami 93.44 42.78 41.4 1.4 68.43 −26.6 2.6 −21.17

Tulufan 89.18 42.93 46.2 1.3 73.02 −19.8 2.6 −15.32
Shanshan 90.21 42.86 43.8 1.4 70.73 −22.5 2.2 −17.64
Tuokesun 88.65 42.79 46.5 1.6 73.30 −20.4 2.0 −15.84

Hejing 86.39 42.31 36.7 1.3 63.90 −24.2 1.9 −19.10
Heshuo 86.86 42.26 36.6 1.2 63.80 −25.6 2.2 −20.31
Yanqi 86.57 42.05 37.2 1.5 64.36 −26.0 2.6 −20.65
Bohu 86.63 41.98 36.5 1.1 63.69 −25.6 2.7 −20.31

Kuerle 86.06 41.68 38.7 1.7 65.76 −20.8 1.9 −16.18
Yuli 86.25 41.33 39.3 1.3 66.30 −24.3 2.5 −19.19

Ruoqiang 88.17 39.02 42.3 1.5 68.96 −22.3 1.9 −17.47
Qiemo 85.53 38.14 40.2 1.4 66.87 −21.6 1.8 −16.87
Minfeg 82.68 37.06 40.6 1.7 67.15 −21.1 2.4 −16.44
Yutian 81.95 36.45 39.2 1.4 65.75 −19.7 2.3 −15.24
Cele 80.78 37.04 40.0 1.5 66.57 −19.2 2.3 −14.81

Hetian 79.94 37.12 39.1 1.5 65.72 −18.4 2.7 −14.12
Moyu 79.71 37.31 38.9 1.3 65.55 −20.8 2.1 −16.18
Pishan 78.29 37.62 39.3 1.5 65.96 −19.9 2.5 −15.41

Tashiuergan 75.23 37.77 30.2 1.5 57.29 −28.7 1.8 −22.97
Yecheng 77.42 37.89 37.7 1.4 64.46 −20.0 2.8 −15.49

Zepu 77.26 38.20 38.5 1.4 65.25 −20.1 2.3 −15.58
Shache 77.25 38.45 38.8 1.5 65.56 −19.5 2.5 −15.06

Maigaiti 77.64 38.95 39.1 1.4 65.90 −19.8 2.3 −15.32
Yingjisha 76.17 38.93 38.6 1.2 65.42 −20.8 3.1 −16.18
Yuepuhu 76.77 39.23 40.1 1.3 66.88 −20.7 2.5 −16.10

Jiashi 76.73 39.50 39.4 1.3 66.24 −20.6 2.5 −16.01
Shule 76.05 39.41 38.3 1.5 65.18 −19.5 2.5 −15.06
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Table 1. Cont.

Station Longitude
(◦) Latitude (◦)

Average of
Seven Days,

Average
Maximum

Temperature
(◦C)

Standard
Deviation

Maximum
Design

Temperature
of Road

Surface (◦C)

Average of
Seven Days,

Average
Minimum

Temperature
(◦C)

Standard
Deviation

Minimum
Design

Temperature
of Road

Surface (◦C)

Shufu 75.86 39.37 37.9 1.2 64.79 −19.5 2.6 −15.06
Aketao 75.95 39.15 37.6 1.2 64.48 −21.8 2.8 −17.04
Kashi 75.99 39.46 37.8 1.3 64.70 −20.6 2.8 −16.01
Wuqia 75.25 39.71 32.4 1.5 59.57 −23.6 1.9 −18.59
Atushi 76.16 39.73 39.0 1.4 65.87 −18.5 2.5 −14.20
Bachu 78.59 39.78 39.0 1.2 65.88 −20.0 2.2 −15.49

Tumukeshu 79.13 39.85 39.2 1.3 66.08 −16.4 2.7 −12.40
Aheqi 78.44 40.93 33.9 1.6 61.11 −24.2 2.2 −19.10

Keping 79.05 40.51 38.7 1.2 65.66 −22.8 2.8 −17.90
Awati 80.37 40.64 37.8 1.6 64.81 −21.5 2.3 −16.78
Wushi 79.22 41.21 35.1 1.2 62.28 −24.4 2.9 −19.28
Wensu 80.24 41.27 37.6 1.4 64.67 −22.0 2.6 −17.21
Akesu 80.26 41.17 37.9 1.2 64.95 −21.5 2.2 −16.78
Alaer 81.29 40.54 38.4 1.2 65.37 −23.5 2.7 −18.50
Shaya 83.19 41.05 39.0 1.5 65.99 −20.8 2.5 −16.18
Kuche 82.96 41.71 37.4 1.3 64.52 −21.9 2.5 −17.13
Xinhe 82.63 41.55 37.6 1.3 64.70 −22.6 2.5 −17.73

Baicheng 81.84 41.82 36.5 1.4 63.67 −27.0 3.2 −21.51
Luntai 84.25 41.77 39.1 1.5 66.15 −24.3 3.0 −19.19
Zhaosu 81.13 43.15 29.8 1.8 57.39 −30.1 3.0 −24.18
Tekesi 81.83 43.21 34.3 1.5 61.69 −29.6 3.3 −23.75

Gongliu 82.23 43.48 36.7 1.5 64.00 −30.1 3.5 −24.18
Xinyuan 83.26 43.42 36.5 1.5 63.80 −25.3 3.4 −20.05
Nileke 82.51 43.80 35.9 1.6 63.26 −32.0 3.5 −25.81
Yining 81.33 43.91 38.2 1.7 65.46 −31.2 4.2 −25.12

Chabuchaer 81.15 43.84 38.7 1.6 65.94 −33.7 4.7 −27.27
Huocheng 80.87 44.05 38.7 1.6 65.95 −30.7 3.7 −24.69
Wenquan 81.03 44.97 33.4 1.9 60.96 −31.6 2.0 −25.47

Bole 82.10 44.93 38.8 1.5 66.11 −32.8 2.7 −26.50
Jinghe 82.88 44.60 39.5 1.5 66.76 −33.2 2.7 −26.84

Since the temperature data obtained with 98% reliability cannot cover all areas, the
spatial difference method is generally used to predict the characteristics of unknown
geographical areas by using known partial spatial information, which is also the biggest
advantage of the spatial difference method. The inverse distance weighting (IDW) method,
as a fast and accurate deterministic interpolation method, can calculate weights from the
distances of known and unknown points. In space, things that are closer to each other are
more similar than things that are farther away from each other. When predicting values for
any unmeasured location, the inverse distance weighting method uses the measurements
around the predicted location. The measurements closest to the predicted location are
assumed to have a greater influence on the predicted value than measurements farther
away from the predicted location. The function is

Z =
∑n

i=1
1

Dp
i Zi

∑n
i=1

1
Dp

i

(2)

where Z is the interpolation point value, Zi is the observation value of the ith sample point,
Dp

i is the distance between the ith observation point and the interpolation point, n is the
number of samples, and p is the power of the distance.

In ArcGIS, the longitude and latitude of 84 meteorological points and 98% reliability of
temperature data were input, and the IDW spatial interpolation method was used to obtain
the high-temperature isotherm and low-temperature isotherm in Xinjiang, respectively, as
shown in Figure 2a,b. The higher temperatures in different areas of Xinjiang under 98%
reliability range from 29.8 ◦C to 46.5 ◦C, and the lower temperatures range from −16.4 ◦C
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to −42.2 ◦C. Most of the areas are under the climate conditions of hot summer and cold
winter.
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map; (b) low-temperature isotherm map.

2.2. Pavement Temperature Calculation

According to the theory of net heat flow and energy balance, the road temperature
conversion model in Xinjiang is proposed in the Xinjiang Highway Asphalt Pavement
Design Instruction Manual. The maximum air temperature is converted to the maximum
design temperature at 20 mm below the road surface as defined by Formula (2), and the
minimum air temperature is converted to the minimum design temperature of the road
surface as defined by Formula (3).

T20mm =
(

Tair − 0.00618Lat2 + 0.2289Lat + 42.2
)
× 0.9545 − 17.78 (3)

where T20mm is the high-temperature design temperature of the pavement at 20 mm below
the road surface, ◦C; Tair is the maximum temperature with 98% reliability, ◦C; and Lat is
the geographic dimension, ◦.

Tmin = 0.8597Tair + 1.7 (4)

where Tmin is the low-temperature design temperature of the road surface, ◦C, and Tair is
the minimum temperature with 98% reliability, ◦C.

By inputting the high- and low-temperature data with 98% reliability into the pave-
ment temperature conversion model, the maximum and minimum design temperatures of
the pavement can be obtained. The specific temperature values are listed in Table 1. The
isotherms of maximum temperature and minimum temperature of pavement temperature
were generated, respectively, as shown in Figure 3a,b. The extreme maximum temperature
reached 73.3 ◦C in some areas, the minimum extreme maximum temperature was 57.3 ◦C,
and the extreme minimum temperature of pavement was 34.6 ◦C.
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2.3. Generating Performance Grading Map for Xinjiang

The performance grade of asphalt pavement in Xinjiang was drawn by analyzing the
pavement temperature, and finally, nine zones of PG grading were divided, which are
PG76-22, PG70-16, PG70-22, PG70-28, PG70-34, PG64-22, PG64-28, PG64-34, and PG58-40,
as shown in Figure 4. As can be seen from Figure 4, the four divisions with the largest area
share are PG70-16, PG70-22, PG70-28, and PG70-34, indicating that the pavement tempera-
ture can reach 70 ◦C in most areas of Xinjiang during the hot season. The asphalt used in
different performance zones in Figure 4 needs to meet the corresponding requirements of
maximum and minimum design temperatures so as to ensure the durability and reliability
of the road; it also provides a basis for the refined design of asphalt pavements in Xinjiang.
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3. Materials and Methods
3.1. Materials

In this paper, four different penetration grades of matrix asphalt binders (90#, 70#,
50#, 30#) and one SBS-modified asphalt binder (modified by 90# matrix asphalt) were
researched. All five asphalt binders were provided by PetroChina Karamay Petrochemical
Co. SBS (Karamay, China) modified asphalt binder was prepared by a new chemical
method. The chemically modified stabilizer is added to make the chemical condensation
and crosslinking reaction between SBS-modified asphalt binder and matrix asphalt binder;
this improves the compatibility between SBS polymer and matrix asphalt and improves the
high-temperature stability and storage stability of SBS-modified asphalt binder. The basic
performance indexes of the five asphalt binders are shown in Table 2. The test procedures
are operated in accordance with the specification JTG E20-2011 [46], and all the indicators
of the five asphalt binders meet the specification JTG F40-2004 [47]. The aggregate used
for the asphalt mixture is limestone purchased from the S21 highway project in Xinjiang
Province, and its physical indexes are all in line with the application requirements. All
parameters of raw materials were tested three times in parallel.

Table 2. Basic performance index of five asphalts binders.

Technical Indexes Unit 90# 70# 50# 30# SBS (I-C) Limit Values Standards

Penetration (25 ◦C, 100 g, 5 s) 0.1 mm 87
(80~100)

72
(60~80)

55.8
(40~60)

32.8
(20~40) 76 - T 0604

Penetration index, PI - −1.11 −0.34 −0.22 −0.02 0.53
(≥−0.4) −1.5~+1.0 T 0604

Softening point, TR&B ◦C 45.3
(≥45)

49.0
(≥46)

50.2
(≥49)

55.6
(≥55)

65.6
(≥55) - T 0606

Ductility (15 ◦C, 5 cm/min) cm >100
(≥100)

>100
(≥100)

>100
(≥80)

61
(≥50) / - T 0604

Ductility (10 ◦C, 5 cm/min) cm >100
(≥20)

>100
(≥20)

>100
(≥15)

8
(≥10)

42.1
(≥30) a - T 0604

Density@15 ◦C g/cm3 0.983 0.986 0.985 0.986 0.985 actual mea-
surement T 0603

Dynamic viscosity@60 ◦C Pa·S 252
(≥160)

421
(≥180)

879
(≥200)

1783
(≥260)

1.977
(≤3) b - T 0620

After RTFOT
(163 ◦C 85 min) T 0610

Mass change % −0.035 −0.035 −0.064 −0.088 −0.185
(≤1) ≤0.8 T 0610

Penetration ratio @25 ◦C % 77
(≥57)

75
(≥61)

74
(≥63)

77
(≥65)

84
(≥60) - T 0604

Ductility (15 ◦C, 5 cm/min) cm >100
(≥20)

>100
(≥15)

27
(≥10) 9 / - T 0605

Ductility (10 ◦C, 5 cm/min) cm 40
(≥8)

11
(≥6) / / 25.1

(≥20) c - T 0605

Note: The values in parentheses are the limit values required by the specification. The limit values in Table 2 are
the requirements for matrix asphalt. a The ductility test of SBS-modified asphalt binder (unaged) provides the
results at 5 ◦C. b The viscosity is Brookfield rotational viscosity at 135 ◦C. c The ductility test of SBS-modified
asphalt binder (RTFOT-aged) provides the results at 5 ◦C.

3.2. Performance Methods

The performance of five asphalt binders was evaluated according to the Superpave
binder specification [48]. Dynamic shear rheometer (DSR) test and bending beam rheome-
ter (BBR) test were used to evaluate the high-temperature rutting resistance, medium-
temperature fatigue resistance, and low-temperature cracking resistance of the matrix
asphalt and SBS-modified asphalt with different penetration grades. Finally, the PG grad-
ing of the asphalt binder was obtained. The PG grading is used to adapt the performance
grades of asphalt required for different asphalt pavements in the Xinjiang region.
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3.2.1. Dynamic Shear Rheometer (DSR)

The high-temperature performance of the five asphalts can be measured by dynamic
shear rheometer (DSR). The dynamic shear rheometer (DSR) is shown in Figure 5. The
device is manufactured by Ta Co., Ltd. from Austin, TX, USA, model CV0150 AR1500ex.
The test parameters, such as the composite shear modulus (G*) and the phase angle (δ),
can be obtained by testing the relationship between the applied stress and the measured
strain. The PG high-temperature performance of asphalt binder is generally characterized
by the rutting factor (G*/sinδ) of the unaged asphalt binder and RTFOT short-term-aged
asphalt binder.
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Figure 5. Dynamic shear rheometer (DSR).

The test was conducted in the temperature range of 52~88 ◦C with an increment
of 6 ◦C, and a 25 mm diameter rotor was selected for the parallel plate geometry and
sample height equal to 1 mm. When the temperature reaches equilibrium, the equipment is
automatically tested at a frequency of 10 rad/s and selected stress target values. The test is
automatically terminated when the rutting factor (G*/sinδ) of the unaged asphalt binder is
less than 1 kPa and the rutting factor (G*/sinδ) of the RTFOT-aged asphalt binder is less
than 2.2 kPa. Each sample was tested once because of the high reproducibility of DSR on
rheological properties of asphalt binder.

The intermediate temperature fatigue performance of asphalt is generally character-
ized by fatigue factor (G*·sinδ) of RTFOT + PAV-aged asphalt binder. PAV aging container
is shown in Figure 6. The test temperatures are 10 ◦C, 16 ◦C, 22 ◦C, and 28 ◦C, and an 8 mm
diameter rotor was selected for the parallel plate geometry and sample height equal to
2 mm. Asphalt binder with PG grading of PGm-n requires a fatigue factor (G*·sinδ) of less
than 5000 kPa at (m−n)/2 + 4 ◦C to meet the specification.

3.2.2. Bending BEAM Rheometer (BBR)

The bending beam rheology (BBR) test can accurately evaluate the ability of asphalt
to resist cracking under low-temperature conditions. The bending beam rheology (BBR)
is shown in Figure 7. The device is manufactured by CANNON Co., Ltd. from Melville,
NY, USA, model PE-BBR-F. The parameters such as creep stiffness modulus S and m-
value of asphalt binder are calculated by applying a constant load and measuring the
deflection. The S represents the stiffness of the material, and m-value represents the stress
dissipation/relaxation capacity due to temperature change. The lower the S value and the
higher the m-value, the better the low-temperature performance of the asphalt binder.
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Trabecular bending samples of five kinds of asphalt binders were prepared, and the
sample size was 127 mm × 12.7 mm × 6.35 mm. In the Superpave specification, the test
temperature will be increased by 10 ◦C, and the stiffness modulus with loading time of
60 s will be replaced by the stiffness modulus after loading at the minimum pavement
design temperature of 2 h. The specification requires the stiffness modulus (S) with loading
time of 60 s to be less than 300 MPa, and m-value is greater than 0.3. At this time, the
temperature will be reduced by 10 ◦C, which is the minimum temperature for asphalt to
meet the low-temperature requirements. The tests were conducted at low temperatures of
−12 ◦C, −18 ◦C, and −24 ◦C, and the samples were loaded continuously for 240 s. During
the test, the creep stiffness modulus (S) and creep rate m-value of trabecular specimens
were automatically collected by the computer through the sensor. Two replicate specimens
of BBR were tested for each type of asphalt binder studied. For each type of asphalt binder
tested, the coefficient of variation was below 15%.



Sustainability 2023, 15, 9742 12 of 20

3.2.3. Asphalt Mixture Test

The AC-16 asphalt mixtures were prepared regarding the Marshall design method
in this work. The gradation composition of AC-16 is listed in Figure 8. According to the
preliminary experiments, the ratio of five kinds of asphalt binders to aggregate was set at
4.5% (90#), 4.6% (70#), 4.6% (50#), 4.7% (30#), and 4.7% (SBS).
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4. Results and Discussion
4.1. High-Temperature PG

The composite shear modulus (G*) and phase angle (δ) of the five asphalt binders after
unaged and RTFOT short-term aging are shown in Figure 9a–d.
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(d) δ at RTFOT-aged condition.

The composite shear modulus (G*) represents a measure of the total resistance of the
material during repeated shear deformation. The larger the value of G*, the stronger the
ability of the asphalt to resist shear deformation. The lower the penetration grade of the
base asphalt, the greater the G* value, and the unaged SBS-modified asphalt has better
shear deformation resistance than the matrix asphalt binder when the temperature reaches
70 ◦C. Phase angle (δ) indicates the proportion of viscous components of asphalt binder;
the larger the phase angle (δ), the larger the proportion of viscous components of asphalt
binder. The smaller the proportion of elastic components, the weaker the ability to recover
after deformation. The large difference in phase angle δ between SBS-modified asphalt
binder and matrix asphalt binder is mainly due to the addition of the SBS modifier, which
makes the asphalt binder exhibit more elastic properties.

After experiencing RTFOT short-term aging, the composite shear modulus G* of all
five asphalt binders increased to varying degrees, and 30# is the most obvious, indicating
that short-term aging increases the ability of the asphalt binder to resist shear deformation.
At the same time, the phase angle decreases to varying degrees, indicating that short-term
aging will increase the proportion of elastic components in the asphalt binder. The phase
angle of SBS-modified asphalt has the smallest variation, which indicates that the addition
of SBS-modified asphalt improves the anti-aging property of asphalt. The matrix asphalt of
Karamay has excellent properties, but it is difficult to modify. The SBS-modified asphalt
used in this paper is prepared by a new chemical method. Although some stabilizers and
regulators are added to improve the stability to a certain extent, it is generally not as stable
as the matrix asphalt. Therefore, after RTFOT aging, the performance of the SBS-modified
asphalt appears to have certain deviations at different temperatures. In summary, short-
term aging will enhance the ability of the asphalt binder to resist rutting deformation and
has the greatest effect on the asphalt binder of a low penetration grade.

The rutting factor (G*/sinδ) is used in the Superpave specification to determine the
high PG temperature of the asphalt binder. The benchmarks for rutting parameters equal
to or higher than 1.0 kPa and 2.2 kPa are adopted for unaged and RTFOT-aged, respectively.
The rutting factors of the five asphalt binders are shown in Figure 10a,b.
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Figure 10. The rutting factor (G*/sinδ) of five asphalt binders. (a) Unaged; (b) RTFOT-aged.

As shown in Figure 10a,b, the high-temperature PG of the five asphalt binders (90#,
70#, 50#, 30#, and SBS) are 66.7 ◦C, 69.0 ◦C, 72.1 ◦C, 76.8 ◦C, and 83.2 ◦C, respectively. The
high-temperature rutting resistance of the five asphalt binders is SBS > 30# > 50# > 70# > 90#.

Compared with 90# matrix asphalt, the continuous gradation temperature of 70#,
50#, and 30# increased by 2.3 ◦C, 5.4 ◦C, and 10.1 ◦C, respectively, mainly because there
are more elastic components in the asphalt binder with low penetration grade, while the
continuous gradation temperature of SBS-modified asphalt increased by 16.5 ◦C. It shows
that the SBS modifier can significantly improve the high-temperature rutting resistance of
the asphalt binder.

4.2. Intermediate Temperature PG

The composite shear modulus (G*) and phase angle (δ) of the five asphalt binders
under RTFOT + PAV aging conditions are shown in Figure 11a,b.
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From Figure 11a,b, it can be seen that the composite shear modulus of the five asphalt
binders gradually decreases with increasing temperature, and the phase angle gradually
becomes larger with increasing temperature. The lower the penetration grade of the matrix
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asphalt, the higher the composite shear modulus and the smaller the phase angle, which is
consistent with the law of unaged asphalt under high-temperature conditions.

Compared with the matrix asphalt, the SBS-modified asphalt binder has a lower
composite shear modulus, and the phase angle is greater than the remaining four matrix
asphalt binders before reaching 25 ◦C. After the temperature reaches 25 ◦C, the phase
angle is gradually smaller than that of each matrix asphalt binder, and the phase angle of
SBS-modified bitumen changes the least at the four temperatures, indicating that its ability
to resist shear deformation is less affected by temperature.

According to the Superpave specification, the fatigue factor (G*·sinδ) was used as
the fatigue parameter of the asphalt binder, as shown in Figure 12, which was limited
to 5000 kPa as the performance criterion of RTFOT + PAV aging binder at intermediate
temperatures. It can be observed that at the intermediate temperature, the fatigue factor
size of the five asphalt binders is regular, SBS > 90# > 70# > 50# > 30#, indicating that the
lower the penetration grade of the matrix asphalt, the less flexible the asphalt is, which also
shows that SBS-modified asphalt has better fatigue performance than the matrix asphalt.
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Overall, the fatigue factors of all five asphalt binders are much less than 5000 kPa
at the regulated temperature, indicating that the asphalt binder from Karamay has good
fatigue resistance.

4.3. Low-Temperature PG

The creep stiffness modulus S and m-values calculated from the BBR tests at three
different temperatures (−12 ◦C, −18 ◦C, and −24 ◦C) with a loading time of 60 s are
shown in Figure 13a,b, respectively. As shown in Figure 13a,b, the 90# and 70# asphalt
binders meet the Superpave requirement at −18 ◦C, 50# and 30# asphalt binders meet the
Superpave requirement at −12 ◦C, and SBS-modified asphalt reaches the Superpave limit
at the temperature of −24 ◦C.

The lower the modulus of stiffness, the lower the temperature stress of the material
under the same temperature shrinkage strain, indicating that the low-temperature cracking
resistance of the material is stronger. At the same temperature, among the five asphalts,
SBS-modified asphalt has the lowest stiffness modulus, and 30# asphalt has the highest
stiffness modulus. The low-temperature cracking resistance of the five asphalt binders is
SBS > 90# > 70# > 50# > 30#. Compared with 90# base asphalt, the continuous grading
temperature of 70#, 50#, and 30# base asphalt decreased by 1.8 ◦C, 4.6 ◦C and 7.6 ◦C,
respectively, mainly because of the increase of elastic components in the low penetration
grade asphalt binder, while the continuous grading temperature of SBS-modified asphalt
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increased by 4.3 ◦C, which indicates that the addition of SBS modifier can improve the
low-temperature performance of asphalt binder.
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4.4. Intermediate Temperature PG

The full performance grades, continuous performance grades, and the difference
between continuous high PG and continuous low PG of the five asphalt binders evaluated
in this paper are shown in Table 3.

Table 3. PG grading of five asphalt binders.

Parameter Condation Specfication PG

90# 70# 50# 30# SBS

G*/sinδ Original ≥1 kPa 67.5 71.8 74.4 76.8 84.9

G*/sinδ RTFOT ≥2.2 kPa 66.7 69.0 72.1 77.6 83.2

Upper PG 64 64 70 76 82

G*·sinδ PAV ≤5000 kPa 22 22 28 31 28

Intermediate PG 22 22 28 31 28

S PAV ≤300 MPa at 60 s −30.0 −28.2 −25.6 −22.9 −34.3

m-value PAV ≥0.3 kPa at 60 s −31.3 −28.7 −25.4 −22.4 −34.5

Lower PG −28 −28 −22 −22 −34

PG 64–28 64–28 70–22 76–22 82–34

Continuous PG 66.7–30 69–28.2 72.1–25.4 76.8–22.4 83.2–34.3

Difference between cont. high and cont. low PG 96.7 97.2 97.5 99.2 117.5

For the matrix asphalt binder, the lower the penetration grade, the better the high-
temperature performance and the higher the PG high-temperature grade, but the difference
between high continuous PG and low continuous PG for different matrix asphalt is not sig-
nificant, indicating that the matrix asphalt has improved its high-temperature performance
while the low-temperature performance also decreases accordingly.

According to the full performance grade for classification, 90# and 70# asphalt binders
in the same PG range, indicating that in some cases, the PG grading for asphalt performance
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is not fine enough to distinguish; it is recommended to combine the penetration grade and
continuous PG classification together for reference.

Due to the addition of a modifier, SBS-modified asphalt can not only improve the
high-temperature performance but also improve the low-temperature performance; thus, it
has a larger continuous PG span and can adapt to a wider temperature domain. In the area
with a larger temperature difference, SBS-modified asphalt can be considered.

4.5. Durability of Asphalt Mixtures

The properties of the five asphalt mixtures are shown in Table 4. The durability of
asphalt pavement can be characterized by high-temperature performance, low-temperature
performance, moisture susceptibility, and fatigue performance. By analyzing Table 4, we
find that an asphalt mixture with low penetration has better rutting resistance and water
stability, but low-temperature crack resistance and fatigue performance are poor, and it can
only meet the requirements of the code in some areas. The dynamic stability, ultimate tensile
strain, residual Marshall stability, and fatigue life of the SBS-modified asphalt mixture are
4.7 times, 0.93 times, 1.11 times, and 2.10 times those of the 90# matrix asphalt binders,
respectively. To sum this up, the SBS-modified asphalt mixture has better durability.

Table 4. Performance of five asphalt mixtures.

Items

High-Temperature
Performance

Low-Temperature
Performance Moisture Susceptibility Fatigue

Performance

Dynamic Stability
(Times/mm)/Std.Dev

Ultimate Flexural
Strain/Std.Dev

MS1 (kN)
/Std.Dev

MS (kN)
/Std.Dev

RMS
(%)

Fatigue Life
(Times)/Std.Dev

90# 1435/127.72 2818/108.22 11.46/0.76 14.12/0.63 81.2 61,220/3869
70# 2039/130.50 2611/84.25 14.70/0.58 17.89/0.72 82.3 49,524/3325
50# 2703/75.68 2383/78.55 16.55/0.74 19.07/0.84 86.8 34,667/1845
30# 3514/77.31 2151/69.17 18.17/0.92 20.79/1.06 87.4 30,315/1926
SBS 8183/310.95 2628/83.42 16.73/0.75 18.64/0.88 89.8 128,769/8871

5. Summary and Conclusions

By drawing a performance grading map of asphalt pavement in Xinjiang and research-
ing the PG grading of five asphalt binders in Karamay, with the aim to provide guidance
and reference for the selection of asphalt in different areas of Xinjiang to ensure that it
is more adaptable to local climatic conditions, the following conclusions were obtained
according to the results of the study:

(1) The asphalt pavement performance grading map of Xinjiang region divides Xinjiang
into nine sub-districts, which indicates that the climate varies significantly in different
areas of Xinjiang. The four partitions with the largest area share are PG70-16, PG70-22,
PG70-28, and PG70-34, indicating that the pavement temperature is close to 70 ◦C in
most areas of Xinjiang during the high-temperature season.

(2) For the five partitions with a continuous PG range over 92 ◦C (PG76-22, PG70-28,
PG70-34, PG64-34, and PG58-40), modified bitumen is recommended to ensure that
the pavement performance needs can be met. The remaining four subdivisions are
recommended to use matrix asphalt to meet the performance requirements in order
to achieve economic and environmental protection.

(3) The lower the needle penetration grade of the matrix asphalt, the better the high-
temperature performance, and the worse the low-temperature performance, but over-
all the continuous PG span difference is not large; SBS-modified asphalt continuous
PG span can be higher than the matrix asphalt by about 20 ◦C.

(4) In the case that different penetration grades of asphalt have the same PG grading, it is
recommended to combine the penetration grade and continuous PG range together
for reference.

(5) By combining the PG grades of five kinds of asphalt with the performance zoning map
of the Xinjiang region, we find that 70# asphalt can adapt to most areas of northern
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Xinjiang, and 50# asphalt can adapt to most areas of southern Xinjiang. Additionally,
90# and 30# are only useful in some areas. SBS-modified asphalt can not meet the
requirements only in the PG58-40 area.

(6) An asphalt mixture with a low penetration has better rutting resistance and water
stability, but low-temperature crack resistance and fatigue performance are poor; only
in some areas can it meet the requirements of the code, and an SBS-modified asphalt
mixture has better durability. According to the road temperature, the paper examined
the PG grading of different asphalt binders, which provides useful information for
the selection of bitumen in different areas of Xinjiang. However, due to the lack of
pavement temperature data, the pavement temperature used in this study is converted
by air temperature, so the monitoring and collection of pavement temperature data
will be very important work in the future. Additionally, not many types of asphalt
were studied in this paper. In order to provide more options for the applicability of
asphalt binder in different areas of Xinjiang, PG grading studies on different types of
asphalt binder from more manufacturers are needed in the future.
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3. Yan, K.Z.; Hong, Z.; You, L.Y.; Ou, J.; Miljković, M. Influence of ethylene-vinyl acetate on the performance improvements of

low-density polyethylene-modifeied bitumen. J. Clean. Prod. 2021, 278, 123865. [CrossRef]
4. Cota, J.; Martínez-Lazcano, C.; Montoya-Alcaraz, M.; García, L.; Mungaray-Moctezuma, A.; Sánchez-Atondo, A. Improvement

in Durability and Service of Asphalt Pavements through Regionalization Methods: A Case Study in Baja California, Mexico.
Sustainability 2022, 14, 5123. [CrossRef]

5. Ullah, S.; Yang, C.; Cao, L.; Wang, P.; Chai, Q.; Li, Y.; Wang, L.; Dong, Z.; Lushinga, N.; Zhang, B. Material design and performance
improvement of conductive asphalt concrete incorporating carbon fiber and iron tailings. Constr. Build. Mater. 2021, 303, 124446.
[CrossRef]

6. Zeiada, W.; Liu, H.; Ezzat, H.; Al-Khateeb, G.G.; Underwood, B.S.; Shanableh, A.; Samarai, M. Review of the Superpave
performance grading system and recent developments in the performance-based test methods for asphalt binder characterization.
Constr. Build. Mater. 2022, 319, 126063. [CrossRef]

7. Ma, X.; Dong, Z.; Dong, Y. Stiffness identification method for asphalt pavement layers and interfaces using monitoring data from
built-in sensors. Struct. Health Monit. 2023, 22, 151–165. [CrossRef]

8. Wang, X.; Fang, N.; Ye, H.; Zhao, J. Fatigue Damage Analysis of Cement-Stabilized Base under Construction Loading. Appl. Sci.
2018, 8, 2263. [CrossRef]

9. Li, H.; Fang, N.; Wang, X.; Wu, C.; Fang, Y. Evaluation of the Coordination of Structural Layers in the Design of Asphalt Pavement.
Appl. Sci. 2020, 10, 3178. [CrossRef]

10. Du, Y.; Chen, J.; Han, Z.; Liu, W. A review on solutions for improving rutting resistance of asphalt pavement and test methods.
Constr. Build. Mater. 2018, 168, 893–905. [CrossRef]

https://doi.org/10.1016/j.conbuildmat.2017.04.066
https://doi.org/10.1016/j.conbuildmat.2019.116695
https://doi.org/10.1016/j.jclepro.2020.123865
https://doi.org/10.3390/su14095123
https://doi.org/10.1016/j.conbuildmat.2021.124446
https://doi.org/10.1016/j.conbuildmat.2021.126063
https://doi.org/10.1177/14759217221077612
https://doi.org/10.3390/app8112263
https://doi.org/10.3390/app10093178
https://doi.org/10.1016/j.conbuildmat.2018.02.151


Sustainability 2023, 15, 9742 19 of 20

11. Liu, W.; Yan, K.; Ge, D.; Chen, M. Effect of APAO on the aging properties of waste tire rubber modified asphalt binder. Constr.
Build. Mater. 2018, 175, 333–341. [CrossRef]

12. Xing, M.; Yang, H.; Zhao, Z.; Yu, T. Effect of Asphalt Pavement Base Layers on Transverse Shrinkage Cracking Characteristics.
Sustainability 2023, 15, 7178. [CrossRef]

13. Zhang, K.; Kevern, J. Review of porous asphalt pavements in cold regions: The state of practice and case study repository in
design, construction, and maintenance. J. Infrastruct. Preserv. Resil. 2021, 2, 4. [CrossRef]

14. Miao, Y.; Sheng, J.; Ye, J. An Assessment of the Impact of Temperature Rise Due to Climate Change on Asphalt Pavement in
China. Sustainability 2022, 14, 9044. [CrossRef]
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