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Abstract: Climate change threatens economic and environmental stability and requires immediate
action to prevent and counteract its impacts. As large investments are already going into mitigation
efforts, it is crucial to know how to best allocate them in time and among the alternatives. In this work,
we tackle this problem using optimal control methods to obtain the temporal profiles of investments
and their allocation to either clean energy development or carbon removal technologies expansion.
The optimal allocation aims to minimize both the abatement and damage costs for various scenarios
and mitigation policies, considering the optimization time horizon. The results show that early
investments and a larger share of demand satisfied by clean energy should be priorities for any
economically successful mitigation plan. Moreover, less stringent constraints on abatement budgets
and reduced discounting of future utility are needed for a more economically and environmentally
sustainable mitigation pathway.
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1. Introduction

Several countries and industries have pledged to achieve net-zero emissions in the
coming decades, with the goal of counteracting the rapid increase in greenhouse gas con-
centrations, which poses an unprecedented threat to natural and human systems [1]. As is
well known, the potential impacts of climate change include shifts in precipitation patterns,
glacier melting, sea-level rise, ocean acidification, loss of biodiversity, increased risk of
species extinction, as well as a greater frequency and intensity of floods and droughts [2,3].
While the urgency of meeting this goal is evident, the ways to implement the proposed
measures are much less clear [4–7].

The energy demand is currently sustained by fossil fuel burning [8], accounting for
more than 80%. This demand is expected to increase, as it is driven by the growing popula-
tion [9] and developing economies [10]. At the same time, the impact of growing emissions
on economies is becoming evident: the National Oceanic & Atmospheric Administration
(NOAA) estimated that weather and climate disasters in the United States cost USD 306
billion in 2017, which was USD 100 billion more than ever before. Similar to what happened
after the Second World War, this unprecedented crisis is driving rapid development in new
technologies [11]. In particular, in the energy sector, the changes are impressive, with the
prices of solar power dropping below expectations [12], with more renewable power added
annually compared to fossil fuels and nuclear power combined [13]. Despite the growing
use of renewable energy, greenhouse gas concentrations continue to increase. The energy
growth is outpacing decarbonization [10], widening the gap between where we are and
where we should be to meet the 1.5 °C Paris target [14–16]. Thus, policymakers face the
extraordinary challenge of reaching net-zero emissions by 2050, considering that global
cumulative CO2 emissions reached a record high of 43 billion metric tons in 2019 [17,18].

To facilitate an effective energy transition, the rapid development of decarboniza-
tion technologies is crucial, including various forms of renewable energy to significantly
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reduce the demand for emitting energy sources; the development of negative-emissions
technologies, which capture and store carbon dioxide directly, is important [19]. All carbon
mitigation strategies mentioned above require investments to enhance their capacity, ef-
ficiency, and progress in abatement efforts. Policymakers need to know how to allocate
the mitigation budget efficiently, considering financial aspects and feasibility in terms of
cost and decarbonization, while achieving carbon targets with reasonable costs. There
is still widespread disagreement on these matters. The rapid development and reduced
prices of clean energy favor their widespread expansion and increased capacity. However,
it is now widely recognized that achieving the targets will likely require the use of less
developed and more costly negative-emissions technologies, such as direct air capture or
carbon capture and storage. A portfolio of technologies is necessary, making it crucial to
estimate their relative contributions in terms of capacity and costs.

To explore pathways to reach safe CO2 levels and optimal resource allocation, inte-
grated assessment models (IAMs) have been used to simulate transitions under different
strategies and estimate the cost of climate change [3,20,21]. Among these, Nordhaus’ pi-
oneering DICE model has captured the interconnection between economy and climate
change [22]. The DICE model maximizes a welfare function that takes into account climate
change damages and mitigation costs, in order to evaluate optimal policy and the social
cost of carbon [21,23]; the social cost of carbon is a key metric that translates climate change
impacts into a monetary value to be used by governments and markets.

As confirmed by the success and popularity of the DICE model, optimal control is a
useful framework used to explore pathways to reach safe CO2 levels [24]. Optimal control
methods provide planned strategies in time while accounting for the physical and technical
limitations linked to costs, time, and resources [25]. Previous work has compared the
effectiveness of carbon removal strategies with renewables and examined pathways by
combining carbon removals and renewables [26,27]. However, in this paper, we focus on
the optimal choice of relative investments for different scenarios, considering the dynamic
allocation of financial resources and the subsequent development of technologies. Rather
than imposing fixed development rates, we explore the optimal distribution over time and
aim to understand the financially efficient and feasible allocation of the mitigation budget.
It is likely that both groups of technologies will be needed to achieve net zero.

In this study, we developed a mathematical model that captures the essential features of the
coupled economic–climate system; it includes the rise in CO2 concentrations caused by the use of
emitting energy sources, as well as the mitigation provided by renewable energy and negative-
emissions technologies that remove carbon from the atmosphere [26,27]. This minimalist,
global mitigation model (see Figure 1) is controlled by the amount of investments allocated
to emissions abatement and it enables us to explore the pathways that best combine the
mitigation alternatives and distribute the economic investment while minimizing both
the emissions and abatement costs. The resulting framework offers a quantitative tool to
optimally allocate financial resources and help assess the key controls in the dynamics
of the energy transition to inform policy decisions. Unlike previous analyses that only
explored a discrete subset of options, our variational approach using optimal control theory
allows us to consider the entire continuum of protocol options as a function of the global
targets and for different temporal horizons. This enables us to answer the questions: what
are the best strategies to counteract the CO2 rise, considering the limitations that the market
might impose on the development of mitigation alternatives? How should investments
be allocated dynamically, and in what time frame? The paper is organized as follows:
Section 2 introduces the model and the coupled climate–economy dynamics. Section 3
characterizes and solves the optimal control model. In Section 4, we present the solution
and discuss the optimal paths. Finally, we summarize our results in Section 5.
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Figure 1. Scheme of the relations between the climate and economy in the optimal control problem
formulation. Boxes and circles indicate the respective state and control variables. Arrows show the
chain of dependencies between variables; the dashing refers to the actions of the control variables in
the optimization process.

2. Model
2.1. Energy Demand: Fossil Fuels vs. Clean Energy

In the development of our model, meeting the energy demand is considered a crucial
constraint in any mitigation scenario. This is done to avoid energy poverty, insecurity [28],
and more complex scenarios, related to the fact that, on the one hand, this demand is
currently only partially met, while on the other hand, it should decrease to avoid the worst
climate impacts. Accordingly, we assume a given energy demand, E0(t), which has to be
met by either fossil fuel energy EFF(t) or clean energy ECL(t),

EFF(t) + ECL(t) ≥ E0(t), (1)

where inequality allows for energy surpluses but not for shortages. We assume that
clean energy encompasses solar, wind, nuclear, and hydropower, considering that they
do not emit carbon. For simplicity, emissions related to the construction phase of clean
technologies (e.g., solar panel glass melting, concrete emissions from dam buildings, etc.)
are assumed to be a negligible portion of the total emissions, but can be easily accounted for
by reducing the clean energy terms. In this first analysis, to keep the number of parameters
low, the energy demand is considered constant. This assumption, however, can be easily
relaxed to include the growing demand [28] or seasonal fluctuations, due, for example, to
differences in the winter/summer demand and availability [29].

2.2. Energy Constraints and Irreducible Fossil Fuel Share

Renewables are unlikely to completely replace fossil fuels any time soon. This is the
case for aviation transport as well as for the construction and deployment of clean energy
technology itself [19,30]. Moreover, clean energy growth can be halted for socioeconomic
reasons, which could prevent an adequate market penetration of renewables to meet global
targets [31].

To account for this ‘irreducible’ fossil fuel energy demand, we place a constraint on
clean energy production, as follows:

E0 − ECL(t) ≥ Φ, (2)

where Φ is the irreducible part of fossil fuel energy. In the presence of this constraint
(Φ > 0), clean energy alone cannot mitigate the climate problem [32], which then requires
artificial carbon sinks.
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2.3. CO2 Budget

The impact of climate change on human activities is usually evaluated through the
concentration of greenhouse gases; here, for simplicity, it is represented by CO2 (this sim-
plification can be relaxed in future analyses without altering the main model’s framework).
This follows a common procedure in the literature, justified by the fact that CO2 is responsi-
ble for 80% of current emissions [33]; moreover, non-CO2 emissions are globally correlated
with CO2 emissions, not only because they have common sources [33], but also because
policies often address GHGs indistinctly.

We consider a simplified CO2 budget represented by anthropogenic emissions (EMI)
and other natural sinks and sources (NAT) from oceans and land [34]; for simplicity, we
neglect short-term effects due to rock weathering or volcanic activity (although these can
be incorporated in the model if known from other studies). Additionally, an offset term
(NETs) will represent the effects of natural and artificial negative-emissions technologies
for carbon mitigation. With these stipulations, the global CO2 budget, in a well-mixed
atmosphere, can be written schematically, as follows:

d [CO2]

dt
= EMI−NET−NAT. (3)

The emission rate of CO2 is simply assumed to increase linearly with the rate of fossil
fuel use

EMI = ξFFEFF(t). (4)

where ξFF represents the emissions per unit of energy produced from fossil fuels. Regarding
the natural sinks and sources (NAT), it is estimated that only 40% of total fossil fuel and
land-use change emissions remain in the atmosphere, with oceans and land absorbing
the rest in almost equal percentages [35]. Based on the fact that both ocean and land
sinks have been enhanced following the increase in atmospheric concentrations [35,36],
the sink term is assumed to be proportional to the increased CO2 concentration since the
pre-industrial times

NAT = ξNAT([CO2]− [CO2]PI)
α , (5)

where [CO2]PI is the pre-industrial CO2 concentration set equal to 280 ppm [37]. For simplic-
ity, we will start with an assumption of linearity (α = 1), although it is possible that higher
CO2 concentrations may trigger nonlinear feedback. For example, both photosynthesis and
respiration are expected to be affected at high levels of CO2, with a consequent reduction
of the net carbon sink [38], while the vegetation may saturate because of nutrients and
water limitations, potentially making the sink sublinear. Conversely, some regions, such as
those affected by permafrost melting or forest fires, may become strong sources and, thus,
produce superlinear effects [39,40]. The impacts of such nonlinear effects will be considered
in future contributions.

The offset term accounts for different alternatives, referred to as carbon dioxide re-
moval technologies or negative-emissions technologies (NETs), that directly remove carbon
dioxide from the atmosphere. These include carbon capture and storage (CCS), land-based
climate solutions (LCS), and direct air capture (DAC). In particular, NETs have increasingly
drawn attention as complementary decarbonization strategies, as it became clear that it
will be virtually impossible to meet the 1.5° target without them [17,41] (in 2015, the IEA
estimated that about 100 gigatons of previously emitted CO2 should be stored before 2050).
CCS technologies capture CO2 at the source of production, preventing its release, and then
transport and store it in suitable underground geological formations [42]. Among these
techniques, the combined use of bioenergy and carbon capture and storage (BECCS) is gar-
nering the most relevance in many mitigation scenario projections [43]. Finally, land-based
solutions include forestry activities, such as reforestation and afforestation, as well as more
sustainable agricultural practices aimed at storing more carbon [44–46]. Other promising
yet less explored alternatives include enhanced weathering, as well as ocean-based mea-
sures, such as ocean alkalinization and ocean iron fertilization [47–49]. If NETs appear
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promising, it should be noted that their implementation is far from imminent, as they are
still under scientific scrutiny regarding concerns for leakage of storage units and risk of
reversed sinks; moreover, the implementation costs are still high and public awareness and
acceptance of NETs are low [42]. Regardless of these issues, in our minimalist description,
we will not distinguish among NETs and group them in an offset rate collectively indicated
as NET (e.g., GtCO2/yr),

NET = CCS + LCS + DAC. (6)

In summary, incorporating the energy constraints and the above assumptions, the CO2
balance equation is

d [CO2]

dt
= cF(ξFFEFF −NET)− ξNAT([CO2]− [CO2]PI)

= cF(ξFF(E0 − ECL)−NET)− ξNAT([CO2]− [CO2]PI),
(7)

where cF converts from GtCO2 to ppm, ξFF is the emission rate per unit of emitting energy,
and ξNAT is the efficiency of the natural sink. In the current conditions, both ECL and
NET ∼ 0, so that EFF overcomes NS and [CO2] is increasing. The time to net zero, tNZ, can
be formally defined as the time in which inputs and outputs balance in (7),

cF(ξFF(E0 − ECL)−NET)− ξNAT([CO2]− [CO2]PI) = 0, (8)

at which point the CO2 concentration is [CO2]NZ.
To conclude this section, it is important to stress that the present CO2 balance is a

highly simplified caricature of reality, aimed at capturing only the main trends of the
processes underlying the sources and sinks. This means that the possible lags between
the emission and the actual change in concentration cannot be captured by the model [50].
Despite these simplifications, the model allows us to focus on mitigation scenarios based
on a plausible and first-order response. More complex Earth-systems models with possible
bifurcations and tipping points [51] could be coupled to the present framework, which
would, of course, be of great interest, especially for long-term assessments.

2.4. Economics of the Energy Transition: Investments and Technological Growth

To characterize the dynamics of the energy transition, we follow an approach that
is typical of economic modeling, where the investments determine the stock of a certain
capital [52]. In the present case, the capital is embodied by clean energy and negative
emissions technology, and its development is bound by the amount of investment devoted
to the scope of the net-zero transition. According to this view, a ‘clean energy capital’
and a ‘negative emission technology capital’ are assumed to accumulate thanks to the
total annual investment I(t). As the mitigation effort is enabled by the development of
different transition technologies, the total funding for each mitigation technology needs
to be allocated wisely. Thus, to account for the way the model allocates funding, we
adopt an investment share attributed to clean energy production, indicated as µ(t), and
varying between 0 and 1. The complement, 1− µ(t), is allocated to the negative emissions
technology development. We also assume that the investments are followed by immediate
production, which means that if a certain share µ(t) (or 1− µ(t)) is allocated for clean
energy (or NET), this translates to newly installed clean energy (or NET) capital according
to a market efficiency η. Each energy technology undergoes depreciation, on account of its
degradation over time and the need for maintenance. The depreciation factor, denoted as δ,
reflects the rate at which the technology loses value. In our model, we assign a conservative
estimate for the average lifespan of these technologies, which is approximately 30 years (e.g.,
solar panels or wind turbines). This corresponds to a depreciation factor of approximately
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δ ∼ 1/30 = 0.03. With these assumptions, the evolution of clean energy and NET potential
is given by

d ECL

d t
= ηCLµ(t)I(t)− δCLECL

d NET
d t

= ηNET[1− µ(t)]I(t)− δNETNET ,

(9)

respectively. Clean energy technology is currently much more developed compared to
removal technologies, owing to decades of advances in research, production, and imple-
mentation. As a result, the same amount of investment translates to different outcomes
when one compares clean energy and offsets. To account for such a disparity in the current
conditions, we assume that ηCL > ηNET, meaning that clean energy potential is higher
per unit investment compared to negative-emissions technologies. Further development
of removal technologies and consequent market penetration may change this situation
and this ‘learning process’ may be easily included in future model extensions. Temporal
variability in such market efficiencies could also be due to market temporal variability as
well as fluctuations in clean energy production due, for example, to solar intermittency [53].

3. Optimal Control Problem

Among the virtually infinite multitude of possible scenarios, the optimal path for the
best allocation of resources, leading to a rapid transition, without placing an excessive
burden on society, can be determined as an optimal control problem. Rather than finding
multiple alternative strategies that compromise between conflicting interests, we focus on
identifying a single optimal alternative that aggregates all the objectives in one [54]. This
is achieved by minimizing a suitable cost function, as described in the next section, using
the methods provided by Pontryagin’s maximum principle (more details are provided in
the next section). This approach is similar, in this respect, to the method used in the DICE
model [21,23], which also employed an optimization framework in a global approach to
climate change.

3.1. Cost Function

When considering a mitigation effort, the costs to be weighted are related to the
damages caused by sustained emissions and the implementation of abatement strategies.
Formally, the total cost is expressed as

C = Damage + Abatement, (10)

the various terms are discussed in what follows.
Quantifying the economic risk and damage from climate change obviously entails a

great deal of speculation. In general, the cost of climate change refers to a broad range of
related biophysical, environmental, social, and economic issues [55]. Usually, a damage
function is used to estimate the economic cost of higher levels of CO2, relative to a baseline
corresponding to the pre-industrial CO2 level. Different forms of this function have been
proposed in the literature, in spite of the difficulties in making a confident assessment of
the climate change impact on the economy [55,56], as well as in calibrating it, especially
when it comes to estimating impacts related to health and the environment [57].

The so-called social cost of carbon (SCC) has been advocated as an effective and
comprehensive concept when evaluating the growing emissions threat [23]. The SCC
is defined as a ‘monetary estimate of the climate change damages to society over time
from an additional tonne of carbon dioxide, including market impacts such as agricultural
productivity, energy costs and infrastructure damage as well as impacts on non-marketed
goods such as ecosystems and human health’ [55]. Its adoption stems from the preferred use
in policy. The Biden administration has raised it back to USD 51 [58] and others recommend
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an increase beyond USD 200 [59]. Thus, we conveniently use the SCC to link the damage
term proportionally to the cumulative CO2 emissions since pre-industrial times [60]

Damage = SCC
(
CO2(t)−CO2PI

)
. (11)

The damage is assumed to be zero once the CO2 concentration decreases to the pre-
industrial level. For the sake of simplicity, we neither consider CO2 concentrations lower
than the pre-industrial level, nor the nonlinear damage function of CO2 concentrations.
These extensions will be considered in future contributions.

In general, the abatement cost is the cost to reduce or prevent pollution following a new
regulation [61]. Here, it includes the investments devolved to the development of mitigation
technologies and their installation. Clean energy and NETs, being “physical capitals”, cannot
be built instantaneously but need to be installed in order to produce. To capture this inertia
in the capital accumulation process, we account for adjustment costs on the investments,
which are often overlooked in the literature [55]. This means that each unit invested translates
into less than a unit of clean energy or NET, or, equivalently, in an additional cost per unit
invested, as a consequence of the market rigidity [62,63]. In the literature, the growth rate of
renewables is often constrained by a maximum value based on previous development [64].
Here, we do not preclude higher and faster development if investments are mobilized, and
we attribute the role of slowing down growth to adjustment costs.

Thus, the abatement consists of two terms—an investment and an adjustment cost—
where the latter is quadratic in investments I, implying that the speed at which the economy
decarbonizes is relevant for the cumulative cost [12]. Adjustment costs may also reflect
public resistance to renewables and removal technologies. Social acceptance poses a
significant challenge for renewables [65–67]. The risk of delays in installation and operation
often arises from public resistance, which can outweigh technological considerations,
although the extent may vary depending on the type and scale of the installation [68].
By inserting the functional forms corresponding to the previous considerations, the cost
function becomes

C = SCC
cF

([CO2]− [CO2PI ]) + µ I (1 + c1µI)

+ (1− µ)I (1 + c2(1− µ) I) ,
(12)

where the abatement costs relative to clean energy and offset evolution are distinguished,
each one partitioned according to the share coefficient (µ or 1− µ) and their own calibration
coefficient (c1 or c2) for adjustment costs. Previous studies [12] estimated an adjustment cost
coefficient of c1 = 0.1 for renewable energy. However, when it comes to carbon removal
technologies, there is a lack of specific estimates due to their limited penetration in the
market. Given the nascent stage of their expansion, we conservatively assume that their
adjustment cost coefficient needs to be at least three times higher. Therefore, we consider
an adjustment cost coefficient of c2 = 0.3 for carbon removal technologies.

It is worth highlighting that our optimization approach revolves around a single
objective function that encompasses multiple terms. Alternatively, one could choose to
separate these terms and optimize them individually within a multi-objective framework.
Here, a single objective function directly yields the optimal compromise solution among
the different terms, which have already been expressed in monetary values. Adopting
a multi-objective approach would result in a range of options, necessitating a decision
rule to select a solution based on preferences concerning damage costs or mitigation costs.
Incorporating policymaker preferences is beyond the scope of this study, as our primary
focus lies in exploring the best solution and its evolution over time.

3.2. Intertemporal Optimization

The optimization is stipulated to take place over a finite planning horizon τ. A short
planning horizon prioritizes the near-term utility but ignores events past the horizon, while
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a longer horizon demands more planning effort but entails better foresight. During this
period τ, the cost is determined by the co-evolution of emissions, clean energy, and NETs,
according to the Equations (7) and (9). Additionally, the cost is discounted for future times
to project the lower importance of all future costs to the present time of optimization. As a
result, the cumulative cost over the entire planning period is expressed by the functional

J =
∫ τ

0
e−ρ t C(t) dt , (13)

where ρ is the discount rate.
The investment I(t) and the clean energy share µ(t) are considered the knobs with

which we can control the cost to adjust the decarbonization path. As a consequence, for the
optimal solution, the functional J has to be minimized over all the possible realizations of
the control variables of the system, I(t) and µ(t),

min
I(t), µ(t)

J . (14)

To ensure physically meaningful controls, the control variable is constrained to the domain
U = {0 < I < Imax ; 0 < µ < 1}, the so-called admissible control set. Note that the carbon
price itself (i.e., SCC) could have been used as an alternate control variable, as it is often
used in evaluating alternatives in the literature. Here, we considered it more meaningful to
have the carbon price to be imposed exogenously so that the effect of its variation on the
optimal investments is analyzed.

3.3. Application of the Maximum Principle

We follow an optimization based on the application of the Pontryagin maximum
principle [69]. The first step consists in writing the associated Hamiltonian as the sum
of the cost functional (12) and all constraints on the three state variables [CO2], ECL, NET.
Formally, this corresponds to writing

H([CO2],ECL, NET, I, µ, λ1, λ2, λ3, λ4) =

= J + λ1[cF(ξFF(E0 − ECL)−NET)− ξNAT([CO2]− [CO2]PI)]

+ λ2[ηCLµ(t)I(t)− δCLECL]

+ λ3[ηNET[1− µ(t)]I(t)− δNETNET]

+ λ4[ηCLµ(t)I(t)− δCLECL] ,

(15)

where λi, i = 1, 2, 3, 4 represent the co-state variables of the optimization problem or
Lagrange multipliers. The multiplier λ4 is associated with the state-variable constraint
(2), which only becomes active once E0 − ECL reaches Φ, and then prevents it to exceed Φ
when the equality condition is met (see [70], p. 301), i.e.,

− ˙ECL = −ηCLµ(t)I(t)+δCLECL < 0 when E0 − ECL = Φ . (16)

The application of the Pontryagin maximum principle provides the first-order conditions
for the optimal control problem. These include the adjoint equations satisfied by the time-
varying Lagrange multipliers,

λ̇1 = − ∂H
∂[CO2]

λ̇2 = − ∂H
∂ECL

λ̇3 = − ∂H
∂NET

(17)
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and the equations for the control variables

∂H
∂I

= 0 and
∂H
∂µ

= 0 . (18)

From (18), the expression for I and µ can be derived in terms of state and co-state variables.
We discard the solution for zero investments, I = 0, which represents the no-mitigation
business-as-usual scenario, and focus on the other solution, which entails

I∗ =
−b2c1 − b1c2 − eρt(c1ηNETλ3 + c2ηCL(λ4 − λ2))

2c1c2
,

µ∗ =
c2(b1 + eρt(ηCLλ2 − ηCLλ4))

b2c1 + b1c2 + eρt(c1ηNETλ3 + c2ηCL(λ2 − λ4))
,

(19)

where λ4 is the following discontinuous function

λ4(t) =

{
0, if E0 − ECL(t) > Φ
e−ρt(b1ηCL+2c1δCL(E0−Φ))

η2
CL

+ λ2, if E0 − ECL(t) ≤ Φ, (20)

which enforces the constraint (2). It can be shown that the problem is well-defined for
minimization since the second derivative of the Hamiltonian is positive in the control
variables (convex optimization). Incorporating the limits on the control variables given by
their feasible values, U = {0 < I < Imax; 0 < µ < 1}, allows us to find the expression for
the optimal control pair (I∗(t), µ∗(t))

I∗(t) =


0 if I∗ ≤ 0
I∗ if 0 < I∗ < Imax

Imax if I∗ ≥ Imax

µ∗(t) =


0 if µ∗ ≤ 0

µ∗ if 0 < µ∗ < 1
1 if µ∗ ≥ 1

(21)

Substituting expressions (19) and (21) into Equations (7), (9), and (17) yields a system of
6 ordinary differential equations in the 6 variables, {[CO2], ECL, NET, λ1, λ2, λ3}. In order
to solve it, additional initial conditions on the state variables and the boundary conditions
for the co-state variables λi (the transversality conditions) must be provided. We take the
initial clean energy capital to be the energy consumption (EJ) generated from renewables in
2021 [8]. As for the current deployment of NETs, it is considered to be negligible, leading
us to set NET0 ∼ 0. The state variables [CO2], ECL, and NET are free to take any value
at their final time so the system is closed by imposing λ1(tF), λ2(tF), λ3(tF) = 0 [70].
A numerical solution is employed to track the system’s evolution. All the parameters
used for the numerical solution are listed in Table A1 in Appendix A. The optimization
solution provides the co-evolution of the six variables over time by selecting the optimal
values for I and µ to minimize the total cost. The obtained profiles are discussed in the
following section.

4. Results and Discussion
4.1. Optimal Strategies

The solution of the system described in the previous section provides an optimal
way to achieve a reduction in emissions by managing investments, in terms of both their
intensity I(t) and share µ(t) between net emission technologies and clean energy.

The number of investments and the total cost crucially depend on the time span of the
mitigation strategy. A short planning horizon implies very low investments. As shown
in Figure 2a,b by the curves for the 20- and 40-year investment plans, the inability to
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account for higher damage costs, which characterize longer time spans, affects the cost
minimization and favors inaction, i.e., low investments. The reason for this is that the
foreseeable damage for those short time spans is not enough to motivate an investment flow
towards the abatement effort, which is then kept low by cost minimization. The annual
investments increase with longer planning horizons. The mitigation is promoted in the
early stages of the planning, to avoid a prolonged CO2 increase and attenuate the burden of
environmental damage on the abatement effort. As shown by the dashed lines in Figure 2,
the largest share of the investments is allocated to clean energy.
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Figure 2. Optimal investments and [CO2] pathways for different time horizons (a,b), social cost of
carbon (c,d), and share of irreducible fossil fuel on total demand (e,f). Dashed lines indicate the share
of investments allocated to clean energy. Parameter values: τ = 80 yr, Φ = 0 EJ, SCC = 80 $/tCO2.
Other values are listed in Table A1.
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Figure 2b shows the CO2 concentration corresponding to the optimal investment
profiles. As expected, a small investment implies an almost undisturbed growth of CO2
concentration. As the foresight improves, more abatement becomes possible and the
CO2 curves are then lowered. The cumulative cost for each plan is reported in Figure 3a.
For short-term horizons, the cost is fully attributable to environmental damage (orange
dashed lines) because of the negligible mitigation effort. The total cost obviously increases
with the horizon time, but the percentage due to environmental damage decreases with
longer-term planning.

The role of the SCC is analyzed in Figure 2c,d, which shows how the weight given to the
carbon-related damage is also crucial in determining the optimal path. A poor estimate of
the damages due to CO2 greatly affects the mitigation policy. As depicted by the different
trajectories in Figure 2c,d, the value given to the SCC determines the proportion of the
mitigation. For low SCC, the damage costs are lightly weighted in the minimization and this
hinders the mitigation effort. As a result, in such a case, the optimal trajectory is characterized
by low investments and CO2 levels rise (blue and yellow lines). The total cost is almost entirely
due to environmental damage (dashed lines in Figure 3b). Increasing SCC places a higher
weight on damage, thus giving higher priority to abatement. Hence, investments are higher,
as shown by the green and orange lines in Figure 2, and, as a result, CO2 concentrations are
reduced. In this case, investments are promoted at the early stages of planning, causing an
early steeper cost increase compared to plans with negligible mitigation (Figure 3b). A higher
share of the cumulative costs is devoted to abatement, and the environmental damage for
these scenarios is lower (dashed lines). Increasing SCC also has an impact on the temporal
distribution of investments. A higher SCC implies more effort to lower emissions; because
of the limit on clean energy demand, Equation (2), it is advantageous to widen the share
allocated to negative-emissions technologies despite the higher costs, which explains the
higher total costs observed in the same time span (Figure 3b).
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Figure 3. Optimal total costs for (a) different foresight and (b) SCC. Dashed lines indicate the costs
attributed to environmental damage. Parameter values: Φ = 0 EJ, SCC = 100 $/tCO2. Other values
are listed in Table A1.

The results of the optimization also show that, in general, the investments are prefer-
ably directed towards clean energy (dashed lines in Figure 2a,c,e). The higher share towards
clean energy is explained by the higher cost-effectiveness compared to negative-emissions
technologies (NETs). To explore different clean energy scenarios, the optimization was
performed, constraining clean energy production to 100, 75, 50, 25% of the total energy
demand (i.e., Φ = 0, 25, 50, 75%, respectively). As shown by the investment profiles in
Figure 2e,f, clean energy is prioritized over the whole time plan. Investments are high dur-
ing the early stages of the optimization, and the development of clean energy technology
rapidly reaches the 25% and 50% caps (respectively, blue and yellow curves). Once the
maximum renewable energy capacity is reached, the only abatement possible is related to
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negative-emissions technologies, but because of their high cost, the damage is preferred.
As a result, when the clean energy production limit is reached, there is an abrupt change
in the investment profile, as the share in the investment in clean energy drops in favor
of NET, and only a small investment is allocated to the maintenance of the clean energy
capital established thus far. The lower the limit on clean production, the earliest this change
in investment profile occurs (green and orange curves overlap in Figure 2e). With the
deployment of large investments at the beginning (see Figure 2e), net-zero emissions are
reached quickly: Figure 2f shows the rapid decay of emission rates in response to the
fast development of clean energy, ultimately reaching zero emission rates in less than
20 years. However, when clean energy production is too heavily constrained, the CO2
concentration cannot be efficiently reduced even with large financing. The limiting factor is
the ‘irreducible’ fossil fuel amount that is allowed to stay in the energy picture: the scenario
with Φ = 75% (red line in Figure 2f) never reaches net zero.

4.2. Need for Rapid Investments

The optimal profiles obtained clearly show the necessity of rapid and large investments.
A similar conclusion was previously reached by [71–73]. In particular, the fast deployment
of resources enables the quick development of clean energy production, avoiding further
CO2 increases for prolonged fossil fuel use. Eventually, the sum of the investments decreases
in time towards the end of the planning horizon, but the biggest benefits are obtained by
allocating most of the financial resources early on. The massive increase in investments in
the energy sector is not surprising [74], but in practice, poses a huge challenge. Progress in a
sustainable energy transition requires aggressive and well-financed research as well as major
resource transfer from developed economies [5]. These efforts also require the support offered
by confidence in the development of a large-scale market for renewables [60]. Examples of
successful implementation of such investment can be found in several European coun-
tries that have pioneered policies promoting investments in renewables [75,76]. Denmark,
for instance, began its transition to renewable energy as early as the 1980s. Similarly, coun-
tries such as Sweden, Iceland, Germany, and Spain have demonstrated the effectiveness
of early resource allocation in achieving successful and economically beneficial carbon
mitigation. Furthermore, more recent efforts in countries across Latin America have also
shown promising results in renewable energy adoption. Notably, many European countries
have surpassed their renewable share of primary energy targets for 2020. Assessments
have been made regarding the positive impacts on the economy, such as enhanced energy
security, increased employment rates, and technological advancements, emphasizing that
considerations beyond mere profit have been taken into account.

4.3. The Reward of the Farsighted

The SCC assigns a certain weight to environmental damage, reflecting a higher or
lower concern for climate change impacts. A low SCC denotes scarce concern for future
damage; in this case, the cost minimization concludes that the abatement is too costly and
suppresses it. On the contrary, a high SCC reflects a pessimistic view of future damage and,
accordingly, it weighs it heavily.

The annual cost of optimal plans for different SCC values and planning horizons is
compared in Figure 4a. Increasing the SCC produces different effects, depending on short-
or long-term horizons: in the short term, a higher SCC implies higher annual costs and,
therefore, as noted before, short-term inaction is favored. CO2 concentrations peak over
460 ppm, far above the threshold of 450 ppm, for which ‘dangerous climate consequences’
are expected [77]. With this, the cost is fully due to environmental damage, which in turn is
proportional to the SCC. Raising the SCC increases the average annual cost, as expected,
as an investment in mitigation is promoted. Abatement takes a higher percentage of the
cumulative cost but efficiently cuts the level of maximum CO2 concentration reached
(panel b in Figure 4). By assigning greater damage from carbon concentration rise, we
can avoid reaching threatening environmental conditions, and the SCC does not have to
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be dramatically high to meet these conditions. While it may be problematic and costly to
swiftly spin large investments, the cost is, nevertheless, inferior to waiting.
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Figure 4. Annual averaged cost (a) and maximum CO2 concentration (b) as functions of the planning
horizon, for SCC = 50 (dashed), 80 (solid), 100 (dot-dashed) $/tCO2, and irreducible fossil fuel share
of energy demand. Parameter values are listed in Table A1.

For cost optimization, the discount rate is essential to consider future welfare in long-
term analysis, such as climate mitigation strategies. A previous study assessed that a
reduction in the discount factor by even a few percentage points will double the current
social cost of carbon [78]. It is common practice to use a discount factor of approximately 5%.
However, to assess the impact of intertemporal discounting on the results, we conducted
additional analyses using lower discount rates of 3% and 1%. As shown, a lower discount
rate would encourage a more short-term effort, leading to a substantial improvement in
abatement impacts. Comparing the green and the orange curves in Figure 5, one can notice
that a difference of only a couple of percentage points in the discounting can determine
whether to invest or not in abatement, with huge consequences on CO2 concentrations.
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Figure 5. Impact of the discount factor ρ on (a) optimal investments and (b) CO2 concentration.
Dashed lines indicate the share of investments allocated to clean energy. Parameter values: τ = 80 yr,
Φ = 0 EJ, SCC = 30 $/tCO2. Others are listed in Table A1.
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4.4. Urgency of Clean Energy Expansion

As discussed before, a myopic view of the potential damage from CO2 hardly justifies
a massive resource deployment for mitigation. For horizon spans of less than 40 years,
the costs of mitigation are too high, and avoiding action appears to be the most cost-effective
approach. Since in this case there is no interest in developing clean energy and negative
emissions technology, the constraint on clean energy production does not really matter.
For short-term planning, the annual cost is the same regardless of the fossil fuel policy, as it
is overwhelmingly due to environmental costs, which rise linearly with CO2. The critical
planning horizon for which abatement begins to matter depends on the SCC. The lower
the SCC, the longer is convenient to wait from an economic point of view. As shown
in Figure 4a, the averaged annual costs start decreasing only after about 60 years for an
SCC equal to 50 $/tCO2, as soon as the short-term inaction is not optimal anymore and
a proper abatement effort is promoted. For SCC values of 80 and 100 $/tCO2, mitigation
incentives start in 50 and 40 years, respectively. Opting for substantial fossil fuel use results
in the highest cost in the long term. In the case in which clean energy only covers 50% of
the total energy demand, the mitigation effort does not pay off. CO2 still increases with
consequent damages and high costs. As shown in Figure 4a, imposing a constraint on clean
energy production at half of the total demand leads to higher annual costs compared to less
constrained pathways (orange and green curves in Figure 4), because of the limited ability
to sufficiently reduce emissions. In the long term, the action is cost-effective and early
investments prevent further CO2 increase, thus preventing subsequent environmental costs.
The different curves in Figure 4 show how the annual cost decreases for pathways that
allow for more clean energy (lower Φ). Investment costs for mitigation contribute to raising
the annual costs in short-term planning; however, with a longer horizon, they descend
below the annual costs associated with short-horizon low-mitigation plans. After about
60 years, the benefits of early-stage investments become apparent. After this time, the cost-
effectiveness depends on the limit put on clean energy production (or the policy adopted).
Replacing a larger proportion of fossil fuel energy with clean energy, as depicted in the 0%
irreducible fossil fuel path in Figure 4, offers significant long-term benefits. The support
and promotion of renewables, which are already cost-competitive in the short term, prove
to be more effective in achieving emission reductions over the long term.

This observation aligns with findings from previous studies [26,79] and is exemplified
by countries such as Sweden and Germany, where early investments have facilitated a
rapid expansion of renewable energy capacity. These countries have experienced consistent
reductions in emissions and reduced the dependence on fossil fuels, while also generating
economic revenue and reaping co-benefits, such as employment opportunities. The ad-
vantages of early investments in renewables have contributed to mitigating the overall
costs of transitioning to clean energy sources. However, it is important to acknowledge the
challenges associated with the market penetration of renewables in economies that have
long relied on fossil fuels. Despite these challenges, increasing the contribution of clean
energy significantly reduces annual costs, which can be lower than the costs of inaction
and future damages, as highlighted in previous research [80].

4.5. The Uncertain Potential of NET

To gain a comprehensive understanding of the potential role of NETs in achieving
carbon mitigation targets, it is crucial to consider the uncertainties associated with their
costs and deployment. Efforts have been made to estimate the actual costs of implementing
NET; Fuss et al. conducted important work to provide a constrained range for each
technology, considering the average cost per tonne of carbon removed [41]. However,
the lack of large-scale implementation hampers accurate predictions of future expenditures
and the potential cost reductions that may occur, similar to what has been witnessed in the
renewable energy sector.

To explore these uncertainties, we consider scenarios that assume a lower average cost
for NET implementation. This could be attributed to factors such as “learning by doing”,
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leading to natural cost decreases as the technology matures, or the preference for deploying
cheaper NET options over more expensive ones. For example, afforestation, being one
of the least expensive NET options, could play a significant role in the overall carbon
removal effort. Similar to renewables, the prospects of NETs can vary significantly in the
real-world context. To account for this uncertainty, we examine three cost estimates (200,
300, and 500 $/tCO2) to create a range of scenarios, allowing us to analyze how changes
in NET costs affect investment distribution. We explore the sensitivity of investment
allocation and CO2 pathways to different cost scenarios. Additionally, we repeat the
analysis using the same cost ranges but with a lower value of the adjustment cost coefficient
c2, simulating a smoother market penetration similar to what occurred with renewables
(yellow range in Figure 6). In the plotted curves, the thinnest curve represents the highest
NET cost scenarios for both c2 = 0.3 (blue range) and c2 = 0.2 (yellow range). As expected,
the CO2 concentration remains high since the NETs are not cost-effective in this scenario
and their deployment is limited. The mid-cost scenario demonstrates greater effectiveness
in mitigating the rise in CO2 concentrations. The deployment of NETs over time aligns
with most estimates within a range of 0.5–5 Gt CO2 yr−1 of carbon dioxide removal by
2050 [41,81]. With even lower costs per tonne of carbon removed, the deployment over
time increases due to enhanced cost-effectiveness. The estimated profiles come closer to
the necessary deployment levels required to stay on the 1.5 °C scenario.

Our analysis reveals the considerable uncertainty surrounding the costs and potential
of NET. The wide range of cost estimates poses challenges to the widespread adoption of
NET, as a broader cost range may favor more economically favorable technologies such as
renewables. However, in cases where deployment limitations are overcome, NET could
play an equally significant role in carbon mitigation efforts, demanding a higher share of
investment for their expansion. It is crucial to consider sector dependencies as well, where
specific NETs could enable certain sectors to surpass their irreducible fossil fuel share [82].
On the other hand, the continuously declining costs of renewables may overshadow the
potential offered by NET.
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Figure 6. Impact of the cost of NET on (a) CO2 concentration and (b) development of negative-
emissions technologies for two different scenarios of market penetration: c2 = 0.3 (blue curves)
and c2 = 0.2 (yellow curves). The filling denotes the range between high, medium, and low NET
cost scenarios ηNET = 1/500, 1/300, 1/200 $ per tCO2. Parameter values: τ = 80 yr, Φ = 0 EJ,
SCC = 80 $/tCO2, ρ = 0.05. Other values are listed in Table A1.

4.6. Higher Mitigation Budget Decreases the Total Cost

So far, we considered the mitigation effort to be free of constraints, other than satis-
fying the optimal cost condition. It is interesting to look at how the mitigation strategies
adapt when the financial resources to be allocated for the abatement are limited. For this,
we also consider the case in which the annual investment cannot exceed a certain thresh-
old I(t) ≤ Imax (see Equation (21)), which can reflect the expendable budget elected by
governments. One key advantage of the model is its flexibility in accommodating specific
budget allocations for mitigation by individual countries. This allows for the adjustment
of constraints within the model to accurately reflect the financial resources allocated by a
particular country towards their mitigation efforts. The effect of such a limit on investments
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deeply affects the evolution of CO2. Figure 7 compares the mitigation paths in different
budget limits (USD 700, 400, 100 billion/year). In the presence of this cap on investment,
Figure 7a shows that the optimal investment is constant for most of the planning horizon
and is equivalent to the maximum value allowed. This means that the best strategy is to
allocate the whole available budget. However, even following this choice, the mitigation
impact is considerably delayed in the case of a high budget, or, in a low budget case,
completely inadequate to counteract the carbon dioxide increase.
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Figure 7. Impact of a limited investment on the (a) optimal investment profile and (b) CO2 concentra-
tion. Dashed lines indicate the share of investments in clean energy. Parameter values: τ = 80 yr,
Φ = 0 EJ, SCC = 70 $/tCO2, ρ = 0.03. Other values are listed in Table A1.

The effect of a limited budget for abatement investment on the technological devel-
opment of clean alternatives is twofold. First, the limited budget breaks clean energy
development. For the high-budget case, the development is delayed but manages to reach
the same level of development as in the unlimited budget case. This strategy carries a good
mitigation impact at the end of the planning horizon. If the budget is set too low, then
the clean energy development is not only delayed but also cannot reach the stage necessary
to mitigate successfully in the horizon’s time span. The CO2 rises almost uncontrolled.
This scenario exemplifies the real-world experiences of countries such as Sweden, where
a higher investment in clean energy expansion has enabled successful mitigation efforts.
On the other hand, countries that have fallen behind their carbon targets can attribute their
challenges to the limited investment allocated.

The second impact concerns the role given to negative emission strategies. In Figure 7a,
the optimal profiles show the total investment being basically equal to the clean energy
investment in the lowest budget scenario (green curve). A limited budget imposes the
optimal choice of not investing at all in carbon removal strategies. The higher cost prevents a
fruitful allocation of investments there, so the NET development has a minimal contribution
only at later stages in the strategy. In the short term, putting a limit on investments does
not affect the resource allocation choice; for short-term horizons, investing in mitigation
appears purposeless and budget limits do not matter. This is the reason why the annual
cost of mitigation is not affected by the budget limit, as shown in Figure 8a for short-
term horizons. On the contrary, for longer-term horizons, it becomes optimal to invest in
mitigation and counteract the damage cost, so that the total cost sensibly decreases with a
longer planning horizon.
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Figure 8. (a) Annual averaged cost and (b) maximum CO2 concentration as functions of the planning
horizon for varied maximum annual investments. Parameter values: Φ = 0 EJ, SCC = 80 $/tCO2,
ρ = 0.01. Other values are listed in Table A1.

The limits on investments cause the mitigation efforts to be less efficient, making it
more challenging to counteract the damages. As shown in Figure 8b, CO2 concentration
levels reach the maximum values for the lower budget scenario (blue curve). As a con-
sequence, because of the contribution of damage costs, the lower the cap on investment,
the higher the average annual cost. The current investment in clean transition has reached
just above USD 700 billion according to the IEA [83], so in order to achieve the economic
optimum while also avoiding overshooting CO2 concentration levels of 450 ppm, more
resources should be allocated to mitigation efforts.

5. Conclusions

We used optimal control theory to determine the most effective policy to direct the
economy toward decarbonization. The optimization provides the optimal profiles of the
controls, identified in the amount and the redistribution of investments to be allocated for
the mitigation effort. The optimal temporal pathways of investments, along with the optimal
distribution of mitigation alternatives, suggest that both technological and budget constraints,
as well as adjustment costs, play essential roles in the transition. In particular, the analysis
of the optimal strategies demonstrates the priority of the fast development of clean energy
alternatives. In practice, the price decline of wind and solar energy makes these alternatives
the most competitive in terms of cost-effectiveness and calls for a strong policy action to help
market penetration and investment development [12,84]. Including the cost of fossil fuel
energy production, which is neglected here, would only reinforce this point.

The social cost of carbon appears to be a crucial knob in controlling the transition.
When the damage function is properly set, economic optimality favors stringent abatement
pathways (see also [85]). The discounting of future costs should also be reduced to favor
prompter mitigation action. The role of the planning time also emerges as a determining
variable, related to the fact that at the later stages of the planning, the abatement effort is
inhibited. This stems from the goal of economizing the resources within the planning time
so that toward the end of the horizon time there is no benefit in allocating investments to
mitigate subsequent damage. From game and behavioral theory perspectives, this attitude
is completely rational. However, while it is understandable to have time-limited climate
targets, taking these targets to their logical consequences could result in certain forms of
‘global Ponzi schemes’ at the expense of environmental resources, justified by the illusion
of exiting before the inevitable crash. As known in classical economics, Ponzi schemes are
fraudulent schemes that allow for ‘optimal’ super profits in the short term, but they are
characterized by a very brief time horizon before a certain market collapse [86–88]. Planning
for longer time horizons helps to avoid such unsustainable behaviors when approaching
the most sustainable long-term optimal path, i.e., the well-known turnpike property [70,89].
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Several modeling assumptions could be relaxed in our modeling framework. In par-
ticular, here, the future of the coupled climate and economic evolution is assumed to
be deterministic. Including high-dimensional and stochastic components in climate and
economic systems is high on the priority list of extensions in this model. Introducing
stochasticity would capture the inherent risks associated with climate change and market
shocks, which could accelerate the need for action.

Additionally, the versatility of our model allows for customization to specific geo-
graphical and political contexts. It can be easily modified to incorporate region-specific
energy demands, investment budgets, and costs for renewables and NET. This flexibility
enables the exploration of scenarios in diverse contexts, offering valuable insights into the
potential outcomes and effectiveness of different strategies.

Furthermore, damages are considered a linear function of emissions; nonlinear feedback
in the climate–economy system would modify the optimal pathways, especially when in-
cluding social components [59,67]. Exploring different forms of the damage function would
also be interesting, given the well-known uncertainties [90,91], including the estimates on
negative-emissions technologies [4]. These extensions will be considered in future work.
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Appendix A

Table A1. Model parameters.

Symbol Unit Value

Energy demand E0 EJ 556 a

Current emissions GtCO2/yr 32.3 a

Depreciation rate clean energy capital δCL − 0.03 b

Depreciation rate NET capital δNET − 0.03 b

Energy carbon efficiency ξFF GtCO2 / EJ 0.076 a c f h

Natural sink efficiency ξNAT - 0.015 c i

Clean energy efficiency ηCL EJ/$billion 0.032 d

NET efficiency ηNET GtCO2/ $ billion ∼ 1/290 e

Social cost of carbon SCC $billion/GtCO2 ∼ 50
Irreducible fossil fuel energy Φ EJ ∼ 150
Max annual investment Imax $billion ∼ 700 f

Max clean energy investment share µmax - 1
Emission concentration conversion cF ppm/ GtCO2 0.129 c

Discount rate ρ - ∼ 0.05
Adjustment cost coefficient c1, c2 - 0.1, 0.3 g

Initial [CO2] 0 level [CO2] 0 ppm 419
Pre-industrial CO2 level [CO2] PI ppm 280
Initial ECL level ECL 0 EJ 32 a

Initial NET level NET 0 GtCO2 ∼ 0 f

a [8], b [93], c [94], d [79], e [43], f [83], g [12], h Calibration of Equation (7) to [CO2] observations—see Figure A1 in
Appendix A, i Calibration of Equation (4) to CO2 emissions—see Figure A2 in Appendix A.

https://github.com/sarceras/OptInvest
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Figure A1. Calibration of the model (Equation (7)) to observed CO2 concentration data (data from
NOAA [95]). Fitted parameter: ξNAT = 0.015.

Figure A2. Calibration of the model (Equation (4)) to emission data [95]. Fitted parameter: ξFF =

0.076 GtCO2.
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