
Citation: Gan, W.; Zhang, Y.; Xu, J.;

Yang, R.; Xiao, A.; Hu, X. Spatial

Distribution of Soil Heavy Metal

Concentrations in Road-Neighboring

Areas Using UAV-Based Hyperspectral

Remote Sensing and GIS Technology.

Sustainability 2023, 15, 10043.

https://doi.org/10.3390/

su151310043

Academic Editor: Giovanni Leonardi

Received: 24 April 2023

Revised: 19 May 2023

Accepted: 31 May 2023

Published: 25 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Spatial Distribution of Soil Heavy Metal Concentrations in
Road-Neighboring Areas Using UAV-Based Hyperspectral
Remote Sensing and GIS Technology
Wenxia Gan 1, Yuxuan Zhang 1, Jinying Xu 2, Ruqin Yang 3,4, Anna Xiao 5 and Xiaodi Hu 1,*

1 School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430074, China;
charlottegan@whu.edu.cn (W.G.); zyuxuan88@163.com (Y.Z.)

2 Shenzhen Expressway Engineering Consultants Co., Ltd., Shenzhen 518034, China; xujiny-ing@szewec.com
3 Wuhan Natural Resources and Planning Information Center, Wuhan 430014, China;

yangruqin667788@163.com
4 Hubei Surveying and Mapping Engineering Institute, Wuhan 430074, China
5 Hubei Communication Investment Intelligent Detection Co., Ltd., Wuhan 430050, China;

annashaw123@163.com
* Correspondence: huxiaodi@wit.edu.cn

Abstract: Monitoring and restoring soil quality in areas neighboring roads affected by traffic activities
require a thorough investigation of heavy metal concentrations. This study examines the spatial
heterogeneity of copper (Cu) and chromium (Cr) concentrations in a 0.113 km2 area adjacent to
Jin-Long Avenue in Wuhan, China, using Unmanned Aerial Vehicle (UAV)-based hyperspectral
remote sensing technology. Through this UAV-based remote sensing technology, we innovatively
achieve a small-scale and fine-grained analysis of soil heavy metal pollution related with traffic
activities, which represents a major contribution of this research study. In our approach, we generated
4375 spectral variates by transforming the original spectrum. To enhance result accuracy, we applied
the Boruta algorithm and correlation analysis to select optimal spectral variates. We developed the
retrieval model using the Gradient Boosting Decision Tree (GBDT) regression method, selected from
a set of four regression methods using the LOOCV method. The resulting model yielded R-square
values of 0.325 and 0.351 for Cu and Cr, respectively, providing valuable insights into the heavy metal
concentrations. Based on the retrieved heavy metal concentrations from bare soil pixels (17,420 points),
we analyzed the relationship between heavy metal concentrations and the perpendicular distance
from the road. Additionally, we employed the universal kriging interpolation method to map heavy
metal concentrations across the entire area. Our findings reveal that the concentration of heavy metals
in this area exceeds background values and decreases as the distance from the road increases. This
research significantly contributes to the understanding of spatial distribution characteristics and
pollution caused by heavy metal concentrations resulting from traffic activities.

Keywords: soil heavy metal; traffic activities; UAV; hyperspectral; remote sensing

1. Introduction

Heavy metals (HMs) can enter the soil through various processes, such as indus-
try, agriculture, and transportation, causing significant health risks to both humans and
animals [1,2]. As per previous studies, transportation greatly contributes to soil heavy
metal pollution [3–5]. Reports suggest that vehicle emissions, fossil fuel combustion, brake
lining wear, and tire wear can contaminate the soil with lead (Pb), zinc (Zn), copper (Cu),
chromium (Cr), and cadmium (Cd) [6,7]. Transportation-related dust containing HMs
can combine with other airborne particles and enter the soil in a range of ways, such as
deposition, dilution, diffusion, or attenuation. The soil near roads can have a heavy metal
buildup due to transportation-related activities [8–10].
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A study conducted in southeastern Iran assessed the heavy metal pollution in urban
soils around industrial areas using samples and GIS technology. The results revealed
several hot-spot areas with high concentrations of heavy metals, primarily associated with
vehicle-related workshops, fuel stations, and road junctions [5]. Moreover, it has been
identified that traffic flow contributes to increased lead (Pb) concentrations in surface
soil [11]. Additionally, previous studies on heavy metals (HMs) related to traffic projects
have shown that they tend to accumulate in the surface layer of soil on both sides of the
road within a range of 20 cm. Notably, lead (Pb) and cadmium (Cd) exhibit a banded
extension from the center of the road to the sides [12,13]. Another study, based on soil
and earthworm samples from roadsides in urban high traffic areas in Benin Metropolis,
Nigeria, also demonstrated a concentrated pattern of heavy metal pollution near roadsides,
which gradually decreases with distance from the road [14]. It is important to note that
the distribution of heavy metals varies across different regions and even within the same
region [13]. However, existing works typically rely on traditional methods that involve soil
sampling and laboratory analysis, which may not provide sufficient data density for local-
level analysis on a fine spatial scale [5,14–17]. In light of these limitations, our study aims
to conduct a spatially detailed analysis of heavy metal pollution, specifically chromium
(Cr) and copper (Cu), in the road-neighboring area at a local scale. To achieve this objective,
we will utilize UAV-based hyperspectral remote sensing technology.

In contrast to the traditional on-site soil sampling method [18,19], the hyper-spectral re-
mote sensing technology uses hundreds of spectral bands and can capture detailed spectral
characteristics of HMs and has been demonstrated to be an effective tool for estimating HM
concentrations spatially in soil. It, thus, enables the study of the spatial distribution charac-
teristics of heavy metals in soil with high precision and cost-effectiveness [18,19]. Most of
the existing works based on hyperspectral remote sensing were carried out on spectroscopic
reflectance and space-borne and air-borne hyperspectral methods [20]. Unmanned Aerial
Vehicles (UAVs) equipped with hyperspectral sensors have been recently used for soil
indicator monitoring due to their rapidness and convenience [21–23]. UAV-based remote
sensing can monitor soil heavy metal concentration in much finer detail (submeter scale),
benefiting the illustration of the mechanisms of the soil HM concentrations accumulation
in a small area of interest, such as a small patch of farmland.

The main steps in hyperspectral remote sensing-based heavy metal retrieval are feature
band selection and retrieval model building. As hyperspectral sensors have a large number
of bands, the spectral variables usually have high dimensions, and projecting them through
feature band selection methods into lower dimensions can lead to models with better gen-
eralization ability [24]. In terms of the retrieval model, both classical statistical regression
models, such as linear regression [25], stepwise multiple linear regression (SMLR) [26],
and partial least squares regression (PLSR) [27,28], and recently popular machine learning
regression methods [29] are utilized in this field [30,31].

As mentioned earlier, our study aims to conduct a detailed spatial analysis of heavy
metal pollution (specifically Cr and Cu) in a small soil area adjacent to a road at a submeter
scale, using UAV-based hyperspectral technology, which provides higher spatial density
data on heavy metal concentrations compared to on-site soil samples. The research con-
sists of two parts: retrieving the heavy metal concentrations and analyzing their spatial
distribution over the study area. In the first part, we will perform spectrum transforma-
tion, select optimal spectral variates, choose the best model, and retrieve heavy metal
concentrations over bare soil points. In the second part, the study will analyze the spatial
distribution and patterns of heavy metal concentrations. Additionally, it will examine
the relationship between heavy metal concentrations at these points and their distance
from the road. Summarily, this work represents an innovative way to analyze the spatial
distribution characteristics of heavy metals at a submeter scale. It will also help identify the
impact of traffic activities on the area adjacent to the road, which is challenging to illustrate
based on limited on-site soil samples. The findings from this study will contribute to soil
quality protection.
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Following this introduction and background section, Section 2 talks about the study
area, relevant data, and processing steps. The methodology used to retrieve heavy metal
concentrations from hyperspectral data and analyze the spatial characteristic in the subse-
quent sections of the paper. Thereafter, the results are presented and analyzed. Finally, the
paper concludes with a summary of key findings, limitations, and recommendations.

2. Study Area and Materials
2.1. Study Area

The study area, with a total area of 0.113 km2, is situated in the southern part of
Wuhan City, China (Figure 1). It is bounded by Jin-Long Avenue West Line on the north
and Wu-Shen Expressway on the east, extending until the junction of Jin-Long Avenue,
Xue-Fu-Lan Avenue, and Kai-Di-La-Ke Road. The region is dominated by red, paddy, and
yellow cinnamon soils, and the topography is flat. Two significant regional roads, Jin-Long
Avenue and Xue-Fu-Lan Avenue, were constructed in 2015 and 2010, respectively, with
substantial traffic flow posing a contamination threat to nearby areas. On the other hand,
Kai-Di-La-Ke Road, an interior-connected road for the area, was erected in late 2019 with
sparse traffic.
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2.2. Materials

The study collected hyperspectral remote sensing data and soil samples on 20 Decem-
ber 2020, from 10:00 to 16:00, in the study area. During this time, the area was primarily
characterized by shriveled seasonal grass and bare soil. The coordinates of the sampling
points and the ground control points for the subsequent geometrical processing of the
hyper-spectral images were recorded using a handheld global positioning system (GPS).

2.2.1. UAV Hyperspectral Remote Sensing Image Data Collection and Image Preprocessing

The hyperspectral remote sensing image data were captured using a DJI M600 Pro
UAV equipped with a Cubert FireflEYE S185 hyperspectral imaging spectrometer (Bodkin
Design & Engineering LLC, Newton, MA, USA), which has 125 spectral bands between
450 nm to 950 nm with a 4 nm spectral interval [32], which is shown in Figure 2. Images
were acquired at a flight height of 115 m with a 5 cm ground spatial resolution. Before
each flight, the hyperspectral sensor was radiometrically calibrated using a White Diffuse
Reflectance Standard [33]. Multiple flights were carried out to cover the entire study area.
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After the data acquisition, the UAV remote sensing data was preprocessed both
geometrically and radiometrically as follows.

(a) Geometric registration: Images from different flights were geometrically registered using
the quadratic polynomial calculation model to eliminate the geometric distortions.

(b) Radiometrical normalization: This process was used to eliminate the radiometrical
inconsistency among the images acquired by different flights.

(c) Image mosaic: The images acquired from different flights were mosaicked into a
seamless wide-field image.

(d) Geometric correction: The mosaicked image was geometrically corrected based on
the ground control points.

All the geometric preprocessing was performed using ENVI software (Environment for
Visualizing Images 5.3, L3Harris Geospatial Solutions, Inc, Broomfield, CO, USA). Radio-
metrical normalization was conducted using the global relative radiometrical normalization
(RRN) method [34], which was implemented by Python.

2.2.2. On-Site Soil Data Collection and Processing

To ensure accurate soil data collection and processing, we considered the specific
characteristics of the study area. A total of 72 soil samples were collected from 7 sampling
lines that were parallel to Jin-Long Avenue (refer to Figure 1). Each soil sample weighed
approximately 500 g and was collected from a soil layer depth of 0–20 cm. Within each
sample plot, we collected soil samples from five different points, which were then com-
bined [35]. One of the five points was located at the center of the plot, while the remaining
four points were evenly distributed along the diagonal lines of the plot, ensuring equal
spacing between the points.

The collected soil samples were air-dried at room temperature for three days. Sub-
sequently, any residues of gravel, plant matter, and animal material were removed, and
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the soil samples were finely ground using an agate mortar. The ground soil samples were
then sieved through a 100-mesh nylon sieve. The concentrations of heavy metals in the soil
samples were measured at the test center of Wuhan Botanical Garden, Chinese Academy
of Sciences [36,37]. The measurement process involved digesting 0.1 g of soil with a 4 mL
mixed solution of 2:1 HNO3:HF (v/v) in a digestion tank. The samples underwent mi-
crowave digestion for 15 min, followed by dilution with deionized distilled water. Finally,
the diluted solutions were analyzed using inductively coupled plasma atomic emission
spectroscopy (ICP-OES Optima 8000dv, Perkin Elmer, Waltham, MA, USA).

After identifying each concentration, exploratory data analysis was carried out on the
72 samples, and 2 outliers were detected with the quartile–quartile method and removed.

3. Method

The methodology used in this study is summarized in Figure 3 and consists of four
main parts: (1) preprocessing of UAV image data, (2) development of a retrieval model for
predicting soil heavy metal concentrations, (3) retrieving of heavy metal concentrations in
bare soil, and (4) analysis of heavy metal concentrations in the road-neighboring area.
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3.1. Retrieval of Soil Heavy Metal Concentrations
3.1.1. Pretreatment of the Hyperspectral Data

The hyperspectral image was utilized to extract spectra from the soil sample points
based on their spatial coordinates, using the data management tools available in ArcGIS
software, version 10.7.1 (ESRI, Redlands, CA, USA). To enhance the spectral features and
obtain more information about heavy metals in the soil, preprocessing of the original
spectra data was conducted. Since the spectral response of soil heavy metal concentrations
can be subtle and difficult to detect using conventional methods, a smoothing process was
employed to reduce noise. The Savitzky–Golay (SG) filter, with an order of 2 and a frame
size of 7 points (representing 28 nm), was applied for this purpose [15].

Following the smoothing process, four transformations were applied to the smoothed
original reflectance: reciprocal, square root, exponential, and logarithmic. The logarithmic
transformation was specifically used to enhance the differences in the visible region of wave-
lengths and reduce the impact of varying illumination conditions [38]. On the other hand,
the reciprocal and exponential transformations were utilized to reduce the influence of
noise by highlighting large spectral reflectance values and downplaying small ones [15,38].
Overall, these transformations aimed to mitigate the impact of background noise and the
fluctuations in signal intensity resulting from spectral scattering and absorption on the
soil surface.

In addition, Fractional Order Derivative (FOD) operations were performed to further
highlight hidden information in the spectra. FODs have been used for the retrieval of soil
HM concentrations and can identify the subtler spectral characteristics of heavy metals
due to its gradual change in the treatment of the spectrum and is able to highlight hidden
information [39]. We applied FODs with fractional orders ranging from 1.0 to 2.0, stepped
by 0.2, resulting in six types of FODs for each spectrum.

All of the transformations were carried out using a self-developed Python program (Python
3.7) using the equation list in Table 1, and the FOD of R(λ) is shown in Equation (1) [40], and
R(λ) is the reflectance of the band λ of the hyperspectral remote sensing data.

Table 1. Spectral transformation.

Spectral Transformation Formula

Reciprocal transformation R′ = 1/R(λ)
Logarithmic transformation R′ = Log(R(λ))
Square Root transformation R′ = Sqrt(R(λ))
Exponential transformation R′ = Exp(R(λ))

To calculate FODs, in this study, we used the Grunwald–Letnikov (G-L) method,
which is suitable for digital signal processing due to its simplicity and applicability to
spectra [40]. The FOD of R(λ) is based on the reflectance of two neighboring bands and
given by Equation (1):

dvR(λ)
dλv ≈ R(λ) + (−v)R(λ− 1) +

(−v)(−v + 1)
2

f (λ− 2) + · · ·+ Γ(−v + 1)
n!Γ(−v + n + 1)

f (λ− n) (1)

where v is the order of the differential, R(λi + 1) is the reflectance of band (“i + 1”), R(λi−1)
is the reflectance of band (“i − 1”), and ∆λ is the spectral interval of the bands. FOD com-
putation for the 1-D signal is similar to the convolution process and is not applicable to the
first band. Therefore, the FODs of the first band were not involved in the subsequent steps.

Finally, a total of 35 types of transformation were carried out over the 125 bands,
resulting in 4375 spectral variates. All of these variates were used to identify the optimal
spectral variables for soil heavy metal concentrations.

3.1.2. Optimal Spectral Variates Selection

In this study, a set of rules was used to select the optimal variates and avoid the
situation of “dimensionality disaster”, which are significantly important and non-correlated
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spectral variates for retrieving concentrations of soil heavy metals Cr and Cu. The process
involved the following steps.

Firstly, Spearman’s rank correlation coefficient [41,42] was calculated between the
spectral variates and the concentrations of heavy metals. The spectral variates with a
correlation at a significance level (p-value) of 0.01 were identified as candidate variates that
were significantly correlated with the concentrations of heavy metals in soil.

Then, the Boruta algorithm was used for feature selection [43,44]. The Boruta algorithm
is a variable selection method that iteratively removes features that are less significant than
a random probe (artificial noise variables introduced by the Boruta algorithm).

Finally, to eliminate collinearity among the spectral variables and identify the optimal
relevant spectral variables, the spectral variates determined by the Boruta algorithm were
further checked. The correlation coefficient between the spectral variates was calculated,
and the variates-pair with a correlation coefficient higher than 0.9 were analyzed, retaining
only the one with the higher correlation coefficient with heavy metals concentrations.

3.1.3. Model Development and Selecting for Retrieving Soil HM Concentrations

This subsection outlines the development of models to extract heavy metal concentra-
tions from remotely sensed data using selected spectral variables as independent variables,
with heavy metal concentrations serving as the dependent variable. Before the develop-
ment of a regression model, scatter plots were used to detect and eliminate outliers in the
correlation between the heavy metals concentration and selected spectral variables.

(1) The modeling methods.

Four regression techniques were employed to quantitatively retrieve soil Cr and
Cu concentrations: multivariate linear regression (MLR), decision tree regression (DT),
gradient-boosted decision tree regression (GBDT), and random forest regression (RF). DT,
GBDT, and RF are commonly used data-driven machine learning methods [20,31].

1. Multivariate Linear Regressor (MLR)

MLR is the most basic form of regression analysis. It entails calculating the regression
vector between an independent variable set (X) and a dependent variable. This method’s
simplicity is its strongest advantage, particularly when weights are applied to the variables
to minimize noise and enhance their significance. However, MLR has a significant disad-
vantage in that it presumes no collinearity between the variables, making proper selection
of variables essential for accurate results.

2. Decision Tree Regressor (DT)

DT is a type of non-parametric, supervised learning method that is utilized for both
classification and regression tasks [45]. The main goal of DT is to construct a model that can
effectively predict the value of a target variable by learning simple decision rules derived
from the features present in the data. The representation of a decision tree can be visualized
as a stepwise approximation with constant values.

3. Gradient-Boosted Decision Trees Regressor (GBDT)

GBDT is a highly effective machine learning algorithm for fitting real-world data
distributions, both for classification and regression problems [46]. It was developed by
combining the decision tree algorithm with ensemble learning techniques such as bagging
and boosting, addressing the overfitting problem that often arises in traditional decision
tree algorithms. GBDT is known for its strong generalization ability and is widely used in
many applications.

4. Random Forest Regressor (RF)

RF is a commonly employed algorithm for regression problems due to its high accuracy
and simplicity [47,48]. It is an ensemble method that combines multiple decision trees
using a voting mechanism. RF is typically trained using the bagging technique, which
aggregates predictions from multiple models to enhance prediction accuracy compared to
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individual models. This algorithm exhibits robustness against outliers in the dataset and
requires minimal parameter tuning.

(2) Metrics for Evaluating Regression Models

Model accuracy was evaluated by comparing the predicted and measured concentra-
tions of the testing set. Four parameters were used as indicators to evaluate model accuracy,
namely the R2, root mean square error (RMSE), mean absolute error (MAE), and mean
absolute relative error (MARE). Large R2 values and small RMSE values indicate higher
model accuracy. The model with the highest accuracy for each heavy metal was selected
for soil heavy metal content retrieval. Equations (2)–(5) were used to calculate R2, RMSE,
MAE, and MARE:

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi)

2 (2)

RMSE =
√

1/n∑n
i=1(yi − ŷi)

2 (3)

MAE =
1

n∑n
i=1|yi − ŷi|

(4)

MARE =
1

n∑n
i=1

∣∣∣ yi−ŷi
ŷi

∣∣∣ (5)

where n represents the number of soil samples in the testing set, yi and ŷi represent the true
value and predicted heavy metal content concentration of the ith soil sample in the testing
set, respectively, and y is the average heavy metal concentration.

(3) Model selection

The leave-one-out cross-validation (LOOCV) approach was employed to evaluate the
performance of the models in predicting heavy metals. LOOCV is a type of cross-validation
(CV) where one sample is excluded during each iteration. The average classification error
obtained through LOOCV provides an unbiased estimate of the true error [49,50]. The
dataset was divided into a training set and a testing set, where all but one observation
were used for training the model, and the remaining sample was used for testing in each
iteration. The constructed model was validated by comparing the predicted concentrations
with the actual measured concentrations of the validation set, allowing for the evaluation
of the model’s accuracy.

Grid search combined with repeated k-fold cross-validation was adopted for hyperpa-
rameter tuning to guarantee the best performance of each method [51]. Considering the
size of the dataset, in the repeated k-fold cross-validation, the K and the repeated time were
set as 3 and 7, respectively. Hyperparameters that generated the highest R2 were selected
for model training.

The model with the highest R2 on the testing data was selected as the optimal model
for predicting heavy metals subsequently. The retrieval models were established, utilizing
the chosen regressor and the complete training dataset, and then implemented in all the
bare soil regions to recover the HM concentrations.

All four models were developed using the Scikit-Learn machine-learning library
in Python. All the processing and analysis were carried out using the self-developed
Python program.

3.2. Analysis of Soil Heavy Metal Concentrations Characteristics

Various analytical processes were utilized to provide a comprehensive understanding
of the soil heavy metal (HM) concentration characteristics within the studied region.

(1) Correlation Analysis: Correlation analysis was conducted to reveal the inter-correlations
among different HMs. A strong correlation may indicate that two types of heavy
metals come from the same source [52,53]. In this study, the Pearson correlation coeffi-
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cient was calculated to measure the degree of association between the concentrations
of Cr and Cu in the soil samples [54].

(2) Spatial Interpolation: Since only the HM concentrations over the bare soil pixels were
retrieved, interpolation was employed to map the distribution of HM concentrations
in the entire study area to provide a qualitative understanding of spatial trends and
patterns, enabling visual interpretation and exploration of the data. The universal
kriging (UK) interpolation tool in ArcGIS software (version 10.7.1, ESRI, Redlands,
CA, USA) was used for this purpose. Kriging is a geostatistical interpolation method
that considers both the distance and degree of variation between known data points
when estimating values in unknown areas. UK, a kriging method with a local trend or
drift, was used because it is appropriate for analyzing data with a specific trend [55].

(3) Influence of Perpendicular Distance to the Road: The spatial distribution of HMs in the
road-neighboring area is affected by various factors. In this study, the perpendicular
distance of bare soil points from Jin-Long Avenue was calculated and analyzed as an
external environmental factor. The relationship between this distance and soil HM
concentrations was analyzed using the Data Management Tool in ArcMap 10.7 and a
self-developed Python program.

4. Results and Discussion
4.1. Descriptive Statistics of Soil HMs Concentrations

The descriptive statistics of soil heavy metals (HMs) concentrations are presented in
Table 2, including the background values for Hubei Province [56]. The average contents of
Cr and Cu were 104.987 mg/kg and 33.920 mg/kg, respectively. These values were higher
than the recommended background values of 86 mg/kg and 30.7 mg/kg for Hubei Province.
The background values for heavy metals are a critical indicator of soil environmental quality,
reflecting the content of HMs in the soil environment that is not, or is less, influenced by
human activities. The average concentrations of Cr and Cu were approximately 1.105 and
1.221 times higher than the background values suggested by Hubei Province, respectively.
This implies that the heavy metals in the study region were caused by human activities.
Additionally, the small coefficients of variation indicate that HM content remains reasonably
constant throughout the study region. A strong positive correlation was observed between
the concentrations of Cr and Cu in the soil, with Pearson correlation coefficients of 0.770
and a significance level (p-value) of 0.01. These results reveal a significant correlation
between Cr and Cu and suggest that they may have originated from the same source.

Table 2. Statistics value for the measured soil heavy metal concentration in study area.

Heavy Metal n 1 Min
(mg/kg)

Max
(mg/kg)

Mean
(mg/kg)

Standard
Deviation C.V. 2 (%) SBV 3

Pearson
Correlation
Coefficients

Cr
Total 70 68.034 133.843 104.987 11.091 10.564%

86.000

0.770 *

<SBV 4 68.034 85.686 74.315 6.740 9.070%
>SBV 66 88.975 133.843 105.539 11.314 10.720%

Cu
Total 70 24.952 41.109 33.920 3.349 9.879%

30.700<SBV 12 24.952 29.879 28.144 1.464 5.202%
>SBV 58 30.918 41.109 34.729 2.688 7.740%

1 Sample number. 2 Coefficient of variation. 3 Background values of soil heavy metals in Hubei Province. * The
correlation at a significance level (p-value) of 0.01.

4.2. Model Development and Selection for Heavy Metal Concentration Retrieval
4.2.1. Spectral Transformations

Figure 4 presents the preprocessed reflectance data extracted from the hyperspectral
image and its associated transformations. In total, 4375 spectral variables were obtained
from 5 different types of spectrums (original reflectance and 4 spectral transformations) and
6 additional fractional differences of order (FODs) for each of them, covering 125 bands.
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Figure 4a–e show the smoothed original spectrums and four transformations, respectively,
while Figure 4f–i demonstrate the FODs of the original reflectance. The original spectrums
are relatively smooth, and the reflectance is similar to that of vegetation, which might be
due to the mixture of vegetation and soil in the sampling sites. With an increase in fractional
orders of FODs, the fractional differential values approach 0, indicating that the baseline
drift and mixed overlapping peaks are gradually removed. All of these transformations
and spectral indices were considered in identifying the best variables correlated with soil
heavy metal content.
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Figure 4. The original hyperspectral data and the four transformations (a) original reflectance,
(b) square root, (c) reciprocal, (d) exponential transformation, and (e) logarithmic. The reflectance
processed by fraction-order derivative (take original reflectance as example) in (f) 1.0−order,
(g) 1.2−order, (h) 1.4−order, (i) 1.6−order, (j) 1.8−order, (k) 2.0−order. The dark blue line rep-
resents the mean value of the spectrum, and the light blue areas represent the standard deviations.
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4.2.2. Selection of Optimal Spectral Variates

Spearman correlation coefficients with a significance level of 0.01 were utilized to
determine the spectral variates that were significantly correlated with the heavy metal con-
centrations (Cr, Cu) in the soil. The correlation between the soil heavy metal concentrations
(Cr, Cu) and all spectral variates is illustrated in Figure 5, which includes the smoothed
original spectrum, four kinds of transformed spectrums, and their additional respective
fractional order derivatives (FODs). The coefficients heatmap revealed that the spectral
transformations could highlight the reflectance characteristics hidden in the soil spectral re-
flectance data compared to the original spectral variables. This was particularly evident for
Cu, where only a few spectral variates had significant correlations in the original spectrum,
but a large number of additional spectral variates with significant correlations with Cu
concentrations were identified after transforming the original spectrum (Figure 5b). The
spectral variates with a significant correlation (α = 0.01) were selected as candidate optimal
variates. Through this variate sifting step, 846 and 441 variates were selected, respectively,
for Cr and Cu.
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Figure 5. The absolute Spearman correlation coefficients matrix of hyperspectral reflectance data and
4375 (5 × 7 × 125) spectral variates for (a) Cr, (b) Cu (p = 0.01). The x-axis represents the wavelengths
and the y-axis represents the transformations and their corresponding first order derivatives (FODs).
The y-axis consists of 5 parts from top to bottom, including the original reflectance, square root,
logarithms, exponential, and reciprocal transforming of the original reflectance, and each of the
parts contains the spectrum and its corresponding FODs with orders from 1.0 to 2.0. The correlation
coefficients for the insignificant variates (p-value = 0.01) were set to 0.0 and denoted by deep purple.

The chosen spectral variables were analyzed using the Boruta algorithm to determine
the optimal set of relevant variables for predicting the concentrations of soil’s heavy metals
(Cr, Cu). The Boruta algorithm automatically categorized the spectral variables into three
groups: unimportant, tentative, and important. The tentative and important groups were
preserved, and the unimportant group of variates was ignored. Using this step, nine
variates for Cr and eight variates for Cu were identified, respectively.
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To address the sensitivity of regressors to collinearity among the independent variables,
a correlation analysis was further performed to eliminate any collinearity among the
spectral variables selected by the Boruta algorithm. Variate pairs with coefficients larger
than 0.9 were checked, and the one with a smaller coefficient with HMs concentrations
was removed. The final resulting optimal spectral variables for the two soil heavy metal
concentrations and their correlation coefficients with HMs concentrations are listed in
Table 3, and the correlation coefficients between the selected spectral variables and the
HMs could reach up to 0.514 for Cr and 0.447 for Cu. The correlation coefficient heatmap
(Figure 6), which displays the correlation between the spectral variables, further illustrates
that they exhibited relatively small correlations, indicating a limited presence of collinearity
among the variates. The correlation coefficient heatmap (Figure 6) illustrates that the
correlation between variates was small. It is noteworthy that the optimal variates for
retrieving HMs concentrations were mainly from the FODs of the reciprocal transforming
of the original spectrum, which is consistent with the study of Xu et al. [39].

Table 3. The optimal relevant spectral variates and the associated correlation coefficient for estimation
concentrations of the two soil heavy metals.

Soil Heavy Metals The Optimal Spectral Variables Spearman
Correlation Coefficient

Cr

Sqrt, FOD-1.2, 518 nm 0.433
Exponential, 946 nm 0.405

Reciprocal, FOD-1.0, 658 nm −0.478
Reciprocal, FOD-1.2, 742 nm −0.427
Reciprocal, FOD-1.4, 658 nm −0.331
Reciprocal, FOD-1.6, 710 nm −0.514

Cu

Sqrt, FOD-1.8, 706 nm −0.399
Sqrt, FOD-2.0, 946 nm −0.365

Reciprocal, FOD-1.8, 510 nm 0.362
Reciprocal, FOD-1.8, 666 nm 0.447
Reciprocal, FOD-1.8, 702 nm −0.421
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4.2.3. Model Development and Selection for Heavy Metal Concentration Retrieval

The performance of the retrieval models for predicting the concentration of heavy
metals (Cr and Cu) was assessed using the leave-one-out cross-validation (LOOCV) tech-
nique. The evaluation of the prediction performance involved comparing the predicted
concentrations with the measured values using various metrics such as R2, RMSE, MAE,
and MARE. The results of the four models (RF, DT, MLR, and GBDT) for Cr and Cu are
presented in Tables 4 and 5, respectively.
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Table 4. Estimation model accuracy of Cr.

Parameter Method R2 MAE RMSE MARE

Cr

RF
Train 0.621 5.535 6.766 0.053
Test 0.325 7.322 9.043 0.070

Decision
Tree

Train 0.338 7.242 8.930 0.069
Test 0.252 7.925 9.516 0.076

MLR
Train 0.397 7.011 8.546 0.067
Test 0.264 7.738 9.442 0.074

GBDT
Train 0.668 5.224 6.315 0.050
Test 0.351 7.371 8.868 0.070

Table 5. Estimation model accuracy of Cu.

Parameter Method R2 MAE RMSE MARE

Cu

RF
Train 0.608 1.655 2.078 0.050
Test 0.324 2.185 2.733 0.065

Decision
Tree

Train 0.311 2.237 2.752 0.067
Test 0.116 2.479 3.124 0.074

MLR
Train 0.380 2.139 2.615 0.064
Test 0.246 2.377 2.886 0.071

GBDT
Train 0.643 1.610 1.978 0.048
Test 0.325 2.226 2.730 0.067

The four models performed differently when predicting heavy metal concentrations.
RF and GBDT outperformed MLR and DT in predicting both Cr and Cu. GBDT had the
highest R2 values of 0.351 and 0.325 for Cr and Cu, respectively, indicating a moderate
model fit [57–59]. RF closely followed with R2 values of 0.324 and 0.325 for Cr and Cu,
respectively. DT had the lowest R2 values of 0.252 and 0.116 for Cr and Cu, respectively.
Considering existing works [17,60] and factors such as vegetation interference, contamina-
tion levels in the study area, and the available spectral band range of the sensor, we deemed
the model acceptable for subsequent work. As a result, GBDT was chosen to retrieve heavy
metal content concentrations from bare soil points in the hyperspectral image. The scatter
plots of the measured and predicted values for the four heavy metals using the optimal
estimation models are presented in Figure 7.
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4.3. The Spatial Character of the Soil HMs Concentrations
4.3.1. Spatial Distribution of HMs Concentrations

The spatial distribution map of the HMs concentrations was obtained using the uni-
versal kriging interpolation method based on the 17,420 bare soil points. After examining
the semivariograms, we selected the exponential function as the kernel function for both
Cu and Cr and applied kriging interpolation. This is displayed in Figure 8, which provides
a visual representation of the concentration of the heavy metals across the study area
and benefits understanding the spatial distribution patterns of the heavy metals in the
study area.
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The numerical analysis showed that the accumulation of Cr was generally higher than
that of Cu compared to SBV. The spatial distribution of both Cu and Cr displayed high
concentrations near roads and showed a declining trend from south to north, away from
the road. No apparent association was observed between the distribution of soil heavy
metals and the Wu-Shen Expressway. This could potentially be due to the height difference
between the expressway and the study area, combined with the efficient drainage system,
which effectively redirects pollutants to designated areas, reducing soil pollution in the
study area.

The sources of heavy metal pollution in the road-adjacent soil are multifaceted, in-
cluding traffic activities (such as gasoline exhaust, tire wear, and brake disc wear), the
surrounding factories (such as fossil-fuel power stations and steelworks), and heavy metals
naturally occurring in the soil parent material. However, no large-scale mining works or
factories were found in the study area. Moreover, it is worth noting that the adsorption
performance of Cu differs significantly from that of Cr in most soil types or soil compo-
nents [61]. Hence, the spatial distribution pattern of heavy metals in this study area is
unlikely to be the result of different pollution sources but rather is attributed to a similar
source. In addition, the spatial heterogeneity of heavy metals from soil parent material
is slight in small areas, further supporting the notion that road traffic activities are the
primary source of heavy metal pollution in the area.

The spatial distribution of heavy metals is influenced by a multitude of factors, includ-
ing the physical and chemical properties of the metals, wind direction, soil composition,
and other environmental factors. Rainwater and air are common pathways for the spread
of heavy metals from traffic. Meteorological statistical reports reveal that the frequency
of north wind is higher than that of south wind in the study area [62], which could have
hindered the southward diffusion of heavy metals adsorbed by particulate matter in the air.
Given the relatively flat topography of the area, it is unlikely to have affected the spatial
distribution of the HMs. The higher concentration of Cr compared to Cu may be attributed
to a higher level of Cr pollution in the source or higher clay content in the soil, which has a
higher adsorption capacity for Cr. Notably, the similarity in distribution pattern between
Cr and Cu may be indicative of a shared source, as suggested by the correlation coefficient
analysis in Section 4.1. However, the complex interplay between various environmental
factors and the physical and chemical properties of heavy metals such as Cu and Cr makes
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it challenging, and further research is needed to definitively determine the underlying
reasons behind the spatial distribution of these heavy metals.

4.3.2. Influence of the Perpendicular Distance to the Road

Figure 9 clearly shows a higher concentration of Cr and Cu near Jin-Long Avenue,
with a gradual decrease in concentration as the perpendicular distance to the road increases.
The relationship between soil HM concentrations and perpendicular road distance was
analyzed using line charts, with perpendicular distance as the X-axis and heavy metal
concentrations as the Y-axis. The results show that the concentration of Cr increased initially
with increasing distance from the road edge before flattening out. Notably, the maximum
concentration was not observed at the road edge. On the other hand, the concentration of
Cu showed a continuous decrease with increasing perpendicular distance from the road.
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Typically, Cu and Cr ions adhere to different particles, which can cause them to
migrate and diffuse differently through the soil after being transported by rain or air. The
size of the particles carrying HMs can also affect their settlement location. For instance,
heavy metals contained in smaller particles may precipitate closer to the road, while larger
particles may settle further away. The intricate nature of the mechanisms leading to the
spatial distribution of HMs in the soil is further complicated by external factors such as
prevailing wind direction and vehicle speed, which can affect air turbulence on the road
and further influence the settling location of HMs. In our analysis, the higher concentration
of Cr compared to Cu may be due to a higher level of Cr pollution in the source, or the
higher clay content in the soil, which has a higher adsorption capacity for Cr. Our findings
indicate that soil heavy metals (Cr and Cu) are generated by traffic-related activities and
show their spatial distribution pattern, but the exact mechanism remains unclear. Further
research, incorporating the study of aerodynamics and soil environmental chemistry, may
be required to fully understand the characteristics of heavy metal distribution in this area.
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5. Conclusions

In conclusion, this study aimed to develop and apply HM retrieval models using UAV-
based hyperspectral image samples to analyze the spatial distribution and accumulation
characteristics of heavy metals (HMs) in road-adjacent soil. We successfully built HM
retrieval models by selecting optimal spectral variates through correlation analysis and
the Boruta algorithm. Four regression models, including MLR, DT, RF, and GBDT, were
developed and compared using the LOOCV procedure, with GBDT demonstrating the best
performance for both HM concentrations.

By applying the HM retrieval model to bare soil points identified through supervised
classification, we generated a spatial interpolation map of HM concentrations in the soil
using the universal kriging interpolation method. Our findings revealed that the con-
centrations of the two heavy metals, Cu and Cr, were significantly enriched at the edges
of the road, gradually decreasing with increasing perpendicular distance from the road.
This study effectively explored the fine-scale distribution of soil HM concentrations and
provided insights into the accumulation character in specific areas of interest.

However, this study does have some limitations that warrant improvement in future
research. The relatively small number of samples used to develop the estimation models
may have affected the accuracy and robustness of the retrieval models. Future studies
should focus on collecting a larger number of soil samples to enhance model performance.
Additionally, the R-square values on the test data were not as high as those based on
laboratory-measured spectra or for areas with high HM concentrations. Factors such as
vegetation interference, contamination levels, and the choice of spectral bands used for HM
detection (Vis-NIR in this study) may have influenced the accuracy of our work. Future
studies should address these factors and carefully consider instrumental stability and
radiometric and geometric preprocessing of hyperspectral images to minimize biases.

Furthermore, in terms of understanding the mechanisms underlying the spatial dis-
tribution of Cu and Cr in soil, this study primarily presented the distribution of HM
concentrations and briefly inferred some possible reasons. Further research is required
to fully comprehend these mechanisms, including the analysis of particulate content in
road dust, prevailing wind direction, vehicle speed, and other relevant factors. Meanwhile
the reliability of geospatial interpolation is of utmost importance to facilitate in-depth
exploration and analysis.

Overall, it is crucial to comprehensively understand the patterns of HM pollution to
effectively mitigate environmental and human health risks. Therefore, further research
in this field is needed to develop a more comprehensive understanding of the complex
mechanisms involved.
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